0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Bpj что за двигатель

Внешняя характеристика двигателя

Общие сведения о характеристиках

Для правильной эксплуатации двигателя необходимо знать изменение его эффективной мощности и удельного эффективного расхода топлива в зависимости от условий работы. Значения мощности и расхода топлива при различных условиях работы двигателя определяются по его характеристикам.

Характеристиками двигателя принято называть зависимости его эффективной мощности Ne и эффективного расхода топлива Сe, от какой-либо величины, по изменению которой в условиях эксплуатации мы устанавливаем или контролируем режим работы двигателя.

Мощность, развиваемая двигателем, и удельный расход топлива зависят, в основном, от частоты вращения коленвала, давления наддува и от давления и температуры атмосферного воздуха, т. е. от высоты полета. Эти же величины удобнее всего поддаются измерению и контролю в условиях эксплуатации. Поэтому изменение мощности и удельного расхода топлива двигателя принято определять в зависимости от числа оборотов, давления наддува и высоты полета. Характеристики двигателя представляются обычно в форме графиков, в которых по оси ординат откладываются значения эффективной мощности Ne и соответствующего ей удельного эффективного расхода топлива (иногда откладываются дополнительно и другие величины, характеризующие работу двигателя, например часовой расход топлива, давление наддува и т.д.), а по оси абсцисс — та величина, от которой дается зависимость этих величин, т. Е. частота вращения коленвала, давление наддува, высота полета и пр.

Характеристики двигателя могут быть получены путем расчета или по результатам испытания двигателей на стенде. Основными характеристиками, имеющими наибольшее практическое значение, являются характеристики по частоте вращения коленвала — внешняя и винтовая, а также характеристики в зависимости от высоты полета — высотные характеристики.

Внешней характеристикой двигателя называется зависимость эффективной мощности и эффективного удельного расхода топлива от частоты вращения коленчатого вала при работе двигателя на земле и при полном открытии дроссельной заслонки.

При работе двигателя по внешней характеристике состав смеси на всех оборотах поддерживается постоянным и отрегулированным на максимальную мощность. Опережение зажигания устанавливают наивыгоднейшее, т. е. такое, которое обеспечивает получение максимальной мощности и отсутствие детонации.

Изменение частоты вращения коленвала при снятии внешней характеристики достигается изменением внешней нагрузки на вал двигателя за счет применения гидравлических тормозов или изменения шага винта.

Внешняя характеристика двигателя АШ-62ИР при полностью открытых дроссельных заслонках показана на рис.2-1 (кривые 1 и 3). Как видно из рисунка, эффективная мощность Ne и эффективный удельный расход топлива Се с увеличением числа оборотов непрерывно растут.

Увеличение эффективной мощности происходит в результате увеличения числа циклов в единицу времени и среднего эффективного давления ре. Последнее обусловлено ростом весового заряда смеси за счет повышения давления наддува с увеличением частоты вращения коленвала (увеличение частоты вращения коленвала с 1700 до 2200 об/мин увеличивает ре на 1 кгс/см 2 ).

Рис.2-1. Внешняя характеристика двигателя:

1— эффективная мощность (Ne) при полностью открытой дроссельной заслонке; 2— эффективная мощность(Ne) при рк=900 мм.рт.ст.;3— эффективный удельный расход топлива (Ce) при полностью открытой дроссельной заслонке

Характер изменения Се по внешней характеристике определяется в основном характером изменения ηм, который с увеличением частоты вращения коленвала непрерывно уменьшается. Индикаторный к. п. д. ηi, при этом практически не меняется, так как коэффициент избытка воздуха изменяется очень мало.

Внешняя характеристика при полностью открытой дроссельной заслонке показывает наибольшие мощности, которые возможно получить от двигателя при различной частоте вращения коленвала числах. Для двигателей с наддувом, кроме этой характеристики, обычно дастся также внешняя характеристика при неизменном расчетном давлении наддува рк, равном номинальному (кривая 2 на рис.2-1). Здесь частота вращения, как и в первом случае, изменяется изменением нагрузки на вал двигателя, а постоянный наддув по мере увеличении числа оборотов поддерживается прикрытием дроссельных заслонок. Внешняя характеристика при неизменном рк, соответствующему рк номинального режима, показывает наибольшие мощности, на которых двигатель может надежно работать продолжительное время (не менее 1 ч).

Bpj что за двигатель

Всю историю своего существования люди стремились облегчить труд, создавая разные ДВИГАТЕЛИ — устройства, преобразующие энергию природных явлений (ветра, потоков воды) и энергию материалов (дров, угля, нефти) в другой вид энергии, позволяющий совершать работу за человека.

Эта статья была опубликована в журнале OYLA №7. Оформить подписку на печатную и онлайн-версию можно здесь.

Парус — тоже простейший двигатель, который преобразует движение ветра в движение корабля. Первые паруса были прямыми, и лодки с такими парусами могли двигаться только по ветру. Когда надо было двигаться против ветра, парус снимали и пользовались вёслами.

Читать еще:  Шумно работает двигатель в спринтере

Потребовалось длительное время, чтобы человек изобрёл паруса, которые позволяли двигаться не только по ветру. Приблизительно в VIII-IX веках в районе Средиземноморья начали использовать латинский (треугольный) парус, хотя изобрели его, скорее всего, арабы.

Такие парусники могут плавать не только при попутном, но и при боковом ветре. Если парус поставить так, чтобы его плоскость делила угол пополам между направлением киля и направлением ветра, то появляется составляющая силы, направленная вдоль киля. Ветер оказывает давление на парус практически полностью перпендикулярно его плоскости, и сила этого давления раскладывается на направление, перпендикулярное килю (куда судно почти не в состоянии двигаться ), и направление вдоль киля, куда судно и движется. Это движение, правда, происходит не «в лоб» ветру, а под острым углом к нему. Через некоторое время, чтобы компенсировать отклонение от нужного направления, судно поворачивает под тем же углом к ветру, но теперь угол отсчитывается в другую сторону. В результате судно против ветра двигается зигзагами, или, как говорят на флоте, галсами.

Как следует из названия, ветряная мельница работает с использованием силы ветра. Ветер заставляет вращаться ветряное колесо, которое состоит из специально сконструированных для этой цели крыльев, закреплённых на оси и расходящихся от неё в разные стороны. Зубчатая передача вращения от ветряка на жернов практически такая же как на водяных мельницах.

Поскольку направление ветра постоянно меняется, то мельница должна поворачиваться вслед ветру. Различают два вида ветряных мельниц. В первом при смене направления ветра поворачивается весь корпус мельницы (столбовки), во втором — лишь головная часть (шатровки).

Вначале люди научились работать с движением воды. Принцип действия водяной мельницы прост: вода падает на лопасти колеса, приводя его во вращение, которое с помощью системы зубчатых передач передаётся на вращающийся жернов.

Но ветер и вода были ненадёжными источниками энергии. Люди не хотели зависеть от капризов природы, поэтому с развитием технологий появились двигатели, использующие энергию природных материалов…

1712 год — англичанин Томас Ньюкомен впервые собрал достаточно совершенный двигатель, работавший на пару.

Принцип действия машины Ньюкомена. В начале цикла груз, прикреплённый к штоку водяного насоса, опускается, тогда поршень, подвешенный на другом конце балансира, начинает подниматься. Машинист открывает кран и пар из котла поступает в цилиндр, после того, как он полностью заполнится, машинист закрывает один кран и открывает другой. Затем в цилиндр впрыскивается холодная вода, охлаждающая пар. В цилиндре возникает вакуум, и под действием атмосферного давления поршень опускается, а груз со штоком поднимается. После чего процесс повторялся, то есть управление машиной осуществлялось вручную.

Горизонтальная паровая машина с парораспределением Зульцера

В 1765 году шотландец Джеймс Уатт совершил настоящую революцию, предложив использовать для движения поршня не вакуум, а силу давления пара.

Принцип действия машины Уатта. Пар подаётся в цилиндр попеременно по разные стороны от поршня, создавая вакуум с противоположной стороны цилиндра. То есть поршень совершает и рабочий, и обратный ход с помощью пара, чего не было в прежних машинах. Это позволяло экономить энергию и, соответственно, топливо. Но управление двигателем всё ещё осуществлялось вручную.

Паровой локомотив

В 1784 году паровая машина Уатта приобрела завершённый вид: в ней появились кривошипно-шатунный механизм и регулятор, которые позволили отказаться от необходимости вручную открывать и закрывать краны, то есть сделали её работу автоматической. Именно эта разработка и стала называться универсальной паровой машиной.

Паровую машину называют ещё тепловым двигателем внешнего сгорания. Изобретатели задались целью сделать паровую машину более компактной и производительной. Самые объёмные и опасные её части — топка и котёл. Нужно сделать так, чтобы топливо сгорало непосредственно в рабочей камере (внутри) двигателя, при этом горение и расширение топлива произведут силу, которая заменит пар. Было бы ещё здорово избавиться от топки и котла.

К концу XIX века учёные и инженеры, стремясь упростить двигатель и повысить его КПД, вернулись к идеям создания двигателей на основе турбины. Первый важный шаг в этом направлении сделал шведский инженер Карл Густав Патрик Лаваль в 1889 году. Паровая турбина Лаваля представляет собой колесо с лопатками.

Пар под большим давлением поступает в четыре трубы переменного сечения — сопла Лаваля. В расширяющейся части сопла скорость струи сильно возрастает. Попадая на вогнутые лопатки турбины, струя не просто давит на них, а отражается, создавая реактивную тягу.

В 1884 году английский инженер Парсон получил патент на многоступенчатую реактивную турбину, которую он изобрёл специально для приведения в действие электрогенератора, то есть устройства, вырабатывающего электричество. Это устройство турбины ещё более повысило её КПД. Именно это применение турбин получило самое широкое распространение. Объединение турбины и электрогенератора получило название турбоэлектрогенератора. Турбины также широко используются на кораблях, приводя в действие гребные винты.

Читать еще:  Что такое ограничение мощности двигателя фрилендер 2

История создания двигателей на этом не заканчивается. Существуют ещё разные виды реактивных двигателей. Но об этом в следующий раз.

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания — тепловой двигатель, который преобразовывает теплоту сгорания топлива в механическую работу.

Двигатель внутреннего сгорания — тепловой двигатель, который преобразовывает теплоту сгорания топлива в механическую работу.

По сравнению с паромашинной установкой двигатель внутреннего сгорания характеризуется следующими признаками:

принципиально проще (нет парокотельного агрегата),

требует газообразное и жидкое топливо лучшего качества.

Типы двигателей внутреннего сгорания

По роду применяемого топлива:

легкие жидкие (бензин, газ),

тяжелые жидкие (дизельное топливо, судовые мазуты).

По способу образования горючей смеси:

внутреннее (в цилиндре ДВС).

По способу воспламенения:

с принудительным зажиганием,

с воспламенением от сжатия,

По расположению цилиндров:

оппозитные с одним и с двумя коленвалами,

V-образные с верхним и нижним расположением коленвала,

VR-образные и W-образные,

однорядные и двухрядные звездообразные,

двухрядные с параллельными коленвалами,

трехлучевые и др.

Поршневой двигатель — это двигатель, у которого камера сгорания находится в цилиндре, где тепловая энергия топлива превращается в механическую энергию, а механическая из поступательного движения поршня превращается во вращательную с помощью кривошипно-шатунного механизма.

Бензиновый двигатель — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой.

Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания.

В разогретый от сжатия воздух (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива.

В процессе впрыскивания топлива происходит его распыливание, а затем вокруг отдельных капель топлива возникают очаги сгорания.

Т.к. дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что благотворно сказывается на КПД данного типа двигателей, который может превышать 50% в случае с крупными судовыми двигателями.

Газовый двигатель — двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях

Роторно-поршневой двигатель — двигатель, конструкция которого предложена изобретателем Ванкелем в начале ХХ века.

Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя.

Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения.

За 1 оборот двигатель выполняет 3 полных рабочих цикла, что эквивалентно работе 6-цилиндрового поршневого двигателя.

Принцип работы и устройство двигателя автомобиля. Техническое обслуживание двигателя автомобиля

Большинство водителей понятия не имеют, каким является устройство двигателя автомобиля. А знать это необходимо, ведь не зря при обучении во многих автошколах ученикам рассказывают принцип работы ДВС. Иметь представление о работе двигателя должен каждый водитель, ведь эти знания могут пригодиться в дороге.

Конечно, существуют разные типы и марки двигателей автомобилей, работа которых отличается между собой в мелочах (системы впрыскивания топлива, расположение цилиндров и т. д.). Однако основной принцип для всех типов ДВС остается неизменным.

Устройство двигателя автомобиля в теории

Устройство ДВС всегда уместно рассматривать на примере работы одного цилиндра. Хотя чаще всего легковые автомобили имеют 4, 6, 8 цилиндров. В любом случае, главная деталь мотора – это цилиндр. В нем располагается поршень, который может двигаться вверх-вниз. При этом существуют 2 границы его передвижения – верхняя и нижняя. Профессионалы их называют ВМТ и НМТ (верхняя и нижняя мертвые точки).

Сам поршень соединен с шатуном, а шатун – с коленчатым валом. При движении поршня вверх-вниз шатун передает нагрузку на коленчатый вал, и тот вращается. Нагрузки от вала передаются на колеса, в результате чего автомобиль начинает движение.

Но главная задача – заставить работать поршень, ведь именно он является главной движущей силой этого сложного механизма. Делается это с помощью бензина, дизельного топлива или газа. Капля топлива, воспламеняющаяся в камере сгорания, отбрасывает поршень с большой силой вниз, тем самым приводя его в движение. Затем поршень по инерции возвращается в верхнюю границу, где снова происходит взрыв бензина и такой цикл повторяется постоянно, пока водитель не заглушит мотор.

Читать еще:  Шевроле кобальт датчик температуры двигателя

Так выглядит устройство двигателя автомобиля. Однако это лишь теория. Давайте рассмотрим более детально циклы работы мотора.

Четырехтактный цикл

Практически все двигатели работают по 4-тактному циклу:

  1. Впуск топлива.
  2. Сжатие топлива.
  3. Сгорание.
  4. Вывод отработанных газов за пределы камеры сгорания.

Схема

Ниже на рисунке показана типичная схема устройства двигателя автомобиля (одного цилиндра).

На этой схеме четко показаны основные элементы:

A – Распределительный вал.

B – Крышка клапанов.

C – Выпускной клапан, через который отводятся газы из камеры сгорания.

D – Выхлопное отверстие.

E – Головка цилиндра.

F – Полость для охлаждающей жидкости. Чаще всего там находится антифриз, который охлаждает нагревающийся корпус мотора.

I – Поддон, куда стекает все масло.

J – Свеча зажигания, образующая искру для поджога топливной смеси.

K – Впускной клапан, через который в камеру сгорания попадает топливная смесь.

L – Впускное отверстие.

M – Поршень, который движется вверх-вниз.

N – Шатун, соединенный с поршнем. Это основной элемент, который передает усилие на коленчатый вал и трансформирует линейное движение (вверх-вниз) во вращательное.

O – Подшипник шатуна.

P – Коленчатый вал. Он вращается за счет движения поршня.

Также стоит выделить такой элемент, как поршневые кольца (их еще называют маслосъемными кольцами). Их нет на рисунке, однако они являются важной составляющей системы двигателя автомобиля. Данные кольца огибают поршень и создают максимальное уплотнение между стенками цилиндра и поршня. Они предотвращают попадание топлива в масляный поддон и масла в камеру сгорания. Большинство старых двигателей автомобилей ВАЗ и даже моторы европейских производителей имеют изношенные кольца, которые не создают эффективное уплотнение между поршнем и цилиндром, из-за чего масло может попадать в камеру сгорания. В такой ситуации будет наблюдаться повышенный расход бензина и «жор» масла.

Как работает двигатель?

Начнем с начального положения поршня – он находится вверху. В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. При этом всего лишь небольшая капля бензина поступает в емкость цилиндра. Это первый такт работы.

Во время второго такта поршень достигает самой нижней точки, при этом впускное отверстие закрывается, поршень начинает движение вверх, в результате чего топливная смесь сжимается, так как ей в закрытой камере некуда деваться. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.

Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.

На заключительном этапе деталь достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени, пока водитель не заглушит двигатель.

В результате взрыва бензина поршень движется вниз и толкает коленчатый вал. Тот раскручивается и передает нагрузки на колеса автомобиля. Именно так и выглядит устройство двигателя автомобиля.

Отличие в бензиновых моторах

Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч – элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. То есть на третьем цикле поршень поднимается вверх, сильно сжимает топливную смесь, и та взрывается естественным образом под действием давления.

Альтернатива ДВС

Отметим, что в последнее время на рынке появляются электрокары – автомобили с электрическими двигателями. Там принцип работы мотора совершенно другой, т. к. источником энергии является не бензин, а электричество в аккумуляторных батареях. Но пока что автомобильный рынок принадлежит автомобилям с ДВС, а электрические двигатели не могут похвастаться высокой эффективностью.

Несколько слов в заключение

Такое устройство ДВС является практически совершенным. Но с каждым годом разрабатываются новые технологии, повышающие КПД работы мотора, осуществляется улучшение характеристик бензина. При правильном техническом обслуживании двигателя автомобиля он может работать десятилетиями. Некоторые успешные моторы японских и немецких концернов «пробегают» миллион километров и приходят в негодность исключительно из-за механического устаревания деталей и пар трения. Но многие двигатели даже после миллионного пробега успешно проходят капремонт и продолжают выполнять свое прямое предназначение.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector