3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный двигатель максимальные обороты

График мощности и крутящего момента

На написание данной статьи подвигла частая путаница между такими понятиями как мощность и крутящий момент.

График мощности и крутящего момента — о чем он говорит?

Пример графика мощности и крутящего момента, полученный со стенда для испытания двигателей PowerTest.

Где

  • ω — угловая скорость вращения вала
  • M — крутящий момент
  • π — число

3.1416

  • n — частота вращения, измеряемая в оборотах в единицу времени (в данном случае одна минута).
  • Важно отметить что мощность в этой формуле получается в ваттах, для получения результата в лошадиных силах мощность в кВт необходимо умножить на коэффициент 0,735499.

    КРУТЯЩИЙ МОМЕНТ (TORQUE) — это произведение силы в Н, которая приложена к валу не напрямую, а через рычаг (плечо) длиной 1 м, прикрепленный к валу (точка измерения крутящего момента), отсюда и единица измерения Н*м. При такой нагрузке происходит деформация вала ,только не изгиб, который был бы при нулевой длине плеча, а скручивание, при котором отдельные сечения вала не повторяют друг друга, а оказываются повернутыми друг относительно друга на определённые углы, тем большие, чем больше приложенная сила, или чем больше рычаг при одной и той же силе. По этой причине момент называют крутящим. Не следует ожидать, что вы увидите эту закрутку стального вала диаметром, например, 20 мм, нанеся перед нагрузкой на поверхность вала линии, параллельные его оси. Величина закрутки будет в реальности настолько мала, что её непросто измерить даже с помощью специальных приборов, измерителей крутящего момента.

    ОБОРОТЫ (RPM — Revolutions Per Minute) — здесь все еще проще, это число оборотов, которое совершает ВАЛ за одну минуту. Измеряется в об/мин.

    Часто кажется, что люди не вполне понимают разницу между МОЩНОСТЬЮ и МОМЕНТОМ, тем более, последние связаны друг с другом через еще один ключевой параметр, как на стенде испытаний двигателя, так и в условиях реальной эксплуатации. Это угловая скорость вращения вала.

    Например к нам часто приходят запросы «Нам нужно измерить параметры двигателя мощностью 200л.с.» или «какой гидротормоз вы посоветуете на 140 кВт?»

    Ответить на этот вопрос можно, но это не гарантирует что заказчик получит желаемый результат. Потому что в вопросе отсутствует информация о скоростных режимах испытываемого на стенде двигателя.

    Почему это важно?

    При выборе нагружающего устройства это критически важно, так как одну и ту же мощность двигатель может выдавать на стенде как при 1500 об/мин (дизельный двигатель), так и на 20 000 об/мин (двигатель гоночного мотоцикла). Для каждого типа двигателя необходимо подбирать соответствующее нагружающее устройство. А иногда даже не одно, а тандем из двух, первое из которых работает при низких оборотах, а второе при высоких. Если речь идет об испытаниях вновь создаваемых двигателей с широким скоростным диапазоном вращения вала.

    Что это означает на практике?

    Если отойти от теории, то график мощности и крутящего момента — это основные характеристики двигателя. Когда вы въезжаете на своем автомобиле в горку и пытаетесь поддерживать одну и ту же скорость, вам приходится сильнее нажимать на педаль газа. Многим при этом кажется, что мощность останется та же, т.к. скорость не меняется. Но это не так!

    При движении в горку двигатель выдает большую мощность при тех же оборотах.
    (при неизменной передаче). Это легко проверить, взглянув на текущий расход топлива.

    Также это объясняет, зачем двигателю нужна коробка передач, ведь для эффективного разгона и преодоления подъёмов нам необходимо поддерживать обороты в диапазоне максимальной мощности двигателя.

    А вот электромобили обходятся без нее. Кривая крутящего момента и мощности у электродвигателя намного более линейна, и к тому же электродвигатель выдает куда большую мощность на низких оборотах.

    Зачем измерять мощность и крутящий момент?

    Во-первых это необходимая процедура при разработке и сертификации любого нового двигателя.

    Во-вторых эти данные помогут при дальнейшей настройке и доработке двигателя, чтобы добиться наилучших эксплуатационных характеристик.

    В третьих кривая мощности и крутящего момента, если её сравнить с паспортной — это прямой показатель технического состояния любого двигателя.

    Графики мощности дизельного двигателя до ремонта и после ремонта, полученные с испытательного стенда на базе гидротормоза, который можно приобрести в нашей компании.

    Частота вращения: формула

    При проектировании оборудования необходимо знать число оборотов электродвигателя. Для расчёта частоты вращения есть специальные формулы, различные для двигателей переменного и постоянного напряжения.

    Синхронные и асинхронные электромашины

    Двигатели переменного напряжения есть трёх типов: синхронные, угловая скорость ротора которых совпадает с угловой частотой магнитного поля статора; асинхронные – в них вращение ротора отстаёт от вращения поля; коллекторные, конструкция и принцип действия которых аналогичны двигателям постоянного напряжения.

    Синхронная скорость

    Скорость вращения электромашины переменного тока зависит от угловой частоты магнитного поля статора. Эта скорость называется синхронной. В синхронных двигателях вал вращается с той же быстротой, что является преимуществом этих электромашин.

    Для этого в роторе машин большой мощности есть обмотка, на которую подаётся постоянное напряжение, создающее магнитное поле. В устройствах малой мощности в ротор вставлены постоянные магниты, или есть явно выраженные полюса.

    Скольжение

    В асинхронных машинах число оборотов вала меньше синхронной угловой частоты. Эта разница называется скольжение «S». Благодаря скольжению в роторе наводится электрический ток, и вал вращается. Чем больше S, тем выше вращающий момент и меньше скорость. Однако при превышении скольжения выше определённой величины электродвигатель останавливается, начинает перегреваться и может выйти из строя. Частота вращения таких устройств рассчитывается по формуле на рисунке ниже, где:

    • n – число оборотов в минуту,
    • f – частота сети,
    • p – число пар полюсов,
    • s – скольжение.

    Формула расчёта скорости асинхронного двигателя

    Такие устройства есть двух типов:

    • С короткозамкнутым ротором. Обмотка в нём отливается из алюминия в процессе изготовления;
    • С фазным ротором. Обмотки выполнены из провода и подключаются к дополнительным сопротивлениям.

    Регулировка частоты вращения

    В процессе работы появляется необходимость регулировки числа оборотов электрических машин. Она осуществляется тремя способами:

    • Увеличение добавочного сопротивления в цепи ротора электродвигателей с фазным ротором. При необходимости сильно понизить обороты допускается подключение не трёх, а двух сопротивлений;
    • Подключение дополнительных сопротивлений в цепи статора. Применяется для запуска электрических машин большой мощности и для регулировки скорости маленьких электродвигателей. Например, число оборотов настольного вентилятора можно уменьшить, включив последовательно с ним лампу накаливания или конденсатор. Такой же результат даёт уменьшение питающего напряжения;
    • Изменение частоты сети. Подходит для синхронных и асинхронных двигателей.

    Внимание! Скорость вращения коллекторных электродвигателей, работающих от сети переменного тока, не зависит от частоты сети.

    Двигатели постоянного тока

    Кроме машин переменного напряжения есть электродвигатели, подключающиеся к сети постоянного тока. Число оборотов таких устройств рассчитывается по совершенно другим формулам.

    Номинальная скорость вращения

    Число оборотов аппарата постоянного тока рассчитывается по формуле на рисунке ниже, где:

    • n – число оборотов в минуту,
    • U – напряжение сети,
    • Rя и Iя – сопротивление и ток якоря,
    • Ce – константа двигателя (зависит от типа электромашины),
    • Ф – магнитное поле статора.

    Эти данные соответствуют номинальным значениям параметров электромашины, напряжению на обмотке возбуждения и якоре или вращательному моменту на валу двигателя. Их изменение позволяет регулировать частоту вращения. Определить магнитный поток в реальном двигателе очень сложно, поэтому для расчетов пользуются силой тока, протекающего через обмотку возбуждения или напряжения на якоре.

    Формула расчёта числа оборотов двигателя постоянного тока

    Число оборотов коллекторных электродвигателей переменного тока можно найти по той же формуле.

    Регулировка скорости

    Регулировка скорости электродвигателя, работающего от сети постоянного тока, возможна в широких пределах. Она возможна в двух диапазонах:

    1. Вверх от номинальной. Для этого уменьшается магнитный поток при помощи добавочных сопротивлений или регулятора напряжения;
    2. Вниз от номинальной. Для этого необходимо уменьшить напряжение на якоре электромотора или включить последовательно с ним сопротивление. Кроме снижения числа оборотов это делается при запуске электродвигателя.

    Знание того, по каким формулам вычисляется скорость вращения электродвигателя, необходимо при проектировании и наладке оборудования.

    Видео

    Как правильно подобрать электродвигатель

    Электродвигатель – механизм, преобразующий энергию электрического тока в кинетическую энергию. Современное производство и быт сложно представить без машин с электроприводом. Они используются в насосном оборудовании, системах вентиляции и кондиционирования, в электротранспорте, промышленных станках различных типов и т.д.

    При выборе электродвигателя необходимо руководствоваться несколькими основными критериями:

    • вид электрического тока, питающего оборудование;
    • мощность электродвигателя;
    • режим работы;
    • климатические условия и другие внешние факторы.

    Типы двигателей

    Электродвигатели постоянного и переменного тока

    В зависимости от используемого электрического тока двигатели делятся на две группы:

    • приводы постоянного тока;
    • приводы переменного тока.

    Электродвигатели постоянного тока сегодня применяются не так часто, как раньше. Их практически вытеснили асинхронные двигатели с короткозамкнутым ротором.

    Главный недостаток электродвигателей постоянного тока – возможность эксплуатации исключительно при наличии источника постоянного тока или преобразователя переменного напряжения в постоянный ток. В современном промышленном производстве обеспечение данного условия требует дополнительных финансовых затрат.

    Тем не менее, при существенных недостатках этот тип двигателей отличается высоким пусковым моментом и стабильной работой в условиях больших перегрузок. Приводы данного типа чаще всего применяются в металлургии и станкостроении, устанавливаются на электротранспорт.

    Принцип работы электродвигателей переменного тока построен на электромагнитной индукции, возникающей в процессе движения проводящей среды в магнитном поле. Для создания магнитного поля используются обмотки, обтекаемые токами, либо постоянные магниты.

    Электродвигатели переменного тока подразделяются на синхронные и асинхронные. У каждой подгруппы есть свои конструктивные и эксплуатационные особенности.

    Синхронные электродвигатели

    Синхронные двигатели – оптимальное решение для оборудования с постоянной скоростью работы: генераторов постоянного тока, компрессоров, насосов и др.

    Технические характеристики синхронных электродвигателей разных моделей отличаются. Скорость вращения колеблется в диапазоне от 125 до 1000 оборотов/мин, мощность может достигать 10 тысяч кВт.

    В конструкции приводов предусмотрена короткозамкнутая обмотка на роторе. Ее наличие позволяет осуществлять асинхронный пуск двигателя. К преимуществам оборудования данного типа относятся высокий КПД и небольшие габариты. Эксплуатация синхронных электродвигателей позволяет сократить потери электричества в сети до минимума.

    Асинхронные электродвигатели

    Асинхронные электродвигатели переменного тока получили наибольшее распространение в промышленном производстве. Особенностью данных приводов является более высокая частота вращения магнитного поля по сравнению со скоростью вращения ротора.

    В современных двигателях для изготовления ротора используется алюминий. Легкий вес этого материала позволяет уменьшить массу электродвигателя, сократить себестоимость его производства.

    КПД асинхронного двигателя падает почти вдвое при эксплуатации в режиме низких нагрузок – до 30-50 процентов от номинального показателя. Еще один недостаток таких электроприводов состоит в том, что параметры пускового тока почти втрое превышают рабочие показатели. Для уменьшения пускового тока асинхронного двигателя используются частотные преобразователи или устройства плавного пуска.

    Асинхронные электродвигатели удовлетворяют требованиям разных промышленных применений:

    • Для лифтов и другого оборудования, требующего ступенчатого изменения скорости, выпускаются многоскоростные асинхронные приводы.
    • При эксплуатации лебедок и металлообрабатывающих станков используются электродвигатели с электромагнитной тормозной системой. Это обусловлено необходимостью остановки привода и фиксации вала при перебоях напряжения или его исчезновения.
    • В процессах с пульсирующей нагрузкой или при повторно-кратковременных режимах могут использоваться асинхронные электродвигатели с повышенными параметрами скольжения.

    Вентильные электродвигатели

    Группа вентильных электродвигателей включает в себя приводы, в которых регулирование режима эксплуатации осуществляется посредством вентильных преобразователей.

    К преимуществам данного оборудования относятся:

    • Высокий эксплуатационный ресурс.
    • Простота обслуживания за счет бесконтактного управления.
    • Высокая перегрузочная способность, которая в пять раз превышает пусковой момент.
    • Широкий диапазон регулирования частоты вращения, который почти вдвое выше диапазона асинхронных электродвигателей.
    • Высокий КПД при любой нагрузке – более 90 процентов.
    • Небольшие габариты.
    • Быстрая окупаемость.

    Мощность электродвигателя

    В режиме постоянной или незначительно изменяющейся нагрузки работает большое количество механизмов: вентиляторы, компрессоры, насосы, другая техника. При выборе электродвигателя необходимо ориентироваться на потребляемую оборудованием мощность.

    Определить мощность можно расчетным путем, используя формулы и коэффициенты, приведенные ниже.

    Мощность на валу электродвигателя определяется по следующей формуле:

    где:
    Рм – потребляемая механизмом мощность;
    ηп – КПД передачи.

    Номинальную мощность электродвигателя желательно выбирать больше расчетного значения.

    Формула расчета мощности электродвигателя для насоса

    где:
    K3 – коэффициента запаса, он равен 1,1-1,3;
    g –ускорение свободного падения;
    Q – производительность насоса;
    H – высота подъема (расчетная);
    Y – плотность перекачиваемой насосом жидкости;
    ηнас – КПД насоса;
    ηп – КПД передачи.

    Давление насоса рассчитывается по формуле:

    Формула расчета мощности электродвигателя для компрессора

    Мощность поршневого компрессора легко рассчитать по следующей формуле:

    где:
    Q – производительность компрессора;
    ηk – индикаторный КПД поршневого компрессора (0,6-0,8);
    ηп – КПД передачи (0,9-0,95);
    K3 – коэффициент запаса (1,05 -1,15).

    Значение A можно рассчитать по формуле:

    или взять из таблицы

    p2, 10 5 Па345678910
    A, 10 -3 Дж/м³132164190213230245260272

    Формула расчета мощности электродвигателя для вентиляторов

    где:
    K3 – коэффициент запаса. Его значения зависят от мощности двигателя:

    • до 1 кВт – коэффициент 2;
    • от 1 до 2 кВт – коэффициент 1,5;
    • 5 и более кВт – коэффициент 1,1-1,2.

    Q – производительность вентилятора;
    H – давление на выходе;
    ηв – КПД вентилятора;
    ηп – КПД передачи.

    Приведенная формула используется для расчета мощности осевых и центробежных вентиляторов. КПД центробежных моделей равен 0,4-0,7, а осевых вентиляторов – 0,5-0,85.

    Остальные технические характеристики, необходимые для расчета мощности двигателя, можно найти в каталогах для каждого типа механизмов.

    ВАЖНО! При выборе электродвигателя запас мощности должен быть, но небольшой. При значительном запасе мощности снижается КПД привода. В электродвигателях переменного тока это приводит еще и к снижению коэффициента мощности.

    Пусковой ток электродвигателя

    Зная тип и номинальную мощность электродвигателя, можно рассчитать номинальный ток.

    Номинальный ток электродвигателей постоянного тока

    Номинальный ток трехфазных электродвигателей переменного тока

    где:
    PH – номинальная мощность электродвигателя;
    UH — номинальное напряжение электродвигателя,
    ηH — КПД электродвигателя;
    cosfH — коэффициент мощности электродвигателя.

    Номинальные значения мощности, напряжения и КПД можно найти в технической документации на конкретную модель электродвигателя.

    Зная значение номинального тока, можно рассчитать пусковой ток.

    Формула расчета пускового тока электродвигателей

    где:
    IH – номинальное значение тока;
    Кп – кратность постоянного тока к номинальному значению.

    Пусковой ток необходимо рассчитывать для каждого двигателя в цепи. Зная эту величину, легче подобрать тип автоматического выключателя для защиты всей цепи.

    Режимы работы электродвигателей

    Режим работы определяет нагрузку на электродвигатель. В некоторых случаях она остается практически неизменной, в других может изменяться. Характер предполагаемой нагрузки обязательно учитывается при выборе двигателя. Действующими стандартами предусмотрены следующие режимы эксплуатации:

    Режим S1 (продолжительный). При таком режиме эксплуатации нагрузка остается постоянной в течение всего времени, пока температура электродвигателя не достигнет необходимого значения. Мощность привода рассчитывается по формулам, приведенным выше.

    Режим S2 (кратковременный). При эксплуатации в этом режиме температура двигателя в период его включения не достигает установившегося значения. За время отключения электродвигатель охлаждается до температуры окружающей среды. При кратковременном режиме эксплуатации необходимо проверять перегрузочную способность электропривода.

    Режим S3 (периодически-кратковременный). Электродвигатель работает с периодическими отключениями. В периоды включения и отключения его температура не успевает достигнуть заданного значения или охладиться до температуры окружающей среды. При расчете мощности двигателя обязательно учитывается продолжительность пауз и потерь в переходные периоды. При выборе электродвигателя важным параметром является допустимое количество включений за единицу времени.

    Режимы S4 (периодически-кратковременный, с частыми пусками) и S5 (периодически-кратковременный с электрическим торможением). В обоих случаях работа двигателя рассматривается по тем же параметрам, что и в режиме эксплуатации S3.

    Режим S6 (периодически-непрерывный с кратковременной нагрузкой). Работа электродвигателя в данном режиме предусматривает эксплуатацию под нагрузкой, чередующуюся с холостым ходом.

    Режим S7 (периодически-непрерывный с электрическим торможением)

    Режим S8 (периодически-непрерывный с одновременным изменением нагрузки и частоты вращения)

    Режим S9 (режим с непериодическим изменением нагрузки и частоты вращения)

    Большинство моделей современных электроприводов, эксплуатируемых продолжительное время, адаптированы к изменяющемуся уровню нагрузки.

    Климатические исполнения электродвигателей

    При выборе электродвигателя учитываются не только его технические характеристики, но и условия окружающей среды, в которых он будет эксплуатироваться.

    Современные электроприводы выпускаются в разных климатических исполнениях. Категории маркируются соответствующими буквами и цифрами:

    • У – модели для эксплуатации в умеренном климате;
    • ХЛ – электродвигатели, адаптированные к холодному климату;
    • ТС – исполнения для сухого тропического климата;
    • ТВ – исполнения для влажного тропического климата;
    • Т – универсальные исполнения для тропического климата;
    • О – электродвигатели для эксплуатации на суше;
    • М – двигатели для работы в морском климате (холодном и умеренном);
    • В – модели, которые могут использоваться в любых зонах на суше и на море.

    Цифры в номенклатуре модели указывают на тип ее размещения:

    • 1 – возможность эксплуатации на открытых площадках;
    • 2 – установка в помещениях со свободным доступом воздуха;
    • 3 – эксплуатация в закрытых цехах и помещениях;
    • 4 – использование в производственных и других помещениях с возможностью регулирования климатических условий (наличие вентиляции, отопления);
    • 5 – исполнения, разработанные для эксплуатации в зонах повышенной влажности, с высоким образованием конденсата.

    Энергоэффективность

    Рациональное потребление энергии при сохраняющейся высокой мощности сокращает текущие производственные затраты при одновременном увеличении производительности электродвигателя. Поэтому при выборе привода обязательно учитывается класс энергоэффективности.

    В технической документации и каталогах обязательно указывается класс энергоэффективности двигателя. Он зависит от показателя КПД.

    Проводимые в тестовом и рабочем режимах экспериментальные исследования показывают, что электродвигатель мощностью 55 кВт высокого класса энергоэффективности сокращает потребление электроэнергии на 8-10 тысяч кВт ежегодно.

    Нулевой износ. Каковы оптимальные обороты мотора?

    Двигатели внутреннего сгорания имеют оптимальные режимы работы, на которых достигается пик тяги. Если придерживаться этих штатных условий, то техника будет служить долгие годы без поломок. Однако есть и такие режимы, которые приводят к износу трущихся частей и резкому снижению ресурса силового агрегата. Если выводить мотор за границы оптимальных оборотов, то велика вероятность возникновения поломки. Что же это за режимы и чего необходимо опасаться водителям?

    Низкие обороты и износ

    В двигателе много трущихся частей, и продолжительность их службы зависит от скорости вращения коленвала. Износ поршневых колец, вкладышей, кулачков газораспределительного механизма и прочих деталей не обходится без влияния нагрузки при различных оборотах и при резких изменениях режима работы мотора. Хуже всего, когда на малых оборотах накладывается высокая нагрузка, совмещенная с резком ростом температуры. Скорость износа трущихся поверхностей в таком режиме максимальна. Страдают также подшипники, стенки цилиндров и поршневые кольца. У двигателистов эта зона оборотов называется буксировочным режимом.

    Оптимальный режим

    Однако уже к 1500 оборотам насос успевает выйти на проектную мощность, прокачивает смазывающую жидкость, и износ падает почти до нуля. Уже при 1800 об./мин. все узлы трения «всплывают» на масляные пленки, прямой контакт между поверхностями деталей исчезает, и скорость износа устремляется к нулю. Начинается оптимальный режим работы мотора.

    Выработка деталей уже настолько мала, что не фиксируется существующими приборами. Идеальный диапазон работы мотора — от 2000 до 4000 оборотов. Именно на него приходится максимум крутящего момента.

    Красная зона

    С увеличением частоты вращения коленчатого вала износ снова появляется и нарастает по экспоненте. Примерно с 3800 об./мин. при большой нагрузке увеличивается выработка на подшипники коленчатого вала. На поршневых кольцах и стенках цилиндров износ вновь заметен с частоты примерно 4500 об./мин. Выросшая температура масла снижает смазывающие свойства, защитная пленка между парами трения иногда пробивается, и поверхности деталей контактируют друг с другом. Максимальная выработка наблюдается при 5-6 тыс. об./мин., то есть в красной зоне тахометра. Горячее масло не может сопротивляться сильному давлению трущихся частей. Двигатель работает на износ, и его ресурс резко снижается.

    Мотористы называют оптимальную скорость движения поршня в 5-7 м/с, она соответствует диапазону в 2000-4000 об./мин. для 1,6-литровых моторов, устанавливаемых на подавляющее большинство массовых машин.

    В общем, для продолжения службы мотора лучше не опускать его обороты ниже 2000 и не поднимать выше 4500. Нельзя пытаться разгоняться, если машина вышла на крейсерский режим и ее двигатель крутится на 1500 об./мин. Если нажать на акселератор при активированной высшей передаче, то нагрузка резко возрастет, момент будет загружать детали, однако должного ускорения не последует, так как мотор еще не раскрутился до высоких оборотов. Он просто будет поедать сам себя.

    Между тем периодически рекомендуется повышать обороты до 4000, чтобы прожечь нагар в камерах сгорания и хорошенько встряхнуть клапаны, чтобы они под действием вибраций начали вращаться. Иначе при длительных нагрузках в одном положении на торце клапана появляется выемка.

    Для «прожарки» мотора необходимо выехать на автомобиле за город и в теплую и сухую погоду проехать около часа по трассе с оборотами коленвала около 4000. Это аналогично поездке на четвертой передаче механической коробки со скоростью 110 км/ч.

    голоса
    Рейтинг статьи
    Читать еще:  Шевроле лачетти что такое гбц двигатель 1 4
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector