0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Адиабатным сжатием повысили температуру воздуха в двигателе так

АДИАБАТИЧЕСКИЕ ПРОЦЕССЫ В АТМОСФЕРЕ

В атмосфере постоянно происходят перех од ы од них вид ов энергии в другие. Наиболее х арактерными являют ся переходы тепловой энергии в механическую и обратно, которые осуществляются при термодинамических процессах.

Адиабатическим процессом называется термодинамический процесс, при котором изменение температ ур ы в некотором объеме воздуха происх одит без теплообмена с окружающей средой. При адиабатических процессах расширение воздуха сопровожд ает ся его охлаждением, а сжатие — нагреванием. В атмосфере адиабатические процессы наблюдаются при вертикальных д вижениях воздуха.

При восходящих пот оках воздух , попадая из более плот ных слоев атмосферы в менее плотные, расширяет ся. На работу расширения трат ится внутр енняя тепловая энергия, вследствие чего поднимающ ийся воздух охлажд ается.

При д вижении вниз (нисх одящие пот оки) воздух попадает под большее давление и сжимает ся. Производ имая при эт ом работа внешних сил (д авление окр ужающей атмо сферы) переходит в тепловую энергию, поэтому опускающийся воздух нагревает ся.

Величина изменения температуры воздуха, в зависимости от изменения д авления,

определяется уравнением Пуассона

T æP ö

=ç ÷

T 0 èP0 ø

где: Р0 и Т0 — начальные величины давления и т емперат уры;

Р и Т — давление и абсолютная температ ура массы воздуха при адиабат ическом изменении ее сост ояния.

Различают сухоадиабатические и влажноадиабат ические процессы. Сухоадиабат и- ческие процессы происходят в сухом или влажном, но ненасыщенном воздухе. Влажноадиабатические процессы — во влажном насыщ енном воздухе.

Количественной мерой изменения т емпературы сухого воздуха при адиабат ическом процессе являет ся сухоадиабатический градиент gα — изменение температуры в сухом или влажном ненасыщ енном воздухе при его подъеме или опускании на каждые 100 м высоты. Расчет показывает, что величина

g a = 0,98°С /100 м » 1°С /100 м = const .

При поднятии воздуха вверх на каждые 100м высоты происходит понижение его температ уры на 1°С, а при опускании воздуха вниз — повышение т емперат уры также на 1°С на 100 м высоты.

В воздухе, насыщ енном водяными парами, изменение температуры при подъеме

происходит по иному. Если вверх поднимается насыщенный воздух, то при понижении температуры за счет расширения, част ь вод яных паров конденсирует ся. В результате этого выделяется скрытая теплота конденсации (597 кал/г), кот орая существенно уменьшает охлаждение воздуха. Поэ тому насыщенный воздух при подъеме на 100 м охлаждается на величину меньш ую, чем 1°С. Эта величина называется влажноадиабатическим градиентом gвα .

Влажноадиабатический град иент величина непост оянная и зависит от температ уры и давления возд уха (табл. 5.1).

Таблица 5.1. Значения влажноадиабатического град иента ( °С/100 м)

Дав ление, гПаТемпература
-30°-20°-10°+10°+20°+30°
0,940,880,780,660,540,440,38
0,870,750,600,470,380,310,27

Чем вы ше температ ура в поднимающемся насыщенном воздухе, тем меньше величина влажноадиабатического градиента. Это объ ясняется тем, что при б олее высокой температуре в насыщенном воздухе содержится большое количест во водяного пара, при конденсации которого выделяется б ольшое количество скрытого т епла, в результате чего поднимающ ийся воздух охлаждается не так сильно. Если насыщ енный воздух имеет низкую т емпературу, то в нем содержит ся очень небольшое количест во водяного пара, в связи с чем происходит незначительное выделение скрыт ой теплоты в период его конд енсации, и величина охлаждения воздуха при его поднятии приближается к сухоадиабатическому градиенту. С уменьшением д авл ения (при одной и т ой же температуре) влажноадиабатический градиент

уменьшается, так как воздух ст ановит ся менее плот ным и освобождающ аяся скрыт ая т еплот а конденсации идет на нагревание меньшей массы воздуха. В среднем

gвa =0,5°С /100 м . С высотой влажноадиабатический градиент увеличивается, и его

величина приближает ся к сухоадиабатическому градиент у.

При опускании насыщенного воздуха происход ит его адиабатическое нагревание, и он удаляется от состояния насыщ ения (т.е. ст ановится ненасыщенным). Следовательно, опускающийся воздух всегда б уд ет нагреваться по сухоадиабатическому закону, т.е. на 1°С на каждые 100 м.

Изменение т емпературы при адиабатических процессах можно изобразить графически при помощ и линий, называемых адиабатами.

Линия, которая показывает изменение т емпературы в поднимающемся или

опускающемся сух ом воздухе, называется сухой адиабатой (рис. 5.9).

Рис. 5.9. Сухие адиабаты Рис. 5.10. Влажные адиабаты

Формула изменения температуры при сухоадиабат ическом процессе представляет собой уравнение прямой линии

=t0 -ga Н .

Если откладывать на осях координат в одинаковом масштабе температуру в 1°С и высоту

100 м, то прямая линия — сухая ад иабата — будет наклонена к оси т емператур под углом 45°.

Линия, характеризующ ая изменение температ уры в поднимающемся насыщ енном воздухе, называется влажной адиабатой (рис. 5.10). Влажные адиаб аты, в отличие от сухих, являются изогнутыми линиями, пот ому что gвa величина непост оянная, при поднят ии насы щенного возд уха gвa увеличивается, приближаясь к ga .

Адиабатические изменения т емпературы могут наблюдаться и непосредст венно у земной поверхности при изменении давления. Повыш ение или понижение д авления на 1 гПа (при давлении Р » 1000 гПа) вызывает соот ветст вующее повышение или понижение т емпературы на 0,08°С .

Особенности модернизации ГТУ для снижения ограничений располагаемой мощности в условиях высокой температуры наружного воздуха с помощью установки испарительного охладителя в проточной части КВОУ

В статье рассмотрен один из методов повышения эффективности газотурбинной установки, работающей по циклу Брайтона, а именно метод установки испарительного охладителя в проточной части КВОУ. Показана зависимость коэффициента полезного действия температуры наружного воздуха и степени повышения давления в компрессоре. Рассчитаны температуры максимального охлаждения воздуха в зависимости от температуры и влажности окружающей среды. Целью данной статьи является рассмотрение одного из оптимальных методов повышения эффективности газотурбинной установки, а также выявление конструктивных и эксплуатационных нюансов внедрения данного метода.

Читать еще:  Двигатель cr12 технические характеристики

Газотурбинная установки (ГТУ) – энергетическая установка, предназначенная для выработки электрической энергии. В её состав входит компрессор, камера сгорания (КС) и газовая турбина. Воздух (рабочее тело) сжимается в компрессоре и подается в камеру сгорания, где осуществляется его нагрев с помощью сжигания топлива (природный газ, мазут, дизельное топливо). Далее нагретый сжатый воздух поступает в газовую турбину, где совершает полезную работу, а затем выбрасывается в атмосферу или поступается на вход в котел-утилизатор (КУ).

Все стационарные энергетические газотурбинные установки в мире проектируются по стандарту ИСО 2314:2009 [1, с. 1] на условия атмосферного воздуха: pн.в. = 101,3 кПа, tнв = +15 °С и φ = 60 %. Однако параметры наружного воздуха в процессе эксплуатации ГТУ значительно отличается от стандартных. Мощность и коэффициент полезного действия (КПД) ГТУ, работающих по простейшему циклу Брайтона существенно зависят от его параметров: температуры, давления и влажности [2, с. 23].

Большая часть энергии (около 50 % от мощности ГТУ) затрачивается на сжатие воздуха в компрессоре. Поэтому эффективность работы компрессора сильно влияет на КПД всей установки (при снижении удельной работы сжатия в компрессоре на 1 % КПД ГТУ возрастает на 2 %). При повышении температуры наружного воздуха, мощность газотурбинной установки снижается, чем южнее эксплуатируется ГТУ, тем больше ограничения мощностей на ней в летний период.

Поэтому производители ГТУ часто применяют те или иные системы охлаждения всасываемого воздуха.

Степень повышения давления в компрессоре – это отношение давления воздуха на выходе из компрессора к давлению на входе. Анализ влияния данного параметра дает понять, что при его увеличении КПД установки растет значительно, но есть предел, после которого увеличение степени сжатия незначительно влияет на коэффициент полезного действия, либо вообще приводит к снижению эффективности ГТУ. График зависимости КПД ГТУ hl от степени повышения давления π в компрессоре при различных температурах в камере сгорания показан на рисунке 1 [1, с. 15].

Рис. 1. График зависимости КПД ГТУ от степени повышения давления
при различных температурах в камере сгорания (1000 — 1400 °C)

Влияние температуры наружного воздуха на эффективность ГТУ также велико. Номинальная мощность газотурбинных установок согласно ИСО 2314:2009 [1, с. 1] рассчитана на температуру воздуха перед компрессором +15 °C. Однако температура воздуха всегда меняется в широком диапазоне. Например, в Санкт-Петербурге температура наружного воздуха может изменяться в пределах от -36 до 37 °C. Существенная разница по значениям температуры оказывает влияние на КПД ГТУ. На рисунке 2 [2] показан график зависимости коэффициента полезного действия hl от температуры наружного воздуха t1. Из графика видно, что при повышении температуры наружного воздуха в указанном интервале КПД ГТУ уменьшается от 35,5 до 31 %.

Рис. 2. График зависимости КПД ГТУ от температуры воздуха перед компрессором

Климатические условия в Санкт-Петербурге имеют тенденцию к росту средних температур, а для увеличения эффективности работы ГТУ необходимо снижать температуру воздуха перед компрессором. На данный момент существует достаточно методов решения этой проблемы, которые успешно внедряются и используются на современных газотурбинных установках. В данной статье мы рассмотрим один из наиболее эффективных методов снижения температуры воздуха перед компрессором ГТУ — метод установки испарительного охладителя в проточной части КВОУ.

Испарительный охладитель – это устройство, которое охлаждает воздух с помощью испарения воды. Испарительное охлаждение имеет ряд существенных отличий от обычных систем кондиционирования воздуха. В их основе лежит использование большой удельной теплоты испарения воды. Температура сухого воздуха может быть снижена с помощью фазового перехода жидкой воды в пар, и этот процесс требует значительно меньше энергии, чем компрессионное охлаждение.

Охлаждение при испарении – это физический феномен, при котором испарение жидкости в окружающий воздух охлаждает объект или контактирующую с ним жидкость. Количество теплоты, необходимое для испарения жидкости, берётся из окружающей среды. При изучении испарения воды, влажный термометр сравнивается с сухим, полученное значение соответствует потенциалу охлаждения при испарении. Чем больше разница двух температур, тем больше эффект охлаждения. Если температура одинаковая, то испарения воды в окружающую атмосферу не происходит, соответственно нет и охлаждающего эффекта. Простым примером природного испарительного охлаждения является потоотделение, при этом тело выделяет пот для собственного охлаждения. Количество передаваемой теплоты зависит от уровня испарения, на каждый килограмм испарённой воды передаётся 2257 кДж (при температуре 35 °С). Уровень испарения зависит от влажности и температуры окружающего воздуха, поэтому в жаркие влажные дни пот накапливается на теле. Выделившийся в таких условиях пот не может испариться. Принцип испарительного охлаждения отличается от того, на котором работают аппараты парокомпрессионного охлаждения, хотя они также требуют испарения (испарение является частью системы). В парокомпрессионном цикле, после испарения хладагента внутри испарительного змеевика, охлаждающий газ сжимается и охлаждается, под давлением конденсируясь в жидкое состояние. В отличие от этого цикла, в испарительном охладителе вода испаряется только один раз. Испарённая вода в охладительном приборе выводится в пространство с охлажденным воздухом. В градирне испарившаяся вода уносится потоком воздуха.

Все конструкции испарительных охладителей используют то преимущество, что вода имеет одну из наибольших известных энтальпий парообразования (удельную теплоту испарения). Прямое испарительное охлаждение (открытый цикл) используется для снижения температуры воздуха с помощью удельной теплоты испарения, изменяя жидкое состояние воды на газообразное. В этом процессе энергия в воздухе не меняется. Сухой, тёплый воздух заменяется на прохладный и влажный. Тепло внешнего воздуха используется для испарения воды.

Читать еще:  Что такое разгильзовка двигателя

Непрямое испарительное охлаждение (закрытый цикл) процесс похожий на прямое испарительное охлаждение, но использующий определённый тип теплообменника. В этом случае влажный, охлаждённый воздух не контактирует с кондиционируемой средой.

Также существует двухстадийное испарительное охлаждение, или непрямое/прямое. Традиционные испарительные охладители используют только часть энергии необходимой аппаратам парокомпрессионного охлаждения или системам адсорбционного кондиционирования. К сожалению, они повышают влажность воздуха до дискомфортного уровня (за исключением очень сухих климатических зон). Двухстадийные испарительные охладители не повышают уровень влажности настолько, насколько это делают стандартные одноступенчатые испарительные охладители. На первой стадии двухстадийного охладителя, тёплый воздух охлаждается непрямым путём без увеличения влажности (с помощью прохождения через теплообменник, охлаждаемый испарением снаружи). В прямой стадии предварительно охлаждённый воздух проходит через пропитанную водой прокладку, дополнительно охлаждается и становится более влажным. Поскольку в процесс включена первая, предохлаждающая стадия, на стадии прямого испарения необходимо меньше влажности для достижения требуемых температур. В результате, по словам производителей, процесс охлаждает воздух с относительной влажностью в пределах 50 – 70 %, в зависимости от климата. Для сравнения традиционные системы охлаждения повышают влажность воздуха до 80 %.

Процесс испарительного охладителя отражен на номограмме влажного воздуха Рамзина (диаграмма Молье) (табл.1). Уменьшение температуры воздуха происходит не за счет работы холодильной машины, а в результате фазового перехода воды в воздух (испарения), сопровождающегося поглощением (тепловой) энергии из окружающей среды. Минимальное значение температуры, которого можно достичь за счет испарения при адиабатном процессе, лежит на пересечении линии, параллельной энтальпии, опущенной из точки с исходными значениями температуры и влажности с линией 100 % влажности. Температуры максимального охлаждения в зависимости от температуры и влажности окружающей среды отражены в диаграмме Молье (табл.).

Примеры решения задач. Задача 1. В цилиндре ДВС адиабатно сжимается воздух с начальными параметрами p1 = 0.1 МПа и T1 = 300 К

Задача 1. В цилиндре ДВС адиабатно сжимается воздух с начальными параметрами p1 = 0.1 МПа и T1 = 300 К. Степень сжатия воздуха e = 10. К сжатому воздуху в изохорном процессе подводится теплота q = 288 кДж/кг. Определить параметры воздуха в узловых точках и рассчитать работу сжатия.

Изображаем адиабатный и изохорный процессы в диаграммах р-u и T-S. Процесс 1-2 адиабатного сжатия воздуха от V1 до и процесс 2-3 изохорного подвода тепла.

Из уравнения состояния определяем значение удельного объема в точке 1.

p1u1 = RT1 откуда

м 3 /кг.

Из уравнения соотношений удельных объемов и температур для адиабатного процесса определяем значение температуры в точке 2.

Определяем работу сжатия

Определяем параметры воздуха в узловых точках.

Давление в точке 2 вычитается из уравнения соотношения удельных объемов и давлений для адиабатного процесса.

Тепло подведенное в изохорном процессе

Отсюда температура в точке 3

К

Из соотношений давлений и температур для изохорного процесса находим давление в точке 3:

, откуда .

Задача 2. Начальные параметры воздуха, адиабатно сжимаемого в компрессоре ГТУ.

р1=0,1 Мпа и Т1=29 К.. Степень повышения давления в компрессоре . Затем воздух подается в камеру сгорания, где при постоянном давлении к нему подводится теплота в количестве 242 кДж/кг. Определить параметры воздуха в узловых точках и работу сжатия компрессора.

Изобразим адиабатный и изобарный процессы в диаграммах p-u и T-S. Процесс 1-2 повышения давления воздуха от до , и процесс 2-3 изобарного (при ) подвода тепла.

Определяем из уравнения состояния значение удельного объема в точке 1:

, откуда

Из уравнения соотношения давлений и температур для адиабатного процесса определяем значение температуры в точке 2:

, откуда

Определяем работу сжатия :

Удельный объем в точке 2 находим из уравнения состояния:

Откуда:

Процесс 2-3 изобарный, поэтому:

В процессе 2-3 подведено тепло:

Удельный объем в точке 3:

Задача 3. Воздух, начальные параметры которого р1=0,1 МПа и Т1=300 К адиабатно сжимается в компрессоре турбонагнетателя ДВС до давления , затем при р=const воздух охлаждается в холодильнике до температуры t3=37. Определить работу сжатия компрессора и количество теплоты отводимой от 1 кг воздуха.

Из уравнений адиабатного процесса определяем температуру Т2 в конце процесса сжатия компрессора.

Откуда:

АДИАБАТНЫЕ ПРОЦЕССЫ В АТМОСФЕРЕ

Новые аудиокурсы повышения квалификации для педагогов

Слушайте учебный материал в удобное для Вас время в любом месте

откроется в новом окне

Выдаем Удостоверение установленного образца:

магистр психологии, клинический психолог. .

психолог-консультант, клинический психолог. .

«IQ и EQ как основа успешного обучения»

  • для учителей, репетиторов и родителей
  • свидетельство + скидки на курсы для всех!

Описание презентации по отдельным слайдам:

АДИАБАТНЫЕ ПРОЦЕССЫ В АТМОСФЕРЕ

Когда часть воздуха в атмосфере поднимается то, попадая в область более низкого давления, она начинает расширяться. Это расширение часто можно считать адиабатным так как за время подъема теплообмен между поднимающейся массой воздуха, которая достаточно велика по объему, и окружающей средой просто не успевает произойти. Адиабатным по аналогичной причине можно считать и сжатие опускающихся воздушных масс

Теория адиабатных процессов основывается на уравнении первого закона термодинамики в форме: ∆U=Aвнеш Из этого уравнения видно, если Авнеш>0 внутренняя энергия газа увеличивается так как при этом ∆U>0 и поэтому газ нагревается, с учётом формулы Aвнеш=-р внеш∆U следует что происходит адиабатное сжатие газа . И наоборот, при адиабатном расширении газа когда Авнеш 4 слайд

Поднимающийся вверх влажный воздух охлаждается.

Когда температура воздуха понижается до точки росы, то происходит процесс конденсации имеющегося в воздухе водяного пара, но для этого необходимо, чтобы в воздухе содержалось достаточно большое число ядер конденсации, т. е. некоторых центров, вокруг которых могли бы концентрироваться молекулы водяного пара, образуя в конечном итоге капельки воды. Роль таких ядер могут играть ионы или мельчайшие частицы пыли, сажи или каких-либо других загрязнений индустриального происхождения. Их концентрация составляет в среднем 103 в 1 см3 над океаном, 104 над сушей вне городов и 105 в городах.

Читать еще:  Двигатель 6нк1 технические характеристики

Когда водяной пар в поднявшемся на некоторую высоту воздухе начинает конденсироваться, появляются облака.

В большинстве случаев облака представляют собой скопления огромного количества мельчайших капелек воды. Диаметр этих капелек составляет тысячные и сотые доли миллиметра, а их концентрация — сотни в 1 см3. При температурах ниже 0°С облако может содержать кристаллики льда, размер которых в десятки раз больше, чем у капель.

Тому, что облако не падает на землю, есть несколько причин. Если капельки воды в облаке очень маленькие (доли микрометра), то им не дают падать вниз беспорядочные удары окружающих молекул воздуха. Из-за этих ударов капелька непрерывно меняет направление своего движения, перемещаясь по сложной и запутанной траектории, подобно броуновской частице.

Более массивные капли могут начать падать, но сопротивление воздуха, а также его встречные (восходящие) потоки могут вскоре остановить это падение и даже отбросить эти капли вверх. Продолжающие же падение капли могут просто испариться и также не достичь земли.

После того как облако сформировалось, оно будет существовать до тех пор, пока не испарится или не выпадут осадки (дождь, снег, град).

Дождь идет, как правило, из облаков, имеющих температуру ниже О °С и содержащих наряду с каплями воды кристаллики льда. Выпадая из облака и попадая под ним в слои воздуха с положительной температурой, эти кристаллики тают, превращаясь в капли дождя.

Зимой эти кристаллики (в виде снежинок) достигают поверхности земли, не растаяв.

Форма снежинок может быть очень разнообразной, но преобладают, как правило, «звездочки» с 3, 6 или 12 лучами и комплексы из шестигранных кристаллических столбиков, называемые «ежами».

Град, как правило, выпадает при сильной грозе в теплое время года, когда температура воздуха у поверхности земли выше 20 °С. Зародыши градин образуются в облаке за счет случайного замерзания отдельных капель. Падая вниз и сталкиваясь с водяными каплями, они обрастают льдом и увеличиваются в размерах.

При наличии мощных восходящих потоков воздуха они могут удерживаться в облаке, пока не станут достаточно тяжелыми. После этого они выпадают на землю в виде сферических частиц или кусочков льда размером в среднем от 5 до 55 мм. Иногда встречаются и такие градины, размер которых превышает 10 см, а масса достигает 1 кг.

Сильный град наносит большой ущерб сельскому хозяйству, уничтожая посевы, виноградники и т. д.

Для борьбы с градом с помощью ракет или снарядов в облако вводится специальное вещество, способствующее замораживанию капель. Благодаря этому в облаке возникает огромное количество искусственных центров кристаллизации и вода в нем перераспределяется на значительно большее число кристалликов, не позволяя образоваться отдельным крупным градинам. Падая, эти кристаллики тают в теплых слоях воздуха, не успевая достигнуть земли

1. Какие процессы называют адиабатными? 2. Докажите, что при адиабатном расширении газ охлаждается, а при адиабатном сжатии — нагревается. 3. Из-за чего возникают облака? 4. Почему облака не падают на землю? 5. По какой причине образуется туман? 6. Расскажите о процессах возникновения дождя, снега и града.

Ресурсы С.В.Громов «Физика 11» Москва Просвещение 2005г Диск Platinum DVD-SOFT ADOBE CREATIVE SUITE 2 PREMIUM коллекция 5 тысяч клипов 2002г Фото Бобылёвой Е.А. Фото Сударикова А.Ф.

Презентацию составила Сударикова В.И. учитель физики муниципального общеобразовательного учреждения средней общеобразовательной школы п. Хийденсельга Питкярантского района Республики Карелия

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

Курс профессиональной переподготовки

Физика: теория и методика преподавания в образовательной организации

Курс повышения квалификации

ЕГЭ по физике: методика решения задач

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

Презентация « Адиабатные процессы в природе» предназначена для учщихся одиннадцатого класса, обучающихся по учебнику С.В. Громова. В ней объясняется на чём основана теория адиабатных процессов, рассматривается адиабатное расширение и сжатие, образование облаков,что представляют собой облака, и почему облако не падает на землю, почему идёт дождь или снег или град и почему градины могут достигать больших размеров, что делаю для борьбы с градом. В презентации предложены вопросы для закрепления материал по изученной теме. При создании презентации исползованы фотографии из Интернета и снимки сделанные жителями нашего посёлка.

  • Сударикова Валентина ИвановнаНаписать 2576 20.02.2015

Номер материала: 401164

  • Физика
  • Презентации
    20.02.2015 2176
    20.02.2015 964
    20.02.2015 1606
    20.02.2015 958
    20.02.2015 638
    20.02.2015 2251
    20.02.2015 477

Не нашли то что искали?

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Рособрнадзор дал рекомендации по проведению контрольных работ

Время чтения: 1 минута

Зарплату педагогов Кировской области с сентября проиндексируют на 6%

Время чтения: 1 минута

Роспотребнадзор запустил «горячую линию» по вопросам питания в школах

Время чтения: 1 минута

Всероссийская олимпиада школьников начнется 13 сентября

Время чтения: 2 минуты

Учеба в школах в дни выборов в Госдуму будет идти в штатном режиме

Время чтения: 1 минута

Минпросвещения запустило конкурс «Директор года России»

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector