0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Бесколлекторный двигатель управление оборотами

Бесколлекторный электродвигатель

Вентильный электродвигатель — это синхронный двигатель, основанный на принципе частотного регулирования с самосинхронизацией, суть которого заключается в управлении вектором магнитного поля статора в зависимости от положения ротора. Вентильные двигатели (в англоязычной литературе BLDC или PMSM) ещё называют бесколлекторными двигателями постоянного тока, потому что коллектор такого двигателя обычно питается от постоянного напряжения.

Содержание

Описание ВД

Этот тип двигателя создан с целью улучшения свойств электродвигателей постоянного тока. Высокие требования к исполнительным механизмам (в частности, высокооборотных микроприводов точного позиционирования) обусловили применение специфических двигателей постоянного тока: бесконтактных трехфазных двигателей постоянного тока (БДПТ или BLDC). Конструктивно они напоминают синхронные двигатели переменного тока: магнитный ротор вращается в шихтованом статоре с трехфазными обмотками. Но обороты являются функцией от нагрузки и напряжения на статоре. Эта функция реализована с помощью переключения обмоток статора в зависимости от координат ротора. БДПТ существуют в исполнении с отдельными датчиками на роторе и без отдельных датчиков. В качестве отдельных датчиков применяются датчики Холла. Если выполнение без отдельных датчиков, то в качестве фиксирующего элемента выступают обмотки статора. При вращении магнита, ротор наводит в обмотках статора ЭДС, в результате чего возникает ток. При выключении одной обмотки измеряется и обрабатывается сигнал, который был в ней наведен. Этот алгоритм требует процессора обработки сигналов. Для торможения и реверса БДПС не нужна мостовая схема реверса питания — достаточно подавать управляющие импульсы на обмотки статора в обратной последовательности.

В вентильном двигателе (ВД) индуктор находится на роторе (в виде постоянных магнитов), якорная обмотка находится на статоре (синхронный двигатель). Напряжение питания обмоток двигателя формируется в зависимости от положения ротора. Если в двигателях постоянного тока для этой цели использовался коллектор, то в вентильном двигателе его функцию выполняет полупроводниковый коммутатор (датчик положения ротора (ДПР) с инвертором).

Основным отличием ВД от синхронного двигателя является его самосинхронизация с помощью ДПР, в результате чего у ВД, частота вращения поля пропорциональна частоте вращения ротора.

Статор

Статор имеет традиционную конструкцию и похож на статор асинхронной машины. Он состоит из корпуса, сердечника из электротехнической стали и медной обмотки,уложенной в пазы по периметру сердечника. Количество обмоток определяет количество фаз двигателя. Для самозапуска и вращения достаточно двух фаз — синусной и косинусной. Обычно ВД трёхфазные, реже- четырёхфазные.

По способу укладки витков в обмотки статора различают двигатели имеющие обратную электродвижущую силу трапецеидальной (BLDC) и синусоидальной (PMSM) формы. По способу питания фазный электрический ток в соответствующих типах двигателя также изменяется трапецеидально или синусоидально.

Ротор

Ротор изготавливается с использованием постоянных магнитов и имеет обычно от двух до восьми пар полюсов с чередованием северного и южного полюсов.

Вначале для изготовления ротора использовались ферритовые магниты. Они распространены и дёшевы, но им присущ недостаток в виде низкого уровня магнитной индукции. Сейчас получают популярность магниты из сплавов редкоземельных элементов, так как они позволяют получить высокий уровень магнитной индукции и уменьшить размер ротора.

Датчик положения ротора

Датчик положения ротора (ДПР) реализует обратную связь по положению ротора. Его работа может быть основана на разных принципах — фотоэлектрический, индуктивный, на эффекте Холла, и т. д. Наибольшую популярность приобрели датчики Холла и фотоэлектрические, так как они практически безинерционны и позволяют избавиться от запаздывания в канале обратной связи по положению ротора.

Фотоэлектрический датчик, в классическом виде, содержит три неподвижных фотоприёмника, которые поочерёдно закрываются шторкой вращающейся синхронно с ротором. Это показано на рисунке 1 (желтая точечка). Двоичный код, получаемый с ДПР, фиксирует шесть различных положений ротора. Сигналы датчиков преобразуются управляющим устройством в комбинацию управляющих напряжений, которые управляют силовыми ключами, так, что в каждый такт (фазу) работы двигателя включены два ключа и к сети подключены последовательно две из трёх обмоток якоря. Обмотки якоря U, V, W расположены на статоре со сдвигом на 120° и их начала и концы соединены так, что при переключении ключей создаётся вращающийся градиент магнитных полей.

Система управления ВД

Система управления содержит силовые ключи, часто тиристоры или силовые транзисторы с изолированным затвором. Из них собирается инвертор напряжения или инвертор тока. Система управления ключами обычно реализуется на основе использования микроконтроллера, в связи с большим количество вычислительных операций по управлению двигателем.

Принцип работы ВД

Принцип работы ВД основан на том, что контроллер ВД коммутирует обмотки статора так, чтобы вектор магнитного поля статора всегда был ортогонален вектору магнитного поля ротора. С помощью широтно-импульсной модуляции (ШИМ) контроллер управляет током, протекающим через обмотки ВД, т.е. вектором магнитного поля статора, и таким образом регулируется момент, действующий на ротор ВД. Знак у угла между векторами определяет направление момента действующего на ротор.

Коммутация производится так, что поток возбуждения ротора — Ф поддерживается постоянным относительно потока якоря. В результате взаимодействия потока якоря и возбуждения создаётся вращающий момент M, который стремится развернуть ротор так, чтобы потоки якоря и возбуждения совпали, но при повороте ротора под действием ДПР происходит переключение обмоток и поток якоря поворачивается на следующий шаг.

В этом случае и результирующий вектор тока будет сдвинут и неподвижен относительно потока ротора, что и создаёт момент на валу двигателя.

В двигательном режиме работы МДС статора опережает МДС ротора на угол 90°, который поддерживается с помощью ДПР. В тормозном режиме МДС статора отстаёт от МДС ротора, угол 90° так же поддерживается с помощью ДПР.

Управление двигателем

Контроллер ВД регулирует момент, действующий на ротор, меняя величину ШИМ.

В отличие от щёточного электродвигателя постоянного тока, коммутация в ВД осуществляется и контролируется с помощью электроники.

Распространены системы управления, реализующие алгоритмы широтно-импульсного регулирования и широтно-импульсной модуляции при управлении ВД.

Система, обеспечивающая самый широкий диапазон регулирования скорости — у двигателей с векторным управлением. С помощью преобразователя частоты осуществляется регулирование скорости двигателя и поддержание потокосцепления в машине на заданном уровне.

Особенность регулирования электропривода с векторным управлением — контролируемые координаты, измеренные в неподвижной системе координат преобразуются к вращающейся системе, из них выделяется постоянное значение, пропорциональное составляющим векторов контролируемых параметров, по которым осуществляется формирование управляющих воздействий, далее обратный переход.

Недостатком этих систем является сложность управляющих и функциональных устройств для широкого диапазона регулирования скорости.

Достоинства и недостатки ВД

В последнее время, этот тип двигателей быстро приобретает популярность, проникая во многие отрасли промышленности. Находит применение в различных сферах использования: от бытовых приборов до рельсового транспорта.

ВД с электронными системами управления часто объединяют в себе лучшие качества бесконтактных двигателей и двигателей постоянного тока.

  • Относительно сложная система управления двигателем
  • Высокая стоимость двигателя, обусловленная использованием дорогостоящих постоянных магнитов в конструкции ротора
  • Во многих случаях более рациональным оказывается применение асинхронного двигателя с преобразователем частоты.

Для применений, комбинирующих максимально достижимый КПД с предельно простыми и надёжными блоками управления (ключевой коммутатор, не использующий ШИМ), можно также выделить следующую особенность: Несмотря на то, что обороты могут широко варьироваться управляющим блоком, приемлемый КПД можно получить лишь в относительно узком интервале угловых скоростей. Это определяется индуктивностью обмоток. Если скорость будет ниже оптимальной, продолжающаяся подача тока в данную фазу, после достижения предела магнитного потока, будет приводить лишь к ненужному нагреву. На скоростях выше оптимальной, магнитный поток в полюсе не достигнет максимума из-за ограниченного индуктивностью времени нарастания тока. Примерами таких двигателей являются модельные бесколлекторные комплекты. Они должны быть эффективными, лёгкими и надёжными, а для того чтобы обеспечить оптимальную угловую скорость при заданной нагрузочной характеристике, производители выпускают модельные ряды с различными индуктивностями (числом витков) обмоток. При этом, меньшее число витков соответствует более быстроходному двигателю.

Читать еще:  Cggb двигатель не заводится

Электродвигатели бесколлекторные: принцип работы, управление бесколлекторными электродвигателями. Бесколлекторный электродвигатель своими руками

Особенности электромоторов

Одна из причин, по которой конструкторы проявляют интерес именно к бесколлекторным электродвигателям — это необходимость в высокооборотных моторах с небольшими размерами. Причём у этих двигателей очень точное позиционирование. В конструкции имеется подвижный ротор и неподвижный статор. На роторе находится один постоянный магнит или несколько, расположенных в определённой последовательности. На статоре же находятся катушки, которые создают магнитное поле.

Нужно отметить еще одну особенность — бесколлекторные электродвигатели могут иметь якорь, расположенный как внутри, так и на внешней стороне. Следовательно, два типа конструкции могут иметь определенное применение в различных сферах. При расположении якоря внутри получается добиться очень высокой скорости вращения, поэтому такие моторы очень хорошо работают в конструкциях систем охлаждения. В том случае, если устанавливается привод с внешним расположением ротора, можно добиться очень точного позиционирования, а также высокой устойчивости к перегрузкам. Очень часто такие моторы используются в робототехнике, медицинском оборудовании, в станках с частотным программным управлением.

Как работают моторы

Для того чтобы привести в движение ротор бесколлекторного электродвигателя постоянного тока необходимо использовать специальный микроконтроллер. Его не получится запустить таким же образом, как синхронную или асинхронную машину. При помощи микроконтроллера получается включить обмотки двигателя так, чтобы направление векторов магнитных полей на статоре и якоре были ортогональны.

Другими словами, при помощи драйвера получается регулировать момент вращения, который действует на ротор бесколлекторного двигателя. Чтобы переместить якорь необходимо осуществить правильную коммутацию в обмотках статора. К сожалению, обеспечить плавное управление вращением не получается. Зато можно очень быстро увеличить скорость вращения ротора электродвигателя.

Трехфазный асинхронный двигатель и вращающееся магнитное поле

Изображения, показанные ниже, ясно иллюстрируют части электродвигателя и показывают, как работает электродвигатель.

Отличия коллекторных и бесколлекторных двигателей

Основное отличие заключается в том, что на бесколлекторных электродвигателях для моделей отсутствует обмотка на роторе. В случае с коллекторными электромоторами, на их роторах имеются обмотки. А вот постоянные магниты устанавливаются на неподвижной части двигателя. Кроме того, на роторе устанавливается специальной конструкции коллектор, к которому производится подключение графитовых щёток. С их помощью подается напряжение на обмотку ротора. Принцип работы бесколлекторного электродвигателя тоже существенно отличается.

Создание вращающего момента вентильного электродвигателя

 Создание вращающего момента вентильного электродвигателя

Основными исполнительными устройствами в электромеханической системе наиболее универсальными управляемыми свойствами и эксплуатационными показателями обладают бесконтактные двигатели постоянного тока (БДПТ). Бесконтактный двигатель постоянного тока — это электрическая машина постоянного тока, в которой механический коллектор заменен полупроводниковым коммутатором (ПК), поэтому его также называют вентильный электродвигатель. Первые серии которых были созданы в пятидесятых годах двадцатого века посредством замены щеточно-коллекторного узла двигателя постоянного тока на более надежный полупроводниковый коммутатор. Бесконтактные двигатели постоянного тока работают в условиях вакуума и агрессивных сред, экономичны и более быстроходны, чем двигатели щеточного типа, весьма гибки в управлении, а срок их службы практически ограничен износом подшипникового узла. Большой вклад в теорию и практику создания и совершенствования бесконтактных двигателей постоянного тока, а также управления ими внесли инженеры и ученые И. Е. Овчинников, Н. И. Лебедев, Ш. И. Лутидзе, A. A. Дубенский, В. К. Лозенко, A. M. Бертинов, В. А. Балагуров, Д. А. Бут, М. Г. Чиликин.

На сегодняшний день разработка и исследование электромеханических систем с бесконтактными двигателями постоянного тока в качестве объекта управления преобладает все большее значение, что характерно существующими преимуществами по сроку службы, особенностью работы в суровых условиях эксплуатации, универсальностью регулировочных качеств, а также достаточной легкостью в управлении. Разнообразие имеющих и разрабатываемых бесконтактных двигателей способствовала за собой появление огромного числа разных схем управления этими двигателями.

Необходимо отметить, что основное внимание исследователей сосредоточено на решении основных вопросов по построения отдельных узлов бесконтактных двигателей постоянного тока и их конструктивного усовершенствования. Условно меньшее количество работ посвящено аспектом по проектированию совершенно новых универсальных алгоритмов и средств управления электромеханическими системами с применением бесконтактных двигателей постоянного тока, направленных на улучшение их энергетических показателей.

В этой связи в области управления электромеханическими системами с бесконтактными двигателями постоянного тока возникает ряд вопросов и связанных с ними проблем теоретического и прикладного характера, для решения которых необходимо проведение соответствующих исследований.

Таким образом, проблема создания новых высоконадежных электромеханическими системами с бесконтактными двигателями постоянного тока, работающих по ряду параметров оптимально, а также разработки соответствующих алгоритмов и средств улучшения качество функционирующих процессов и динамических характеристик, реализующих принцип энергосберегающих технологий, является актуальной.

Данный электродвигатель в конструктивно полностью соответствует синхронному электродвигателю, возбуждение которого осуществляется от постоянных магнитов, размещенных на роторе. Однако питание фаз статорных обмоток вентильного двигателя осуществляется не от сети переменного тока, а постоянным током через полупроводниковый коммутатор (ПК) (рис 1.). Полупроводниковый коммутатор по сигналам логического устройства (ЛУ) поочередно, и в определенной порядочности, попарно запутывает фазы статорных обмоток электродвигателя, создавая вращающееся поле статора, которое, взаимодействуя с полем постоянных магнитов (МП) ротора, создает вращающий момент ЭД: Мд=КФIя, где Ф — поток постоянного магнита, расположенного на роторе, Iя — ток статорных обмоток (ток якоря), К — постоянный для данного ЭД коэффициент.

Материал магнита — на основе редкоземельных элементов (РЗМ) — самария и кобальта или на основе магнитных материалов. Магниты на основе редкоземельных материалов обладают большими магнитными силами, и не подвержены размагничиванию магнитными полями, создаваемыми токами статорных обмоток при статических или динамических перегрузках электродвигателя.

Переключение фаз статора должно производиться при определенных, согласованных с ними, положениях ротора. Поэтому на валу ЭД обычно располагается датчик положения ротора (ДПР), формирующий сигналы DA, DB, DC, которые используются логическое устройства (ЛУ) для формирования команд управления полупроводниковым коммутатором (ПК).

Отличие вентильного двигателя от синхронного электродвигателя состоит в том, что частота поля статора в нем изменяема, а определяется частотой вращения ротора частотой сигналов датчика положения ротора, используемых для управления полупроводниковым коммутатором, определяется частотой вращения ротора. Поэтому вентильный двигатель можно изучать как синхронный электродвигатель с переменной частотой питания статорных обмоток, аналогично частоте вращения ротора. Тем самым, поле статора вынужденно по сигналам датчика положение ротора одновременно вращается с ротором, что дает возможность в теоретическом плане для изучения вентильного двигателя использовать теорию двух реакций, при исследовании синхронных электродвигателей обычной конструкции. В то же время происходящие действия и механическая характеристика вентильного двигателя такие же, как у обычных коллекторно-щеточных двигателей постоянного тока, следовая этому средние за период параметры вентильных двигателей могут быть достаточно точно охарактеризовать их уравнениями.

Читать еще:  Что такое атмосферный двигатель для опель мокка

Какой тип электродвигателя лучше всего подходит для моего проекта?

Узнайте, какие проекты лучше всего работают с коллекторными двигателями постоянного тока, бесколлекторными двигателями, серводвигателями и шаговыми двигателями.

Если вы разрабатываете проекты с движущимися частями, скорее всего, вам понадобится электродвигатель. Но существует несколько различных типов электродвигателей, обычно доступных разработчикам.

Коллекторные двигатели постоянного тока, бесколлекторные двигатели, серводвигатели и шаговые двигатели – это четыре наиболее распространенных типа электродвигателей, которые можно найти практически в любом проекте, в котором есть движение. Использование каждого из этих типов двигателей в вашем проекте имеет свой набор преимуществ и потенциальных проблем.

В данной статье рассматриваются типы проектов, для которых хорошо подходит тот или иной тип двигателя, и приводятся базовые рейтинги стоимости, крутящего момента, максимальной скорости и точности позиционирования по шкале от 0 до 5.

Коллекторный двигатель постоянного тока

Коллекторные двигатели постоянного тока являются самыми дешевыми, простыми и легкими в управлении из всех технологий двигателей, обсуждаемых в данной статье. Они идеально подходят для проектов с ограниченным бюджетом, которые не требую какого-либо точного управления позиционированием, и для которых отношение мощность/масса не очень важно.

Оценка характеристик коллекторных двигателей постоянного тока

Коллекторные двигатели постоянного тока также полезны для проектов, требующих чрезвычайно простого управления. Эти типы двигателей могут управляться не более чем замыканием/размыканием ключа. Управление их скоростью – это просто регулировка напряжения, подаваемого на двигатель или изменение коэффициента заполнения (или скважности) ШИМ сигнала, если задействован микроконтроллер.

Пример коллекторного двигателя постоянного тока, используемого в проекте

Лучшие типы проектов для коллекторных двигателей постоянного тока

Наборы для создания роботов для начинающих

Наборы для создания роботов для начинающих почти повсеместно используют коллекторные двигатели постоянного тока из-за их низкой стоимости и потому, что для их работы не требуются современные микроконтроллеры или сложное программирование.

Используя два двигателя с двумя колесами на каждой стороне шасси робота, мы можете создать достаточно сложного робота. Многие из базовых наборов робототехники такого типа доступны в магазинах.

Конструкции, использующие вибромоторы

Вибромоторы состоят из коллекторного двигателя постоянного тока с грузом, прикрепленным асимметрично к валу двигателя. Вы можете использовать вибромоторы в самодельных контроллерах и в любых других проектах, требующих доставки пользователю неслышимых уведомлений (например, как ваш телефон в режиме вибрации).

Из-за простоты управления коллекторными двигателями постоянного тока интенсивность вибрации можно модулировать, просто регулируя напряжение, подаваемое на двигатель.

Бесколлекторные двигатели

Несмотря на то, что бесколлекторные двигатели начинают заменять коллекторные двигатели постоянного тока в профессиональных устройствах и электромобилях, они также приобретают популярность в самодельных проектах благодаря наличию мощных, но доступных по цене микроконтроллеров.

Оценка характеристик бесколлекторных двигателей Пара примеров бесколлекторных двигателей

Бесколлекторные двигатели обеспечивают большую надежность, более высокие максимальные скорости и более высокую эффективность по сравнению с коллекторными двигателями постоянного тока. Однако они дороже, чем коллекторные двигатели постоянного тока, особенно с учетом того, что им требуются специализированные контроллеры скорости для взаимодействия с микроконтроллерами, что иногда может быть дороже, чем сам двигатель.

Зачастую стоимость управления бесколлекторным двигателем превышает стоимость самого двигателя

Лучшие типы проектов для бесколлекторных двигателей

Любительские проекты летательных аппаратов

Бесколлекторные двигатели чрезвычайно полезны в любительских проектах летательных аппаратов, включая квадрокоптеры, вертолеты и самолеты.

Более высокая эффективность бесколлекторных двигателей, по сравнению с коллекторными двигателями постоянного тока, имеет два основных последствия для проектов радиоуправляемых летательных аппаратов:

  1. Бесколлекторные двигатели потребляют меньше энергии для выработки той же мощности, что и коллекторный двигатель постоянного тока примерно такого же размера, что означает, что разработчики получают больше энергии от того же аккумулятора.
  2. Бесколлекторные двигатели имеют боле высокую выходную мощность при том же размере двигателя. В частности, для летательных аппаратов отношение мощности к весу является критически важной характеристикой, и бесколлекторные двигатели полезны для увеличения этого отношения.

Бесколлекторные двигатели являются хорошим выбором для любительских проектов летательных аппаратов

Радиоуправляемые машины

Радиоуправляемые машины, особенно те, которые используются для гонок, также выигрывают от технологий бесколлекторных двигателей. Более высокое отношение мощности к весу полезно в радиоуправляемых машинах по той же причине, что и для летательных аппаратов, для повышения производительности.

Для радиоуправляемых машин бесколлекторные двигатели обеспечивают большие крутящий момент и максимальные скорости, чем бензиновые двигатели. Кроме того, бесколлекторные двигатели в радиоуправляемых машинах обеспечивают пиковый крутящий момент почти мгновенно при подаче питания. Бензиновые двигатели, напротив, должны развивать более высокие скорости, чтобы максимизировать крутящий момент.

Стабилизатор камеры

Если вы записываете видео своего проекта, очень полезным инструментом для повышения профессионализма ваших видео за счет уменьшения тряски может стать стабилизатор камеры.

Стабилизатор камеры – это устройство, которое поддерживает камеру неподвижно, обеспечивая более плавные кадры. Стабилизаторы выполняют это, компенсируя движение, используя три бесколлекторных двигателя, по одному на каждую ось движения.

Стабилизируйте камеру с помощью стабилизатора, состоящего из трех бесколлекторных двигателей

Серводвигатели

В то время как коллекторные двигатели постоянного тока и бесколлекторные двигатели разработаны для регулируемой скорости, серводвигатели разработаны для точного позиционирования.

Оценка характеристик серводвигателей

Серводвигатели оснащены встроенным аппаратным обеспечением для определения положения, что позволяет контроллеру серводвигателя измерять точное угловое положение вала двигателя, также называемое углом поворота. Сочетание точного позиционирования и высокого крутящего момента, предлагаемое серводвигателями, делает их отличным выбором для ряда проектов, связанных с робототехникой.

Примеры использования серводвигателей в проектах

Лучшие типы проектов для серводвигателей

Шагающий робот

Если вы создаете шагающего робота, имеет ли он две, четыре, шесть или даже большее количество ног, серводвигатели почти наверняка будут выполнять основную работу в вашем проекте.

В шагающих роботах серводвигатели действуют как суставы

В шагающих роботах серводвигатели выступают в качестве суставов (и немного похожи на мышцы, но анатомическая аналогия здесь немного нарушается). Компьютер, на котором работает ваш робот, будет использовать обратную кинематику для вычисления угла, который должен принимать каждый сустав, чтобы выставить робота в определенном положении. Серводвигатели позволяют контроллеру точно управлять углом каждого сустава робота.

Если вы строите шагающего робота, то, скорее всего, вы будете использовать много серводвигателей!

Роботизированные руки

Серводвигатели также полезны для создания роботизированных рук (роботов-манипуляторов). Высокая точность позиционирования, предлагаемая серводвигателями, позволяет микроконтроллеру устанавливать конечный исполнительный механизм манипулятора с высокой степенью точности.

Это робот-манипулятор uArm Metal, работающий на сервоприводах

Серводвигатели также обеспечивают высокий крутящий момент на низких скоростях, благодаря редуктору между двигателем и выходным валом, что позволяет роботам-манипуляторам поднимать тяжелые предметы.

Наконец, сервопривод будет сопротивляться внешним силам, пытающимся изменить положение манипулятора. Например, если вы соберете роботизированную руку и заставите ее пройти дальше точки, которую ищет микроконтроллер, то, как только вы перестанете прикладывать усилие к манипулятору, серводвигатели вернутся в исходное положение.

Читать еще:  Двигатель renault схема охлаждения

Шаговые двигатели (описанные в следующем разделе), напротив, не имеют механизма для определения того, изменяют ли их положение внешние силы.

Рулевое управление для радиоуправляемых машин

В радиоуправляемых машинах серводвигатели обычно используются для рулевых механизмов. Поскольку сервоприводы могут быть точно установлены в нужное положение, а затем возвращены в центральное положение, они идеально подходят для рулевого управления. Серводвигатели позволяют управлять всеми видами радиоуправляемых проектов: от рулевых реек на радиоуправляемых машинках, до рулей направления на лодках, до управляющих поверхностей на самолетах.

Шаговые двигатели

Шаговые двигатели, как и серводвигатели, предназначены для построения машин, требующих точных управления и отслеживания позиционирования.

Оценка характеристик шаговых двигателей

То, как шаговые двигатели позволяют управлять позиционированием, сильно отличается от способа, используемого сервоприводами. Серводвигатели имеют возможности абсолютного позиционирования. В любой момент микроконтроллер может сделать запрос контроллеру сервопривода и получить назад значение угла.

Шаговый двигатель, напротив, использует относительное позиционирование. Шаговые двигатели вращаются не непрерывно (как коллекторные двигатели постоянного тока или бесколлекторные двигатели), а дискретными «шагами»,

Типовой шаговый двигатель имеет 200 шагов на полный оборот. Таким образом, каждый раз, когда шаговый двигатель «делает шаг», он поворачивается на 1,8°. Тщательно отслеживая количество шагов, на которое шаговый двигатель повернулся из известного начального положения, микроконтроллер может с высокой степенью точности определять положение двигателя или всего, что к нему прикреплено.

Примеры использования шаговых двигателей в проектах

Лучшие типы проектов для шаговых двигателей

3D принтеры

Шаговые двигатели используются практически во всех настольных 3D принтерах. Эта технология двигателей позволяет контроллерам 3D принтеров отслеживать положение печатающей головки с точностью до минуты (обычно в масштабе микрометров). Кроме того, шаговые двигатели обеспечивают высокий крутящий момент на низких скоростях, что полезно для перемещения тяжелого экструдера вокруг рабочей области.

3D принтеры используют шаговые двигатели для отслеживания положения печатающей головки

Станки ЧПУ

По причинам, аналогичным 3D принтерам, шаговые двигатели широко используются в станках ЧПУ. Станок с ЧПУ запускает задание с известной нулевой позиции. Контроллер подсчитывает количество шагов, на которое перемещаются двигатели, переводя их в расстояния в соответствие с конструкцией ремней, которыми управляют шаговые двигатели. Этот тип отслеживания положения обеспечивает высокий уровень точности размеров обрабатываемых станком ЧПУ деталей.

Большие роботы-манипуляторы

В предыдущем разделе объяснялось, как в более мелких роботах манипуляторах используются серводвигатели. В более крупных роботах манипуляторах часто используются шаговые двигатели. Таким образом, если вы разрабатываете робота-манипулятора, который должен будет перемещать тяжелые грузы, дополнительный крутящий момент больших шаговых двигателей по сравнению с крутящим моментом, обеспечиваемым серводвигателями, позволит вашему роботу-манипулятору поднимать и перемещать гораздо более тяжелые объекты.

Шаговые двигатели хорошо работают в больших роботах-манипуляторах, которые требуют возможности подъема более тяжелых объектов

Ремонтируем бесколлекторный двигатель! PRO Хобби – интернет-журнал о моделизме

Все знают о том, что бесколлекторные двигатели более мощные и производительные, если сравнивать их с коллекторными. Однако не все знают, что эти моторы и более требовательны к обслуживанию и эксплуатации.

Что делать, если вдруг вы заметили, что ваш подопечный перестал работать или стал вести себя странно?

Выбрасывать и покупать новый? — Не торопитесь, возможно, удастся обойтись “малой кровью” и минимальными финансовыми вложениями. Как? — Отремонтировать его своими руками!

Бесколлекторные RC двигатели, такие как Velineon® 3500, обеспечивают превосходную производительность и эффективность по сравнению с их коллекторными аналогами. Они также могут быть перебраны и отремонтированы, что позволит их эксплуатировать в течение многих лет без ущерба для производительности. Подшипники — вот типичное слабое звено в конструкции бесколлекторных двигателей. Неисправные подшипники обычно приводят к перегреву и снижению производительности, уменьшают время работы узла. Это также может привести к тому, что двигатель будет работать рывками (можно легко узнать, вручную повернув выходной вал). В этой статье будет показано, как восстановить работоспособность двигателя Velineon 3500, заменив подшипники и другие детали, подверженные естественному износу.

Данный экземпляр принесли в нашу сервисную мастерскую с симптомами перегрева и нестабильной работы. Поверхностная ржавчина видна на спуре, при попытке вращения вала вручную чувствуется сопротивление и рывки. Как правило, все это — признак неисправного подшипника.

Начнем с разборки двигателя. Используйте 2 мм биту для винтов, крепящих мотораму и 1.5 мм биту для демонтажа пиньона.

Отщелкните пластиковую заглушку. Используйте 1.5 мм биту для четырех винтов, крепящих торцевую деталь.

Осторожно извлеките ее. Необходимости снимать подшипник нет, так как ремкомплект включает в себя новую деталь целиком. Не потеряйте тонкие шайбы, которые могут находиться на валу двигателя. Они будут установлены повторно.

Ротор удерживается на месте сильным магнитным полем. Надавите на вал двигателя, используя твердую поверхность (например, стол). Это позволит извлечь ротор. Держите его плотно и достаньте из корпуса. Будьте осторожны при снятии ротора! Действие электромагнитных сил может привести к тому, что ротор попытается вернуться на свое место и ваши пальцы могут пострадать.

Демонтировав ротор, самое время извлечь передний подшипник из корпуса двигателя. Здесь могут возникнуть некоторые трудности. Постарайтесь использовать похожую по размеру оправку, чтобы извлечь подшипник целиком.

Детальный осмотр подшипников позволяет подтвердить проблему. Они сильно заржавели, что негативно сказывается на двигателе — он работает с повышенной нагрузкой, что вызывает перегрев узла в целом. Именно поэтому очень важно после каждого катания, когда происходит контакт подшипников с влагой, использовать WD-40, чтобы вытеснить из них влагу и предотвратить образование ржавчины. Это избавит вас от проблем в будущем. К счастью, даже если произошло то, что произошло, этот двигатель можно отремонтировать, восстановив полностью его производительность.

Ремкомплект для Velineon 3500 содержит все детали, необходимые для восстановления двигателя. Используйте специальный очиститель для электронных контактов электродвигателя или продуйте сжатым воздухом корпус двигателя. Обязательно надевайте защитные очки во время данной процедуры. Замените два подшипника и установите новую латунную втулку на задней части вала двигателя. Повторно используйте тонкие шайбы на валу двигателя. Они должны быть максимально близко к центру.

Аккуратно вставьте ротор в корпус двигателя, берегите пальцы. Установите на место торцевую деталь, закрепите ее винтами из ремнабора. Наконец, очистите поверхность корпуса двигателя и установите пластиковую заглушку. Теперь ваш мотор полностью восстановлен и готов к действию!

Двигатель, показанный в этой статье, не получил должного внимания и технического обслуживания, необходимого после запуска и эксплуатации в воде. Обязательно ознакомьтесь с советами по уходу за моделью в условиях повышенной влажности, приведенными в руководстве вашего автомобиля, для обеспечения надлежащего ухода. Помните, что при должном обслуживании ваш Velineon будет работать долго и обеспечит модель запасом мощности и динамичности, а вас — потрясающими эмоциями от любимого хобби!

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector