0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что характеризует собой коэффициент скольжения асинхронного двигателя

Номинальное скольжение асинхронных двигателей – 3-8 %.

ЭДС, наводимая в роторе, пропорциональна скольжению и при пуске двигателя (S = 1) значительно (в 20-30 раз) превышает номинальное значение. Поэтому пусковой ток больше номинального (у короткозамкнутых двигателей в 5-7 раз), что необходимо учитывать при выборе защитных устройств. При изменении скольжения изменяется также частота тока в роторе f2:

Проверка двигателя. Новый двигатель или двигатель, длительно не находящийся в эксплуатации, перед пуском необходимо проверить. Неисправности в двигателе можно разделить на две группы: механические и электрические.

К основным механическим относятся: наличие трещин в корпусе статора, ненадежное крепление боковых крышек статора и крышек подшипников (слабое или с перекосами), задевание вентилятора о корпус статора или крышку вентилятора, повреждение лопастей вентилятора, наличие продольного или поперечного люфта в роторе, задевание ротора о статор из-за износа подшипников или попадания посторонних предметов. Исправный в механическом отношении двигатель не должен иметь этих повреждений, свободно вращаться от руки.

Электрические повреждения у короткозамкнутых двигателей наблюдаются главным образом в обмотках статора: обрыв обмотки, короткое замыкание обмоток между собой или на корпус вследствие повреждения изоляции, короткое замыкание витков в одной из обмоток, снижение изоляции обмоток ниже допустимого (сопротивление изоляции должно быть не меньше 0,5 МОм), неправильная маркировка вывода обмоток.

Основным рабочим прибором для проверки двигателей является мегомметр. Им проверяется целостность обмоток и сопротивление изоляции. Мегомметр представляет собой генератор постоянного тока с ручным приводом, вырабатывающим напряжение 500 В или 2500 В. При подсоединении выводов одной обмотки, если она цела, прибор покажет «0». При подключении выводов разных обмоток или одной обмотки и корпуса измеряется сопротивление изоляции между ними (рис. 10.4).

Наличие виткового замыкания можно определить измерением сопротивлений обмоток с помощью моста сопротивлений (сопротивления обмоток, составляющие доли Ома, должны быть равными).

Проверка правильности маркировки или самостоятельное определение начал и концов обмоток делается методом трансформации. Суть его заключается в том, что, если в цепи переменного тока две последовательно соединенных обмотки включены согласно (конец одной с началом другой), то их магнитные потоки совпадают по направлению, складываются и в третьей обмотке индуктируется ЭДС. Если же их включить встречно (конец одной с концом другой), то магнитные потоки направлены также встречно, результирующий магнитный поток и показания вольтметра равны нулю (рис. 10.5).

Рис. 10.5

Последовательность выполнения работы: 1) выясняется наличие неисправностей; 2) определяются выводы обмоток и произвольно маркируются; 3) по схемам рисунка 10.5 уточняется правильность маркировки для двух обмоток, а затем, заменив одну из них третьей, маркируется и она; 4) если двигатель исправлен, осуществляется его включение и реверсирование. В отчете дать обоснованный вывод о состоянии двигателя, привести результаты замеров сопротивления изоляции.

1. Устройство и принцип работы асинхронного двигателя.

2. Что такое скольжение двигателя и почему он называется асинхронным?

3. Как изменяется ЭДС и частота тока в роторе при пуске двигателя?

4. Как изменить направление вращения двигателя?

5. Почему магнитопроводы статора и ротора делают из тонких листов электротехнической стали, изолированных друг от друга?

6. Как определяется возможная схема включения обмоток статора: в звезду или в треугольник?

Лабораторная работа № 11

Исследование рабочих характеристик асинхронного электродвигателя

Цель работы: экспериментально определить рабочие характеристики асинхронного двигателя.

1. Собрать схему экспериментальной установки (рис. 11.1), в которой переменной нагрузкой является генератор постоянного тока.

2. Подавая питание в схему от трехфазного автотрансформатора, провести опыт холостого хода при изменении напряжения питания от 250 В до 50 В. Генератор при этом отключен. Данные опыта записать в таблицу 11.1.

№ опытаU1 U1 2Px x
BB 2Вт

Построить характеристику холостого хода Рх х = f (U1 2 ), по которой определить механические потери ∆Рмех и потери в стали ∆Рст при номинальном напряжении U1 = 220 В.

3. Изменяя нагрузку на двигателе от Р1 = Рх х до Р1 = 0,7 кВт, измерить заданные величины: U1, I1, P1, n2 и занести в таблицу 11.2. Напряжение питания поддерживать постоянным U1 = Uн.

№ п/пДанные опытаДанные расчета
U1I1P1n2S∆Pэ1∆Pст∆Pэ2∆Pмех∆PдPэмР2М2cosφη
ВАВтоб./мин.ВтВтВтВтВтВтВтНм

4. Произвести необходимые расчеты и построить рабочие характеристики электродвигателя:

1. Энергетическая диаграмма.

Преобразование энергии в асинхронном двигателе, как и в других электрических машинах, связано с потерями энергии (в единицу времени это потери мощности). Потери делятся на механические, магнитные и электрические.

Из сети в обмотку статора поступает мощность Р1. Часть этой мощности расходуется на магнитные потери ∆Pст (перемагничивание сердечника статора – гистеризис, вихревые токи в стали сердечника), а также на покрытие электрических потерь ∆Pэ1, обусловленных нагревом обмоток статора протекающим током.

Оставшаяся часть мощности при помощи магнитного поля передается на ротор и поэтому называется электромагнитной мощностью Рэм:

Ток, проходящий в обмотках ротора, также приводит к электрическим потерям – ∆Pэ2. Магнитными потерями в сердечнике ротора обычно пренебрегают, так как в рабочих режимах частота тока в роторе небольшая (f2 = S ∙ f1) и магнитные потери малы.

Механические потери в асинхронном двигателе ∆Pмех обусловлены трением в подшипниках и трением вращающихся частей о воздух (вентиляционные потери).

Кроме того в двигателе имеются дополнительные потери ∆Pд, вызванные наличием полей рассеяния, пульсацией поля в зубцах ротора и статора.

С учетом сказанного полезная мощность двигателя – P2, передаваемая рабочей машине, будет определяться выражением:

На рисунке 11.2 показана энергетическая диаграмма асинхронного двигателя. Коэффициент полезного действия его

Он выше, чем у машин постоянного тока в связи с отсутствием коллектора. В зависимости от величины мощности двигателя номинальный кпд может быть в пределах от 0,8 до 0,95 (верхний предел у двигателей большой мощности).

2. Расчет потерь:

а) по характеристике холостого хода:

экстраполируя ее до U = 0, находим потери в стали и механические потери, которые можно считать постоянными, так как U = const и n2 = const.

б) электрические потери в статоре:

где m1 – число фаз (3);

I1 – ток статора;

r1 – сопротивление фазы статора;

в) электромагнитная мощность:

г) электрические потери в роторе:

д) дополнительные потери принимаются ориентировочно:

е) полезная мощность Р2 = Р1 – Σ ∆Р;

ë) полезный момент:

,

где ;

ж) коэффициент мощности:

з) коэффициент полезного действия:

и) скольжение

где n1 = 1500 об./мин.;

3. рабочие характеристики асинхронного двигателя.

Рабочие характеристики асинхронного двигателя представляют собой зависимости частоты вращения n2 (скоростная характеристика), кпд – η, полезного момента М2, коэффициента мощности cosφ, величины тока I1 от полезной мощности Р2 при U = const, f1 = const.

Скоростная характеристика n2 = f (P2). Частота вращения двигателя определяется формулой:

где – частота вращения магнитного поля статора.

т.е. скольжение зависит от потерь в роторе.

При возрастании нагрузки это отношение растет, достигая значений 0,01÷0,06 при номинальной нагрузке. В соответствии с этим скоростная характеристика представляет собой кривую, слабо наклонную к оси абсцисс. Пренебрегая потерями холостого хода, можно считать, что ∆Pэ2 0 и S = 0, т.е. n2 ≈ n1 при Р2 = 0.

Читать еще:  4д63 двигатель технические характеристики

Зависимость М2 = f (P2) так же будет иметь криволинейный характер, так как при возрастании Р2 уменьшается n2, и момент возрастает быстрее, чем Р2.

Зависимость cosφ = f (P2) также нелинейна и имеет экстремум (максимальное значение коэффициента мощности) при нагрузке, близкой к номинальной. На холостом ходу cosφ обычно не превышает 0,2, так как активная составляющая тока статора гораздо меньше индуктивной. При возрастании нагрузки увеличивается активная составляющая тока I1, коэффициент мощности возрастает, достигая значений 0,8÷0,9. Увеличение нагрузки свыше номинальной приводит к росту величины скольжения и индуктивного сопротивления двигателя (S∙x2) при постоянстве активного сопротивления, что приводит к уменьшению cosφ. Эти же явления определяют похожий характер зависимости кпд от нагрузки, но кривая η= f (P2) начинается с нуля при Р2 = 0. Учитывая характер этих двух зависимостей: cosφ = f (P2) и η= f (P2), при работе двигателя необходимо использовать его при номинальной нагрузке, не завышая его мощность и не допуская длительной работы на холостом ходу или при малой нагрузке. Если двигатель длительное время работает недогруженным, целесообразно понизить напряжение. при этом мощность двигателя и потери в стали понизятся, а кпд и коэффициент мощности возрастут.

Примерный характер рабочих характеристик асинхронного двигателя показан на рисунке 11.4.

1. Перечислите виды потерь мощности, имеющие место при работе асинхронного двигателя.

2. Как снизить потери в стали?

3. Почему кпд и коэффициент мощности двигателя уменьшаются при его перегрузке?

4. Как повысить cosφ и η при небольших нагрузках?

Лабораторная работа № 12

Цель работы: ознакомиться с устройством, назначением и схемами включения измерительных трансформаторов.

Дата добавления: 2014-12-23 ; просмотров: 56 ; Нарушение авторских прав

Большая Энциклопедия Нефти и Газа

Коэффициент — мощность — асинхронный двигатель

На рис. 18 — 20 в качестве примера приведены кривые, характеризующие зависимость тока статора, электромагнитного момента и коэффициента мощности асинхронного двигателя средней мощности от величины скольжения. [32]

Коэффициент мощности cos p при недогрузке двигателя резко падает вследствие того, что при холостом ходе и малых нагрузках двигатель потребляет реактивный намагничивающий ток, отстающий по фазе от напряжения на угол, близкий к 90, поэтому всегда следует загружать двигатель в соответствии с его номинальной мощностью. Коэффициент мощности асинхронного двигателя при холостом ходе не превышает 0 2, однако с ростом нагрузки он быстро увеличивается и достигает наибольшего значения ( 0 8 4 — 0 9) при нагрузке, близкой к номинальной. [34]

Он показывает, какая часть полной мощности, поступающей из сети, расходуется на покрытие потерь и преобразуется в механическую работу. Коэффициент мощности асинхронного двигателя зависит от нагрузки, достигая значений 0 7 — 0 9 при номинальном режиме работы и снижаясь до 0 2 — 0 3 при холостом ходе. [35]

Дальнейшее увеличение нагрузки сопровождается уменьшением cos фг, что объясняется увеличением индуктивного сопротивления ротора ( x2s) за счет увеличения скольжения. В целях повышения коэффициента мощности асинхронных двигателей чрезвычайно важно, чтобы двигатель работал всегда или, по крайней мере, значительную часть времени с номинальной нагрузкой. [37]

Синхронные двигатели могут работать с cos q 1 и даже с опережающим током, и поэтому имеют большое преимущество по сравнению с асинхронными. Это преимущество особенно велико при тихоходных двигателях, когда коэффициент мощности асинхронных двигателей имеет низкое значение. [38]

В частности, при снижении напряжения уменьшаются пусковой и максимальный моменты электродвигателей, возрастает ток, поступающий к ним из сети, увеличивается нагрев обмоток, резко уменьшается световой поток ламп. Превышение номинального напряжения приводит к возрастанию потерь в стали трансформаторов, электродвигателей и аппаратов и увеличению их нагрева, ухудшению коэффициента мощности асинхронных двигателей , сокращению срока службы осветительных ламп. [39]

При снижении напряжения уменьшаются пусковой и максимальный моменты электродвигателей, возрастает сила тока, поступающего к ним из сети, увеличивается нагрев обмоток, резко уменьшается световой поток ламп. Превышение номинального напряжения приводит к возрастанию потерь в стали трансформаторов, электродвигателей и аппаратов и увеличению их нагрева, ухудшению коэффициента мощности асинхронных двигателей , сокращению срока службы осветительных ламп. [40]

В частности, при снижении напряжения уменьшаются пусковой и максимальный моменты электродвигателей, возрастает ток, поступающий к ним из сети, увеличивается нагрев обмоток, резко уменьшается световой поток ламп. Превышение номинального напряжения приводит к Возрастанию потерь в стали трансформаторов, электродвигателей и аппаратов и увеличению их нагрева, ухудшению коэффициента мощности асинхронных двигателей , сокращению срока службы осветительных ламп. [41]

При снижении напряжения уменьшаются пусковой и максимальный моменты электродвигателей, возрастает ток, поступающий к ним из сети, увеличивается нагрев обмоток, резко уменьшается световой поток ламп. Превышение номинального напряжения приводит к возрастанию потерь в стали трансформаторов, электродвигателей и аппаратов и увеличению их нагрева, ухудшению коэффициента мощности асинхронных двигателей , сокращению срока службы осветительных ламп. [42]

Номинальный коэффициент мощности для большинства двигателей составляет cos фном 0 8 — ь 0 9 и зависит от мощности двигателя. С ростом мощности и номинальной угловой скорости двигателя повышается номинальный коэффициент мощности. Коэффициент мощности асинхронного двигателя в сильной степени зависит от нагрузки; при холостом ходе коэффициент мощности мал вследствие значительной реактивной мощности, затрачиваемой на создание потока, и малой активной мощности, связанной лишь с постоянными потерями. По мере роста нагрузки примерно до номинальной активная мощность растет быстрее реактивной и cos ф возрастает до номинального значения. [43]

Управление роторной группой вентилей дает определенное преимущество, однако этот способ не получил практического применения из-за сложности управления тиристорами роторной группы, работающими при переменных частоте и амплитуде питающего напряжения. Техническая трудность создания схем управления тиристорами роторной группы заключается в том, что управляющие импульсы по частоте и фазе должны строго соответствовать напряжению ротора; амплитуда управляющих импульсов должна оставаться постоянной, в то время как амплитуда питающего напряжения изменяется и с приближением к синхронной частоте вращения стремится к нулю. Недостатком схемы с управляемыми роторными вентилями является также снижение коэффициента мощности асинхронного двигателя при регулировании выпрямленного напряжения ротора с помощью тиристоров роторной группы. [44]

Показателями качества электрической энергии у приемников в случае питания их трехфазным током являются / отклонения напряжения и частоты. В частности, при снижении напряжения уменьшаются пусковой и максимальный моменты электродвигателей, возрастает ток, поступающий к ним из сети, увеличивается нагрев обмоток, резко уменьшается световой поток ламп. Превышение номинального напряжения приводит к возрастанию потерь в стали трансформаторов, электродвигателей и аппаратов и увеличению их нагрева, ухудшению коэффициента мощности асинхронных двигателей , сокращению срока службы осветительных ламп. [45]

Асинхронный двигатель

При расчетах начального значения периодической составляющей тока КЗ от асинхронных электродвигателей последние следует вводить в схему замещения сверхпереходным индуктивным сопротивлением. При необходимости проведения уточненных расчетов следует также учитывать активное сопротивление асинхронного электродвигателя.

Суммарное активное сопротивление, характеризующее асинхронный электродвигатель в начальный момент КЗ в миллиомах, допустимо рассчитывать по формуле:

, (1.19)

где R1 – активное сопротивление статора, мОм;

R2 – активное сопротивление ротора, приведенное к статору, мОм. Это сопротивление допустимо определять по формуле:

Читать еще:  Датчик числа оборотов двигателя мерседес

где Мn – кратность пускового момента электродвигателя по отношению к его номинальному моменту;

Pном – номинальная мощность электродвигателя, кВт;

Рмх – механические потери в электродвигателе (включая добавочные потери), кВт;

In – кратность пускового тока электродвигателя по отношению к его номинальному току;

Iном – номинальный ток электродвигателя, А;

Sном – номинальное скольжение, отн. ед.

Активное сопротивление статора электродвигателя, в миллиомах, если оно не задано изготовителем, допускается определять по формуле:

где sном – номинальное скольжение асинхронного электродвигателя, %.

Сверхпереходное индуктивное сопротивление асинхронного электродвигателя в миллиомах равно:

( 1.22)

где Uф.номноминальное фазное напряжение электродвигателя, В.

Для асинхронных электродвигателей, сверхпереходную ЭДС (E ’’ ф.СД), в вольтах, следует определять по формуле:

Активное сопротивление обратной последовательности асинхронного двигателя находится по формулам для активного сопротивления прямой последовательности при скольжении равном:

S = 200% – S ном (поле статора вращается в противоположном направлении по отношении к направлению вращения ротора).

Индуктивное сопротивление обратной последовательности асинхронного двигателя не зависит от направления вращения поля и берется равным индуктивному сопротивлению прямой последовательности

Величина сопротивления нулевой последовательности асинхронного двигателя зависит от схемы соединения обмоток и равна бесконечности если обмотки соединены в треугольник или звезду с незаземленной нулевой точкой; если нулевая точка электродвигателя заземлена, то активное сопротивление нулевой последовательности двигателя равно сопротивлению статора R1 , вычисляемого по формуле (1.21), а индуктивное сопротивление равно сверхпереходному сопротивлению прямой последовательности формула (1.22)

Действующее значение периодической составляющей тока КЗ в произвольный момент времени от асинхронного электродвигателя IпtАД или нескольких электродвигателей, находящихся в одинаковых условиях по отношению к точке КЗ, следует рассчитывать соответственно по формуле:

где IномАД номинальный ток причем при нескольких электродвигателях под номинальным током следует понимать сумму номинальных токов всех электродвигателей;

Iп0(ном) начальный токпериодической составляющей;

gtАД – коэффициент определяемый по графику в приложении 6.

Принцип работы асинхронного двигателя

Асинхронные двигатели, подключаемые к однофазной или трехфазной сети переменного тока, используются для привода механизмов бытовой техники и промышленного оборудования. Установленный на подшипниковых опорах ротор вращается с частотой, отличной от количества оборотов магнитного поля, создаваемого зафиксированными обмотками статора.

Что такое асинхронный двигатель

Асинхронный электродвигатель представляет собой машину, преобразующую электрическую энергию в механическую. Агрегат состоит из металлического немагнитного корпуса цилиндрической конфигурации, на внешней поверхности которого расположены ребра для охлаждения. Внутри кожуха находится обмотка, подключаемая к бытовой или промышленной сети переменного тока. С торцов корпус закрыт крышками, в которых предусмотрены постели для подшипниковых опор. Могут использоваться подшипники качения или скольжения с ручной или автоматической подачей масла.

Ротор, изготовленный из электротехнической стали установлен на подшипниках, обеспечивающих снижение трения и поддерживающих равномерный интервал между внешней поверхностью детали и внутренней плоскостью статора. В схеме узла предусмотрена обмотка (короткозамкнутого или фазного типа). В короткозамкнутых конструкциях отсутствуют коллектор и щетки, что увеличило надежность мотора. В фазных предусмотрено использование коллекторного узла, что позволяет повысить пусковой вращающий момент.

История создания

Теоретическая база асинхронной электрической установки была разработана в 1888 г. итальянским техником Г. Феррарисом и ученым Николой Тесла, причем специалисты вели исследования параллельно. Изначальные расчеты показали низкий КПД устройства, но российский инженер М.О. Доливо-Добровольский опроверг это предположение. Уже в 1889-90 гг. изобретатель из России получает несколько патентов на асинхронные силовые установки, а в 1903 г. в Новороссийске начинает работать элеватор с механизмами, оснащенными трехфазными асинхронными моторами.

Область применения

Основные сферы применения электромоторов асинхронного типа:

  • для привода шпинделей и вспомогательных механизмов металлообрабатывающих станков;
  • для обеспечения движения конвейерных лент;
  • для вращения рабочих колес вентиляторов и насосов, перекачивающих воду и агрессивные жидкости;
  • для передачи крутящего момента к лебедкам грузоподъемной техники;
  • для привода механизмов в автоматических системах.

Типы двигателей

Основные типы двигателей асинхронного типа:

  1. Мотор однофазного типа, оборудованный ротором с короткозамкнутой намоткой. В конструкции статора предусмотрена рабочая намотка для 1-й фазы, но для раскрутки вала двигателя используется пусковой элемент. Дополнительные витки провода подключаются через конденсатор или катушку индуктивности. Схема коммутации обеспечивает сдвига фаз, позволяющий провернуть стальной ротор.
  2. Двигатель двухфазного или конденсаторного типа, отличающийся повышенной эффективностью при коммутации к бытовой сети переменного тока напряжением 220 В. В конструкции статора предусмотрены 2 катушки, смонтированные под углом 90°. Первичная намотка коммутируется к сети напрямую, а вторичная подсоединяется через емкость, обеспечивающую смещение фазы.
  3. Агрегат трехфазного типа оборудован 3 неподвижными обмотками, установленными через 120°. После подачи напряжения формируется вращающееся магнитное поле, обеспечивающее поворот вала с короткозамкнутыми витками провода. Выводы статора соединяются “звездой” или “треугольником”, что допускает применение электромотора при напряжении 220 или 380 В. Изделия подобной конструкции используются в станках и грузоподъемных механизмах.
  4. Трехфазная машина с фазной обмоткой оснащается подвижным ротором с сердечником с пазами, в который уложены витки медного провода. В остальных конструкциях в сердечнике находятся алюминиевые элементы. Концы проводки, соединенной “звездой” выведены на коллекторные кольца, которые изолированы от стальной оси двигателя. При помощи щеток на кольца подается переменное напряжение, обеспечивающее при пуске увеличенный крутящий момент. Устройства используются в механизмах, включаемых под нагрузкой (например, лебедки лифтов).

Существуют моторы с питанием роторных катушек при помощи несимметричного раствора щеток. В конструкции подвижного элемента установлены 2 катушки, которые подключены к внешней сети и к вторичной неподвижной намотке на статоре. Конструкция позволяет регулировать частоту вращения, но отличается повышенной сложностью и требует регулярного обслуживания.

Изделия использовались в 30-40-х гг. прошлого столетия для привода промышленного оборудования, но затем были вытеснены стандартными электродвигателями с фазными роторами.

Принцип работы

При подведении напряжения к неподвижным обмоткам трехфазного мотора асинхронного типа в фазах формируется магнитное переменное поле. Поток изменяется в соответствии с частотой подведенного тока. Поскольку в конструкции узла использованы 3 катушки, то сформированные потоки имеют смещение по времени и пространству на 120°. Итоговый индукционный поток вращается, пересекая центральный подвижный сердечник и обеспечивая наводку разницы потенциалов в коротко замкнутых проводниках, расположенных в теле ротора.

Поскольку цепи замкнуты, то электродвижущая сила формирует ток, вступающий во взаимодействие с подвижным магнитным полем от намотки статора. В результате искажения поля формируется крутящий момент, стремящийся провернуть вал в сторону движения магнитной индукции от неподвижной обмотки. Нарастающий крутящий момент преодолевает силы торможения ротора (из-за веса детали, приложенной внешней нагрузки и силы трения в подшипниковых опорах), что приводит к началу раскрутки вала двигателя.

Устройство асинхронного двигателя

Корпус мотора отличается из серого чугуна или алюминиевого сплава, встречаются стальные конструкции сварного типа. Поскольку при прохождении тока через катушки происходит нагрев деталей, то на поверхности кожуха предусматриваются продольные ребра, обеспечивающие повышенный теплообмен. Внутренняя поверхность корпуса предназначена для установки сердечника статора, который установлен с натягом и дополнительно закреплен резьбовыми соединениями.

Сердечник собирается из деталей, полученных методом штамповки из листов электротехнической стали толщиной до 0,5 мм. Заготовки покрываются слоем специального лака, а затем соединяются в пакеты. Для фиксации элементов используются заклепки, скобы или сварка. Конструкция сердечника обеспечивает снижение вихревых токов, формирующихся при перемагничивании узла вращающимся магнитным полем. В конструкции пакета предусмотрены пазы, в которые укладываются витки провода, соединенные между собой на торцевых кромках (за пределами сердечника).

Ротор собран из элементов, отштампованных из стали (шихтованная схема), которые надеты на вал из конструкционной стали.

Элементы не имеют диэлектрического покрытия, поскольку генерируемые вихревые токи имеют небольшую частоту. Ось имеет поверхности, предназначенные для установки внутренних колец подшипников качения. Внешние концы вала нужны для установки шкивов или иных приспособлений для передачи крутящего момента. На тыловой части оси устанавливается вентилятор, обеспечивающий дополнительное охлаждение двигателя.

Читать еще:  Шаговые двигатели для принтеров характеристики

Процессы в асинхронной машине

Основные процессы, протекающие в электродвигателе асинхронного типа:

  1. Сформированное неподвижными катушками статора индукционное поле совершает вращательное движение относительно покоящегося корпуса мотора, способствуя наведению разницы потенциалов в проводниках, установленных в роторе. Параметр зависит от количества витков провода в катушке, частоты тока и значения магнитного поля. В расчетную формулу вводится поправочный коэффициент, учитывающий потери внутри катушек.
  2. Фаза неподвижной катушки находится в состоянии электрического равновесия, описываемого уравнением. При расчете учитываются значения напряжения во внешней сети и на входе в обмоточный провод, также на расчет оказывает влияние активное и индуктивное сопротивления катушек и сила тока в цепи. Формирующийся магнитный поток находится в зависимости от напряжения в катушках и частоты электрического тока, но на него не влияют режимы работы или замедляющий момент, приложенный к валу электродвигателя.
  3. В неподвижной роторной части частота наведенной электродвижущей силы соответствует частоте внешнего источника питания. По мере увеличения частоты вращения происходит корректировка частоты ЭДС пропорционально корректировке величины скольжения. Максимальное значение частоты достигается в момент начала вращения вала. Напряжение электродвижущей силы изменяется аналогично. Соотношение ЭДС в неподвижных катушках и в проводниках ротора называется коэффициентом трансформации.
  4. Важным эксплуатационным параметром является сила тока в подвижной части, которая зависит от индуктивного и активного сопротивлений, связанных с потоком рассеяния и тепловыми потерями внутри проводников. По мере увеличения скольжения машины происходит нарастание силы тока, кривая отстает от графика изменения значения напряжения электродвижущей силы.
  5. Поскольку ротор оборудован несколькими витками проводки, то при наведении тока образуется вращающееся поле. Периодичность вращения индукции от подвижных катушек равняется периодичности вращения поля неподвижных обмоток. За счет этого эффекта достигается неподвижность индукционных потоков относительно друг друга, что позволяет использовать для расчета параметров асинхронного оборудования законы и формулы, выведенные для трансформаторов.

Понятие скольжения

Скольжением асинхронного устройства называется соотношение числа оборотов магнитного поля, сформированного неподвижными катушками, к частоте вращения ротора электродвигателя.

Параметр выражается в процентном соотношении и используется при оценке эффективности работы силового привода. В момент пуска значение равно 100%, но по мере раскручивания вала параметр начинает снижаться. Одновременно уменьшаются значения электродвижущей силы и тока, наводимых в витках ротора, что ведет к падению кривой крутящего момента.

На холостом ходу (без приложения нагрузки) значение скольжения достигает минимального значения, но по мере приложения статической нагрузки параметр увеличивается (из-за замедления периодичности вращения вала электромотора). При превышении критического значения возникает эффект опрокидывания мотора, приводящий к нестабильной работе устройства. Процесс изменения скольжения прекращается при уравновешивании электромагнитного момента статора тормозным усилием, приложенным к валу машины.

Условия для получения вращающегося магнитного поля

В пособиях по теории электродвигателей указываются следующие условия для получения магнитного поля:

  • применение 2 и более неподвижных обмоток;
  • обеспечение смещения фаз тока в каждой из катушек;
  • смещение осей катушек в пространстве.

Угол смещения зависит от количества пар полюсов. В простейшей трехфазной машине с единой парой контактов угол сдвига составляет 120°. Введение дополнительной пары полюсов обеспечивает уменьшение угла до 60°. Каждая последующая пара контактных элементов приводит к корректировке значения угла в 2 раза.

Когда возникает электромагнитный момент

Электромагнитный вращающий момент создается в результате взаимодействия тока, наведенного в подвижной части асинхронной машины, с совершающим вращательное движением магнитным полем от неподвижных катушек. Значения момента находится в пропорциональной зависимости от мощности электрических потерь в роторе. При расчете момента учитывается ряд параметров (например, напряжение в цепи питания и частота тока), которые не меняются в процессе работы электрической машины. В формуле присутствует коэффициент скольжения, оказывающий влияние на момент.

Его зависимость от скольжения

Кривая зависимости момента от коэффициента скольжения называется механической характеристикой асинхронного электродвигателя. Кривая состоит из участка генераторного режима, двигательного сектора и тормозного участка. Пик крутящего момента соответствует критическому значению скольжения, причем значение момента в режиме генератора выше аналогичного параметра в двигательном состоянии.

Пуск в ход асинхронного двигателя и регулирование частоты вращения

Методика прямого пуска используется на машинах с короткозамкнутой обмоткой ротора. При расчете оборудования обеспечивается пониженная сила тока в цепи, что позволяет избегать повышения температуры и электродинамического усилия. Способ непосредственного запуска используется на установках с низкой или средней мощностью (не требующих высокого стартового момента). Для раскрутки мощных электродвигателей методика не применяется, поскольку прямая коммутация приводит к временному падению напряжения во внешней сети на 10-15%.

Способ запуска при пониженном напряжении применяется при использовании моторов средней и высокой мощности в сетях с недостаточным ресурсом.

Стартовая обмотка переводится в схему “звезда”, а после раскрутки ротора катушки в “треугольник”. Допускается введение в цепи пуска сопротивлений или автоматических трансформаторов. Недостатком методики является падение значения момента (снижение прямо пропорционально квадрату напряжения на входе), пуск производится только без внешней нагрузки.

Пусковой реостат используется в цепях возбуждения устройств с фазной обмоткой на подвижном элементе. По мере увеличения частоты вращения происходит снижение сопротивления, что позволяет постепенно перевести двигатель в штатный режим работы. Способ используется при повышенной нагрузке на электромотор или при необходимости плавной регулировки частоты вращения.

Для регулировки частоты вращения применяются методики:

  • изменения активного сопротивления (только для изделий с фазным ротором);
  • корректировки напряжения во внешней сети;
  • отключения пар полюсов;
  • изменения частоты питающего тока.

Тормозные режимы

При работе асинхронной силовой машины существует 4 режима торможения. Рекуперативное замедление возможно при частоте вращения вала двигателя больше скорости вращения электромагнитного поля. Ситуация разгона вала происходит при спуске груза на лебедке, образующиеся излишки электромагнитной мощности возвращаются во внешнюю сеть. Динамическое торможение осуществляется путем подачи постоянного напряжения на неподвижные катушки, которое вызывает формирование неподвижного поля, замедляющего вращение вала.

Конденсаторное замедление осуществляется путем подключения емкостей к неподвижным обмоткам. Излишки энергии преобразуются в электричество, теряющееся в подвижном элементе двигателя. Методика применяется для установок мощностью до 5 кВт. Замедление противовключением подразумевает изменение чередования фаз, что позволяет резко остановить ротор. Магнитные потоки вращаются в противоположных направлениях, что приводит к увеличению коэффициента скольжения до значения более единицы.

Рекомендуем к просмотру:

  • Электромагнитное реле, что это такое, какой принцип…
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector