0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чем заправить водородный двигатель

Автомобильные водородные установки

Установки предназначены для экономии до 40% основного топлива легковых и грузовых автомобилей
Автоводород «ТЕРМОСТАР» альтернатива ГБО
Экономия на ГСМ до 40%
Повышение мощности и тяговитость в подарок
Не требует атестации и регистрации в ГИБДД

Видео скоро появится

ПРЕИМУЩЕСТВА АВТОМОБИЛЬНЫХ ВОДОРОДНЫХ УСТАНОВОК «TERMOSTAR»:

  • Атомарный водород (ННО газ) это Дополнительное мощное и эффективное топливо, ПОЗВОЛЯЕТ ЭКОНОМИТЬ ДО 40 % Основное.
  • ПОВЫШАЕТСЯ МОЩНОСТЬ ДО 20% и ТЯГОВИТОСТЬ
  • ВОДОРОД МЫ ПОЛУЧАЕМ САМИ 1886 литров (ННО) газа из одного литра воды.
  • ВОДОРОД РАСКОКСОВЫВАЕТ ДВИГАТЕЛЬ и все сопряженные системы. Вступая в Термохимическую реакцию с углеродистыми отложениями и таким образом, постоянно Мягко раскоксовывает камеру сгорания и все сопряженные системы: форсунки, клапан EGR и Лямда-зонд, Сажевый фильтр, Катализатор и Турбину.
  • НЕ ЗАНИМАЕТ ПОЛЕЗНОЕ ПРОСТРАНСВО АВТОМОБИЛЯ. Размеры Водородной установки соизмеримы с размером предпускового подогревателя.
  • Установка «TERMOSTAR» НЕ ТРЕБУЕТ АТТЕСТАЦИИ И РЕГИСТРАЦИИ В ГИБДД.
  • СНИЖАЮТСЯ РАСХОДЫ за счет Продления срока службы расходников и Водородной раскоксовки Двигателя.
Автомобильный Водородный генератор «TERMOSTAR» очень выгоден и эффективен на Вашем автомобиле, если Вы работаете на трассе на длительные расстояния и больших нагрузках.

ПРОДУКЦИЯ:

Модель TS-HG12/24 – 1.6L

Для легковых/ грузовых автомобилей.
Для автомобилей с объемом двигателя до 1.6 литра.
Производительность до 1 л/мин ННО газа.
Цена за комплект: 12 000 р.

Введите данные и мы Вам перезвоним

Модель TS-HG12/24 – 2L

Для легковых/ грузовых автомобилей.
Для автомобилей с объемом двигателя до 2х литров.
Производительность до 1 л/мин ННО газа.
Цена за комплект: 15 000 р.

Введите данные и мы Вам перезвоним

Модель TS-HG12/24 – 3L

Для легковых/ грузовых автомобилей.
Для автомобилей с объемом двигателя до 3х литров.
Производительность до 1 л/мин ННО газа.
Цена за комплект: 20 000 р.

Введите данные и мы Вам перезвоним

Модель TS-HG12/24 – 4L

Для легковых и грузовых автомобилей.
Для автомобилей с объемом двигателя до 4х литров.
Производительность до 2 л/мин ННО газа.
Цена за комплект: 25 000 р.

Введите данные и мы Вам перезвоним

Модель TS-HG 24- 8L

Для легковых и грузовых автомобилей.
Для автомобилей с объемом двигателя до 8 литров.
Производительность до 4 л/ мин. ННО газа.
Цена за комплект: 35 000 р.

Введите данные и мы Вам перезвоним

Модель TS-HG 24- 10L

Для грузовых автомобилей. Бортовая сеть 24 В.
Для автомобилей с объемом двигателя до 10 литров.
Производительность до 5 л/ мин. ННО газа.
Цена за комплект: 40 000 р.

Введите данные и мы Вам перезвоним

Модель TS-HG 24- 16L

Для грузовых автомобилей. Бортовая сеть 24 В.
Для автомобилей с объемом двигателя до 16 литров.
Производительность до 8 л/ мин. ННО газа.
Цена за комплект: 45 000 р.

Введите данные и мы Вам перезвоним

Электролит «TERMOSTAR

Состав: Гидроксид калия КОН. 98% ЧИСТОТЫ. КОН- КРАЙНЕ ВАЖЕН.
КОН определяет: Производительность и Качество ННО газа,
Срок службы Генератора, Морозостойкость.
Вес упаковки 1 кг.
Цена за упаковку: 1000 р.

Введите данные и мы Вам перезвоним

* Автоводород «TERMOSTAR» , имеет гарантию 2 года на любую неисправность, за исключением ошибок Пользователя при эксплуатации: например механические повреждения, неправильная установка, заливка в устройство посторонних жидкостей вместо дистиллята или непредусмотренного производителем КОН

ТЕХНОЛОГИЯ ЭКОНОМИИ ТОПЛИВА

Технология экономии топлива

Установки предназначены для экономии до 40% основного топлива легковых и грузовых автомобилей.

Важным обстоятельством является то, что КПД только самых современных турбированных дизелей составляет всего 50%. Бензиновых намного меньше. Поэтому большая часть потраченного топлива всех автомобилей, составляют потери для Автовладельцев и Экологии.

Глобальная энергосберегающая Исследовательская работа, на двигателях внутреннего сгорания, сосредоточена на том, что бы повысить эффективность сгорания в первые две фазы рабочего хода.

При этом задача максимально уменьшить горение и расход топлива в последующие фазы, предназначенные только для хода и выпуска газов.

Водородный генератор «TERMOSTAR» посредством Электролиза, из воды вырабатывает Атомарный водород (ННО газ), который дополнительно подается в рабочую топливно-воздушную Смесь из Основного топлива.

Атомарный водород на 40% эффективнее обычного Водорода, так как уже имеет в своей атомарной связи молекулу Кислород, для горения.

Именно свойство невероятно быстрого и мощного сгорания Атомарного водорода, способствует сгоранию рабочей смеси более быстрым и полным образом в первые две фазы рабочего хода. А следующие фазы полностью разгружаются.

За счет полного и быстрого сгорания топлива происходит повышение КПД двигателя и рост мощности до 20%, а экономия топлива составит до 40%, Появляется приемственность и тяговитость присущая дизельным автомобилям без повышения компрессии. Атомарный водород придает топливной смеси

высокие детонационные свойства без применения химии и металлических присадок. А имеющиеся присадки в оснавном топливе полностью сгорают повышая экологичность выхлопа.

Для бензиновых двигателей появляется возможность с гибридной установкой «TERMOSTAR» , уверенно перейти с бензина АИ-98 или АИ-95 на более дешевый АИ-92, а это ещё экономия

7-15 % на литр топлива.

Поэтому Гибридная Водородная установка «TERMOSTAR» это верное и эффективное решение: Позволяющее самим вырабатывать Атомарный водород и использовать его как Дополнительное топливо, позволяющее экономить Основное.

Как сделать водородный генератор своими руками?

Водород практически идеальный вид топлива, но проблема заключается в том, что он на нашей планете встречается только в виде соединений с другими химическими элементами. Доля «чистого» вещества в атмосфере составляет не более 0,00005%. Учитывая такие реалии, становится актуальным вопрос о водородном генераторе. Рассмотрим принцип работы такого устройства, его конструктивные особенности, сферу применения и возможность самостоятельного изготовления.

Описание и принцип работы водородного генератора

Есть несколько методик выделения водорода и из других веществ, перечислим наиболее распространенные:

  1. Электролиз, данная методика наиболее простая и может быть реализована в домашних условиях. Через водный раствор, содержащий соль, пропускается постоянный электрический ток, под его воздействием происходит реакция, которую можно описать следующим уравнением: 2NaCl + 2H2O→2NaOH + Cl2 + H2↑. В данном случае пример приведен для раствора обычной кухонной соли, что не лучший вариант, поскольку выделяющийся хлор является ядовитым веществом. Заметим, что полученный данным способом водород наиболее чистый (порядка 99,9%).
  2. Путем пропускания водяного пара над каменноугольным коксом, нагретым до температуры 1000°С, при таких условиях протекает следующая реакция: Н2О + С ⇔ СО↑ + H2↑.
  3. Добыча из метана путем конверсии с водяным паром (необходимое условие для реакции – температура 1000°С): СН4 + Н2О ⇔ СО + 3Н2. Второй вариант – окисление метана: 2СН4 + О2 ⇔ 2СО + 4Н2.
  4. В процессе крекинга (переработки нефти) водород выделяется в качестве побочного продукта. Заметим, что в нашей стране все еще практикуется сжигание этого вещества на некоторых нефтеперерабатывающих заводах ввиду отсутствия необходимого оборудования или достаточного спроса.
Читать еще:  Что создает давление масла в двигателе

Из перечисленных вариантов последний наименее затратный, а первый наиболее доступный, именно он положен в основу большинства генераторов водорода, в том числе и бытовых. Их принцип действия заключается в том, что в процессе пропускания тока через раствор, положительный электрод притягивает отрицательные ионы, а электрод с противоположным зарядом – положительные, в результате происходит расщепление вещества.

Пример электролиза на растворе хлорида натрия

Конструктивные особенности и устройство генератора водорода

Если с получением водорода проблем сейчас практически нет, то его транспортировка и хранение до сих пор остается актуальной задачей. Молекулы этого вещества настолько малы, что могут проникать даже сквозь металл, что несет определенную угрозу безопасности. Хранение в абсорбированном виде пока не отличается высокой рентабельностью. Поэтому наиболее оптимальный вариант – генерация водорода непосредственно перед его использованием в производственном цикле.

Для этой цели изготавливаются промышленные установки для генерации водорода. Как правило, это электролизеры мембранного типа. Упрощенная конструкция такого устройства и принцип работы приведен ниже.

Упрощенная схема водородного генератора мембранного типа

Обозначения:

  • А – трубка для отвода хлора (Cl2).
  • B – отвод водорода (Н2).
  • С – анод, на котором происходит следующая реакция: 2CL — →CL2 + 2е — .
  • D – катод, реакцию на нем можно описать следующим уравнением: 2Н2О + 2е — →Н2 + ОН — .
  • Е – раствор воды и хлористого натрия (Н2О & NaCl).
  • F – мембрана;
  • G – насыщенный раствор хлористого натрия и образование каустической соды (NaОН).
  • H – отвод рассола и разбавленной каустической соды.
  • I – ввод насыщенного рассола.
  • J – крышка.

Конструкция бытовых генераторов значительно проще, поскольку в большинстве своем они не вырабатывают чистый водород, а производят газ Брауна. Так принято называть смесь кислорода и водорода. Этот вариант наиболее практичен, не требуется разделять водород и кислород, то можно значительно упростить конструкцию, а значит и сделать ее дешевле. Помимо этого полученный газ сжигается по мере его выработки. Хранить и накапливать его в домашних условиях не только проблематично, но и небезопасно.

Обозначения:

  • а – трубка для отвода газа Брауна;
  • b – впускной коллектор подачи воды;
  • с – герметичный корпус;
  • d – блок пластин электродов (анодов и катодов), с установленными между ними изоляторами;
  • e – вода;
  • f – датчик уровня воды (подключается к блоку управления);
  • g – фильтр водоотделения;
  • h – подвод питания, подаваемого на электроды;
  • i – датчик давления (подает сигнал блоку управления при достижении порогового уровня);
  • j – предохранительный клапан;
  • k – отвод газа с предохранительного клапана.

Характерная особенность таких устройств – использование блоков электродов, поскольку не требуется сепарирование водорода и кислорода. Это позволяет сделать генераторы довольно компактными.

Блоки электродов для установки, которая производит газ Брауна

Сферы применения водородного генератора

Ввиду проблем, связанных с транспортировкой и хранением водорода, такие устройства востребованы в производствах, где наличие этого газа требует технологический цикл. Перечислим основные направления:

  1. Производства, связанные с синтезом хлороводорода.
  2. Изготовление топлива для ракетных двигателей.
  3. Создание удобрений.
  4. Производство нитрида водорода (аммиака).
  5. Синтез азотной кислоты.
  6. В пищевой промышленности (для получения твердых жиров из растительных масел).
  7. Обработка металла (сварка и резка).
  8. Восстановление металлов.
  9. Синтез метилового спирта
  10. Изготовление соляной кислоты.

Основные сферы применения генераторов водорода в промышленности

Несмотря на то, что производство водорода в процессе переработки нефти дешевле, чем его получение путем электролиза, как уже указывалось выше, возникают сложности с транспортировкой газа. Строить опасные химические производства, непосредственно, рядом с перерабатывающими нефть заводами не всегда позволяет экологическая обстановка. Помимо этого водород, полученный путем электролиза, значительно чище, чем при крекинге нефти. В связи с этим на промышленные водородные генераторы всегда высокий спрос.

Бытовое применение

В быту также есть применение водороду. В первую очередь это автономные отопительные системы. Но здесь некоторые особенности. Установки по производству чистого водорода стоят значительно дороже, чем генераторы газа Брауна, последние даже можно собрать самостоятельно. Но при организации отопления дома необходимо учитывать, что температура горения газа Брауна значительно выше, чем у метана, поэтому потребуется специальный котел, который несколько дороже обычного.

Топливный котел должен иметь соответствующую метку

В интернете можно встретить немало статей, в которых написано, что для гремучего газа можно использовать обычные котлы, это делать категорически нельзя. В лучшем случае они быстро выйдут из строя, а в худшем могут стать причиной печальных или даже трагических последствий. Для смеси Брауна предусмотрены специальные конструкции с более термостойким соплом.

Необходимо заметить, что рентабельность отопительных систем на основе водородных генераторов вызывает большое сомнение ввиду низкого КПД. В таких системах имеются двойные потери, во-первых, в процессе генерации газа, во-вторых, при нагреве воды в котле. Дешевле для отопления сразу нагревать воду в электрическом бойлере.

Не менее спорная реализация для бытового использования, при которой газом Брауна обогащают бензин в топливной системе двигателя автомобиля с целью экономии.

Читать еще:  Что означает двигатель alt

Применение генератора ННО в авто

Обозначения:

  • а – генератор ННО (принятое обозначение для газа Брауна);
  • b – отвод газа в камеру сушки;
  • с – отсек для удаления водяных паров;
  • d – возвращение конденсата в генератор;
  • е – подача осушенного газа в воздушный фильтр топливной системы;
  • f – автомобильный двигатель;
  • g – подключение к аккумулятору и электрогенератору.

Нужно заметить, что в некоторых случаях такая система даже работает (если ее собрать правильно). Но точные параметры, коэффициент прироста мощности, процент экономии вы не найдете. Эти данные сильно размыты, и достоверность их вызывает сомнения. Опять же не ясен вопрос, насколько уменьшится ресурс двигателя.

Но спрос порождает предложения, в интернетах можно найти подробные чертежи таких приспособлений и инструкцию по их подключению. Есть и готовые модели, сделанные в стране Восходящего Солнца.

Делаем простейший генератор водорода своими руками пошагово

Расскажем, как можно сделать самодельный генератор для получения смеси водорода и кислорода (ННО). Его мощности на отопления дома не хватит, но для газовой горелки для резки металла количество полученного газа будет достаточным.

Рис. 8. Схема газовой горелки

Обозначения:

  • а – сопло горелки;
  • b – трубки;
  • c – водные затворы;
  • d – вода;
  • е – электроды;
  • f – герметичный корпус.

В первую очередь делаем электролизер, для этого нам понадобится герметичная емкость и электроды. В качестве последних используем стальные пластины (их размер выбираем произвольно, в зависимости от желаемой производительности), прикрепленные к диэлектрическому основанию. Соединяем между собой все пластины каждого из электродов.

Когда электроды готовы их надо укрепить в емкости таким образом, чтобы места подключения проводов питания были выше предполагаемого уровня воды. Провода от электродов идут к блоку питания на 12 вольт или автомобильному аккумулятору.

В крышке емкости делаем отверстие под трубку для выхода газа. В качестве водных затворов можно использовать обычные стеклянные банки емкостью 1 литр. Заполняем их на 2/3 водой и подключаем к электролизеру и горелке, как показано на рисунке 8.

Горелку лучше взять готовую, поскольку не каждый материал может выдержать температуру горения газа Брауна. Подключаем ее к выходу последнего водного затвора.

Наполняем электролизер водой, в которую добавлена обычная кухонная соль.

Подаем напряжение на электроды и проверяем работу устройства.

Автомобили на водородном топливе

  • Принцип работы водородных автомобилей
  • Основные характеристики водородных автомобилей
  • Плюсы и минусы авто, работающих на водороде
  • Какие автомобили, использующие водород, уже выпускаются

Современное автомобилестроение развивается с акцентом на производство более экологичных транспортных средств. Это обусловлено развернувшейся во всём мире борьбой за чистоту атмосферного воздуха путём снижения выбросов углекислого газа. Постоянный рост цен на бензин также заставляет производителей искать другие источники энергии. Многие ведущие автостроительные концерны постепенно переходят к серийному производству машин, работающих на альтернативном топливе, что уже в самом ближайшем будущем приведёт к появлению на автодорогах мира достаточного количества не только электрокаров, но также авто с двигателями, работающими от водородного топлива.

Принцип работы водородных автомобилей

Авто, работающее на водороде, призвано снизить атмосферные выбросы углекислого газа, а также других вредных примесей. Использование водорода для приведения в движение колёсного транспортного средства, возможно двумя различными способами:

  • применением водородного двигателя внутреннего сгорания (ВДВС);
  • установкой силового электрического агрегата, работающего от водородных элементов (ВЭ).

В то время, как мы привыкли заполнять бензином или дизельным топливом свой автомобиль, новое чудо – работает на наиболее распространенном элементе во вселенной – водороде

ВДВС представляет собой аналог широко используемых сегодня двигателей, топливом для которых является пропан. Именно эту модель движка проще всего перенастроить для работы от водорода. Принцип его действия тот же, что у бензинового двигателя, только в камеру сгорания вместо бензина поступает сжиженный водород. Авто с ВЭ – это, фактически, электрокар. Водород здесь выступает лишь сырьём для выработки электроэнергии, необходимой, чтобы привести в действие электрический мотор.

Водородный элемент состоит из следующих частей:

  • корпуса;
  • мембраны, пропускающей только протоны – она делит ёмкость на две части: анодную и катодную;
  • анода, покрытого катализатором (палладием или платиной);
  • катода с тем же катализатором.

Принцип действия ВЭ построен на физико-химической реакции, состоящей в следующем:

    Водород подаётся в анодный отсек, где под действием катализатора его молекулы отдают свои электроны аноду.

Газообразный водород заправляют в бак автомобиля так же, как и бензин, а затем особый топливный элемент, производящий химическую реакцию за счет водорода и кислорода, преобразует электроэнергию, которая и является движущей силой машины

  • Образовавшиеся протоны (Н+) поступают в катодную часть ВЭ, свободно проходя через мембрану, куда одновременно подаётся кислород.
  • Электроны устремляются по аноду в цепь питания электродвигателя автомобиля, приводя его в движение.
  • Под действием катализатора, подаваемые на катод электроны, соединяются с протонами (Н+), образуя молекулярный водород. Подача в камеру кислорода, способствует образованию молекул воды.
  • Таким образом, при движении автомобиля не выделяется углекислый газ, а лишь водяной пар, электричество и окись азота.

    Основные характеристики водородных автомобилей

    Главные игроки автомобилестроительного рынка уже имеют опытные образцы своей продукции, использующие водород в качестве топлива. Можно уже определённо выделить отдельные технические характеристики таких машин:

    • максимально развиваемую скорость до 140 км/час;
    • средний пробег от одной заправки 300 км (некоторые производители, например, Тойота или Хонда заявляют вдвое большую цифру – 650 или 700 км, соответственно, на одном лишь водороде);
    • время разгона до 100 км/час с нуля – 9 секунд;
    • мощность силовой установки до 153 лошадиных сил.

    Этот автомобиль может разогнаться до 179 км/ч, причем до 100 км/ч машина разгоняется за 9.6 секунд и, самое главное, она способна проехать без дополнительной дозаправки 482 км

    Совсем неплохие параметры даже для бензиновых двигателей. Пока ещё не наметился крен в сторону ВДВС, использующего сжиженный Н2 или машин на ВЭ, и непонятно, какой из этих типов двигателей достигнет лучших технических характеристик и экономических показателей. Но сегодня больше выпущено моделей машин с электроприводом, работающих от ВЭ, которые дают больший КПД. Хотя расход водорода для получения 1 кВт энергии меньше в ВДВС.

    К тому же переоснащение ДВС под водород для увеличения КПД требует изменения системы зажигания установки. Не решена пока проблема быстрого прогорания поршней и клапанов из-за более высокой температуры горения водорода. Здесь всё решит дальнейшее развитие обеих технологий, а также динамика цен при переходе к серийному производству.

    Плюсы и минусы авто, работающих на водороде

    Среди основных преимуществ водородомобилей можно отметить:

    Читать еще:  Чем заливать подушки двигателя

    • высокую экологичность, заключающуюся в отсутствии большинства вредных веществ в выхлопах, характерных для работы бензинового двигателя, – углекислого и угарного газа, окиси и диоксидов серы, альдегидов, ароматических углеводородов;
    • более высокий КПД, по сравнению с бензиновыми авто;

    В целом авто имеет амбиции покорить весь мир

    • меньший уровень шума от работы двигателя;
    • отсутствие сложных, ненадёжных систем топливоподачи и охлаждения;
    • возможность использования двух видов топлива.

    Кроме того, машины, работающие на ВДВС, имеют меньший вес и больше полезного объёма, несмотря на необходимость установки баллонов для топлива.

    К недостаткам водородомобилей можно отнести:

    • громоздкость силовой установки при использовании топливных элементов, снижающей маневренность автомобиля;
    • высокую стоимость самих водородных элементов из-за входящих в их состав палладия или платины;
    • несовершенство конструкции и неопределённость в материале изготовления баков для водородного топлива;
    • отсутствие технологии хранения водорода;
    • отсутствие заправок водородом, инфраструктура которых очень слабо развита во всём мире.

    Однако, с переходом к массовому выпуску авто, оснащённых водородными силовыми установками, большая часть этих недостатков наверняка будет устранена.

    Какие автомобили, использующие водород, уже выпускаются

    Производством машин на водородном топливе занимаются такие ведущие мировые автомобилестроительные компании, как BMW, Mazda, Mercedes, Honda, MAN и Toyota, Daimler AG и General Motors. Среди опытных моделей, а у некоторых производителей уже и мелкосерийных, имеются автомобили, функционирующие только на водороде, или с возможностью использования двух видов топлива, так называемые гибриды.

    Уже выпускаются такие модели водородомобилей, как:

    • Ford Focus FCV;
    • Mazda RX-8 hydrogen;
    • Mercedes-Benz A-Class;
    • Honda FCX;
    • Toyota Mirai;
    • Автобусы MAN Lion City Bus и Ford E-450;
    • гибридный автомобиль на два вида топлива BMW Hydrogen 7.

    Сегодня можно сказать определённо, что, несмотря на имеющиеся трудности (новое всегда с трудом пробивает себе дорогу), будущее принадлежит более экологичным автомобилям. Автокары, работающие на водородном топливе, составят достойную конкуренцию электромобилям.

    Водород Сорокина: как на ГАЗе видят развитие технологий летучего газа

    В одном из обзоров выставки Комтранс в Москве мы рассказывали о прототипах перспективных водоробусов с топливными элементами — со временем они должны вытеснить нынешние электробусы. Одну из этих машин представила Группа ГАЗ, но позже ее президент Вадим Сорокин поведал о перспективах и альтернативных разработках в водородной области.

    Главная задача оснащения электромобилей водородными установками — увеличение запаса хода между подзарядками. И по идее, установка электрохимического генератора с топливными элементами, который подзаряжает батареи на ходу, выглядит простым и привлекательным решением этой проблемы. Но стоит копнуть глубже — и преимущество этой технологии уже не столь очевидно.

    FCEV — стандартное обозначение водородной техники с топливными элементами

    Первый ее минус — это большая цепочка всех систем и их сложность. Мы заправляем водород в баллоны, он поступает в топливные элементы, те, в свою очередь, подзаряжают батарею, которая питает энергией электромотор, — и только он приводит в движение колеса. Для каждого из звеньев этой цепочки необходимы свои электронные блоки управления, нужно согласовывать их работу — и, разумеется, все это нужно возить с собой, отнимая место у пассажиров и груза.

    Конечно же, и стоит транспортное средство с таким набором технологичного оборудования немало. Сколько? По словам Сорокина, если обычный дизельный городской автобус сейчас стоит около 12 млн, а электробус на его базе обойдется примерно в 36 млн, то стоимость аналогичного водоробуса легко перешагнет отметку в 100 млн. Если для богатой Москвы и такая сумма посильна, то в регионах вряд ли даже посмотрят на столь дорогую технику. Более того, если представить будущий массовый переход на топливные элементы свершившимся фактом — куда девать масштабные производства и наработки в области обычных ДВС и, к примеру, коробок передач? Ответа на этот вопрос сейчас не существует.

    Потому-то на ГАЗе и работают не только над собственным топливоэлементарным водоробусом, но и над традиционной технологией — когда водород, смешиваясь с кислородом, сжигается в обычном поршневом двигателе. Идея эта не нова: в разные времена производители уже пытались строить подобные агрегаты, которые, впрочем, требуют особой проработки. Теплота сгорания водорода втрое больше, чем у того же бензина, — а это влечет за собой дополнительные проблемы с детонацией, да и материалы нужны более термостойкие.

    Не так давно мы писали, что работы по созданию «водородного ДВС» сейчас ведет фирма MAN, — ну а теперь компанию ей составит ГАЗ. Предполагается, что автобус с таким двигателем будет в 2,5 раза дешевле водоробуса с топливными элементами и в полтора раза дешевле традиционного электробуса с батареями.

    Понятно, что создание такого двигателя — дело непростое. На том же КАМАЗе скептически относятся к начинаниям своего конкурента — и сами работают именно над топливными элементами. Впрочем, на выставке Комтранс Сорокин заявил, что первые опытные водородные двигатели должны появиться уже до конца этого года, а откалиброванный агрегат в составе автобуса будет представлен в 2023 году.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector