0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что отвечает за обороты двигателя дизеля

Снижение мощности как признак неполадок дизельного мотора

Что проверяют в первую очередь

Наиболее распространенной причиной того, что дизель греется и не «не тянет» является снижение пропускной способности фильтров грубой (в баке) и тонкой топливной очистки. Большинство автомобилистов соблюдают межсервисные интервалы, регламентированные производителем, однако качество отечественного топлива в большинстве случаев оказывается существенно ниже общеевропейских стандартов. Учитывая фактические, а не нормативные показатели содержания воды и загрязнений в горючем на заправках, рекомендуется производить замену фильтров по достижении максимум половинного пробега от указанного в мануале интервала. Актуальность этого требования дополнительно повышается в том случае, если автомобиль часто заправляется вдали от крупных городов, где система контроля качества организована значительно менее придирчиво.

Упростить процесс диагностики поможет замена топливных магистралей на прозрачные шланги. В том случае, если причиной того, что дизель перестал тянуть, дымит и не набирает обороты, является засор, в шланге визуально будут отслеживаться воздушные пузырьки, циркуляция которых усиливается при увеличении оборотов двигателя. Именно они и являются причиной того, что мотор «троит» и не набирает штатной мощности.

Что делать, когда пропадают или плывут обороты

Причин того, что дизель не развивает полной мощности только в определенном диапазоне, может быть достаточно много. В том случае, если мотор «троит» при переходе на высокие обороты, производится поэтапная проверка, в ходе которой последовательно диагностируются:

  • Фильтры грубой и тонкой очистки
  • Турбокомпрессор
  • Газораспределительный механизм

Традиционно, причину неполадок дизельного авто начинают искать с фильтров. От штуцера фильтра тонкой очистки отсоединяется топливная магистраль и погружается в емкость с заведомо чистым горючим, после чего мотор заводится и прогоняется на всем диапазоне оборотов. Если дизель по-прежнему не тянет, дополнительно прочищается фильтрующий элемент в баке и заново прокачивается вся топливная система. На следующем этапе проверяется компрессия в цилиндрах, на которую в свою очередь могут влиять неисправности гидрокомпенсаторов, забившихся грязным маслом или всей цилиндро-поршневой группы, и т.д.

Необходимо понимать, что провести качественную комплексную диагностику и выявить причину потери мощности дизельного двигателя можно только в условиях сервисного центра.

Почему мотор не набирает обороты: от простого к сложному

В самом начале рассмотрим более простые и очевидные неисправности. На набор оборотов во время езды сильно влияет эффективность подачи, своевременность воспламенения и полноценность сгорания, а также состав топливно-воздушной смеси.

Частой причиной того, когда двигатель не набирает обороты (инжектор, карбюратор, дизель, авто на газу), являются проблемы в системе зажигания, а также в системах подачи воздуха и топлива. Специалисты выделяют следующее:

  1. Сильное загрязнение воздушного фильтра снижает способность воздуха проникать через фильтрующий элемент, в результате чего работа двигателя становится неровной, агрегат теряет мощность и не набирает обороты. Также частой причиной проблем с подачей воздуха может быть то, что в корпусе воздушного фильтра может случайно оказаться посторонний предмет (ветошь, полиэтиленовый пакет и т.п.).
  2. Также следует обратить внимание и на подсос лишнего воздуха на впуске в результате различных дефектов впускной системы. Проблема может проявиться как неожиданно, так и постепенно прогрессировать. Отметим, что мотор обычно не набирает обороты в случае сильного подсоса воздуха. Дело в том, что в составе топливно-воздушной смеси нормальное соотношение воздуха и топлива в подобной ситуации заметно отклоняется от нормы. Смесь получается очень «бедной» (много воздуха и минимум горючего). На таком заряде двигатель заводится, но не набирает обороты во время езды, а также работает с перебоями.
  3. Похожая картина может наблюдаться и тогда, когда в агрегат не подается нужное количество топлива. Виновником может оказаться топливный фильтр, который также способен сильно забиться. Отметим, что с запуском мотора проблем может не быть, так как горючего хватает для режима ХХ. Параллельно с этим во время езды автомобиль может дергаться, реагировать на нажатие педали газа с большой задержкой, при наборе оборотов могут возникать провалы или же агрегат не раскрутиться выше какой-либо отметки на тахометре.
  4. К аналогичным симптомам может приводить и загрязненная сеточка-фильтр бензонасоса. На указанном фильтре имеют свойство со временем скапливаться отложения из топливного бака. В результате давления топлива в системе становится недостаточно, производительность насоса падает, а сам мотор не способен нормально работать на разных режимах. Часто бывает, когда двигатель набирает обороты и глохнет именно по причине забитой сетки.

Теперь поговорим о неполадках, которые могут потребовать определенных знаний, навыков и оборудования для диагностики, а также являться поводом для визита в автосервис. Начнем с того, что в данном списке неисправностей обычно находятся такие, когда двигатель не набирает обороты по причине выхода из строя какого-либо элемента ЭСУД, системы зажигания, питания и т.п. Другими словами, речь идет уже не о «расходниках» (свечи, провода, фильтры, патрубки), а о деталях. Параллельно с этим следует учитывать и то, произошла ли поломка неожиданно или неисправность прогрессировала постепенно.

  • Одной из причин могут быть сбитые фазы ГРМ. Нарушения синхронной работы механизма газораспределения относительно тактов впуска и выпуска приводят к тому, что впускные и выпускные клапаны открываются несвоевременно. Неисправность возникает в результате ошибок во время замены ремня ГРМ, если указанный ремень ГРМ перескочил на один зуб или большее количество зубьев. Также причиной могут оказаться неправильно отрегулированные клапана (проблема проявляется не резко), различные неполадки в системах изменения фаз газораспределения, поломки цепного привода ГРМ и т.д.
  • К неожиданным поломкам следует отнести выход из строя модуля зажигания, а также неисправности катушек зажигания. В этом случае начинаются пропуски зажигания по цилиндрам, двигатель троит и теряет способность нормально набирать обороты.
  • В ситуациях с оборотами ДВС следует проверять питание инжекторных форсунок. Если возникают проблемы с проводкой, тогда на форсунку не подается или доходит с перебоями управляющий сигнал. В результате форсунка не открывается своевременно, возникают пропуски воспламенения в одном или нескольких цилиндрах, двигатель не набирает нужного числа оборотов и теряет мощность.
  • Из строя может выйти бензонасос или ТНВД на дизелях. Данная неполадка обычно не возникает сразу (за исключением случаев, когда повреждена электропроводка на насос). Намного чаще снижение производительности насоса происходит постепенно. Рано или поздно насос начнет качать топливо очень слабо, давления будет хватать только для работы в режиме ХХ. Повышение нагрузки и оборотов будет приводить к тому, что двигатель может глохнуть под нагрузкой, не раскручиваться и т.п.
  • В отдельных случаях к аналогичным результатам приводит и сильное загрязнение самого инжектора. Езда на топливе низкого качества, а также игнорирование необходимой процедуры чистки форсунок каждые 30-40 тыс. пройденных километров может означать, что производительность одной или нескольких топливных форсунок сильно упала.
  • На обороты двигателя также может влиять состояние системы EGR, пропускная способность катализатора или сажевого фильтра. Что касается второго случая, через забитый катализатор ухудшается отвод выхлопных газов, мотор буквально «задыхается» и не способен набрать нормальные обороты.
  • Параллельно необходимо проверять различные датчики электронной системы управления двигателем. Их некорректная работа может влиять на состав смеси, то есть количество подаваемого топлива и воздуха в ДВС. К таким датчикам относятся ДПДЗ, ДМРВ и ряд других.

Основные причины потери мощности автомобильного двигателя

Многие автомобилисты давно заметили взаимосвязь оборотов коленчатого вала с мощностью бензинового двигателя. Если в силу каких-то причин мотор не в состоянии их развить, то максимальные параметры не будут достигнуты. В числе самых распространенных причин падения мощности может находиться одна или целый комплекс причин, зависящих от состояния ТС, его пробега, качества обслуживания, показателей вязкости масла и топливной смеси и ряда других факторов. Одним из важных нюансов определения источника сбоя служит наблюдение за поведением автомобиля, позволяющее сузить круг возможных причин в несколько раз. Если сброс параметров произошел мгновенно, что нужно искать поломку узла, например, турбины или форсунки, а если картина менялась постепенно, то виной служит износ поршневой группы или засорение фильтров.

Снижение мощности как признак неполадок дизельного мотора

Часто автовладелец даже не замечает снижение мощности у двигателя. Однако этот, кажущийся для многих, неважный «нюанс» указывает на неполадки в дизельном моторе.

Обычно причины снижения мощности скрываются в системах двигателя: питание, выпуск, газораспределение.

Как к нам доехать

Нарушение смесеобразования чаще всего зависит от состояния воздушного и топливного фильтров. Так как фильтры являются расходными материалами, то замену нужно проводить в рекомендательные сроки. Иначе топливный фильтр забивается грязью, поэтому бензонасосу не хватает мощности для подачи необходимого количества топлива. В итоге неустойчивая работа дизельного двигателя на холостых и медленный разгон. Забитый грязью воздушный фильтр не пропускает необходимый объем воздуха для качественного сгорания дизтоплива.

Читать еще:  Глохнет двигатель с коробкой автомат на холостых оборотах

Так же снижение мощности может быть из-за неисправности форсунок. Если она забита отложениями, то топливо будет неоднозначно поступать в цилиндр. Либо может быть наоборот, форсунку заклинило в открытом положении, что способствует беспрепятственному поступлению топлива в цилиндр. По этой причине двигатель будет с трудом заводиться и не сможет развивать достаточную мощность.

Самой распространенной проблемой потери мощности является нарушение газораспределительных фаз. Неисправность ГРМ чревато серьезными проблемами для двигателя.

Изношенный либо плохо натянутый ремень ГРМ, проскочив на зуб, снижает значительно мощность двигателя. А в худших случаях может вывести его из строя.

Еще одной причиной в снижении мощности является слабо прилегающие клапаны, не обеспечивающие необходимой компрессии в цилиндрах. Помимо этого, клапаны могут полностью не открываться, что нарушает процесс наполнения цилиндра смесью.

Причиной потери мощности часто бывает загрязнение системы выпуска. Например, забитость выхлопной трубы замерзшим конденсатом или нейтрализатора смолой и копотью. В последнем варианте потерю мощности на первых этапах можно не заметить, что приведет к медленному «умиранию» двигателя (несколько месяцев и даже лет).

Снижение мощности может быть из-за электронной начинки. Блок управления дизельным двигателем выбирает программу, соответствующую условиям движения, которое передают датчики. По различным причинам могут зашкалить датчики или сам блок управления. Например, при выходе из строя кислородного датчика, меняется программа управления дизельным двигателем: падает мощность, возрастает расход топлива. При выходе из строя температурных датчиков может быть неверно скорректирована подача топлива, что тоже может привести к снижению мощности. Данную проблему может решить только диагностика дизельных двигателей на нашем профессиональном оборудовании.

Так же можно добавить следующие причины снижения мощности, свидетельствующие о неисправности двигателя:

  • неисправность тормозной системы: необходимо прилагать большие усилия, чтобы остановить двигатель;
  • при прогретом двигателе из выхлопной трубы может идти белый дым, что говорит о несгоревшем топливе;
  • черный дым, который объясняется тем, что заливаются топливные инжекторы.

Основные причины снижения мощности двигателя

1. Неисправность датчика положения коленвала

Бывают ситуации, когда ДКПВ несвоевременно отправляет управляющую команду на подачу топливовоздушной смеси. Как следствие, мощность силового узла падает на глазах. Основная причина сбоя – сдвиг зубчатой звезды по отношению к шкиву и расслоение демпфера. В такой ситуации необходимо внимательно осмотреть демпфер и произвести его замену.

2. Увеличение (уменьшение) зазора между электродами свечей

В процессе эксплуатации по причине мощного температурного воздействия расстояние между электродами свечи может снизиться или возрасти. Чтобы исключить или подтвердить свое подозрение, необходимо проверить величину зазоров с помощью круглого щупа.Если расстояние меньше или больше допустимого, нужно выполнить регулировку с помощью подгибания боковой части электрода или же произвести замену свечи. Что касается оптимального расстояния искрового промежутка, то он может быть различным (в зависимости от типа свечи) – 0,7- 1,0 мм.

Что такое разнос дизельного двигателя?

Многие ли автомобилисты знают, с чем связано название дизельных двигателей «дьявольскими моторами»?

Наиболее распространенными причинами несколько настороженного отношения некоторых автовладельцев к данному типу моторов, можно назвать достаточно громкую его работу, высокую степень вибрации, и сбор большого количества сажи, выбрасываемой из выхлопной трубы в атмосферу. Но в последнее время дизельные моторы стали намного экологичнее, и наносят меньший вред окружающей природе. Но имеется в них и еще один неприятный момент, который также является причиной неприятного отношения большей части водителей к этому типу моторов. Это высокая возможность того, что двигатель серьезно подведет водителя и пойдет в разнос. Здесь на карту может быть уже поставлено и здоровье, и даже жизнь водителя и его пассажиров.

Разнос дизельного двигателя. Информацию о подобном явлении, безусловно, могли слышать многие, а некоторые водители даже имели неприятный опыт «общения» с подобным неприятным процессом и с самим «взбесившимся» мотором. Сейчас это явление встречается все реже и реже, но стопроцентной гарантии того, что в настоящее время с ним не придется столкнуться, все еще нет. Что же необходимо делать, если эта неприятность все же произошла?

Когда дизельный мотор идет в разнос, это означает, что имеет место отсутствие контроля за повышением оборотов, которые постоянно растут и даже пересекают красную черту-границу на тахометре. Признаками его могут стать шум, большое количество копоти и черного дыма, а иногда даже и огонь, и все это вместе выходит в атмосферу из выхлопной трубы.

Возможные последствия разноса дизеля. Если такая ситуация уже случилась, то имеется два пути развития ситуации. Один из них является очень опасным, а второй просто достаточно неприятным.

В первом варианте, когда возникновение разноса происходит во время движения, то все зависит от мастерства водителя и скорости принятия им решения. Дело в том, что в движении автомобиль начинает бесконтрольно набирать скорость, что может привести к созданию аварийной ситуации, завершение которой предсказать невозможно. Только если водитель успеет адекватно отреагировать на такое экстремальное развитие ситуации, то все будет хорошо, и никто не пострадает.

Во втором примере, разнос двигателя возникает во время нахождения на стоянке и работе двигателя на холостых оборотах. В этом случае, даже не смотря на развитые обороты намного выше предельных, он будет продолжать вращение до тех пор, пока не остановится от полного выхода из строя. Развитие событий будет зависеть от многих условий, а наиболее вероятным последствием для мотора может стать срыв головки блока, и разбрасывание деталей по окружающей местности.

Варианты поломок. Результатом разноса дизельного двигателя может стать возникновение следующих неисправностей:

  • Резкое повышение температуры двигателя, в конечном итоге приводящее к его заклиниванию;
  • Полное или частичное разрушение мотора по причине слишком высокой степени нагрузки механического характера;
  • Возникновение возгорания в выпускном коллекторе машины.

Предотвращение разноса. Чтобы избежать возникновения такой ситуации, стоит как можно чаще проводить процедуру профилактики мотора, и вовремя выполнять его техническое обслуживание. Говоря более конкретно, необходимо контролировать работу ТНВД, регулятора центробежной силы, не допускать накопления масла во впускном тракте, и вовремя менять цилиндро-поршневую группу.

Итог. При нахождении в момент разноса за рулем автомобиля, будет ощущаться резкое ускорение. Следует как можно быстрее снять ногу с педали газа и начать торможение. Не стоит ценить мотор выше жизней и здоровья себя и других, коробку передач необходимо переключить на нейтральную скорость и снижая скорость прижаться к обочине.

Устройство автомобиля –
«Разговор о дизеле»

Почему дизельные двигатели экономичны? За счет чего у них такой большой крутящий момент и низкие максимальные обороты? Попробуем разобраться

История моторов с воспламенением от сжатия началась в конце XIX века. Именно тогда Рудольф Дизель загорелся идеей создания эффективного двигателя, коэффициент полезного действия которого смог бы превысить 10–12%, то есть показатель паровых машин. С конструкцией и принципом работы будущего мотора Дизель определился достаточно быстро – это двигатель внутреннего сгорания с воспламенением топлива от высокой температуры сжимаемого газа. Однако в процессе создания рабочего экземпляра возникли трудности: высокое давление и температура в камере сгорания мотора приводили к прогоранию поршней, поломкам газораспределительного механизма, а иногда и к взрывам. В итоге на доработку и придание агрегату достаточной надежности ушло несколько лет. Но в 1897 году цель наконец была достигнута, огромный 5-тонный двигатель развивал 20 л.с. при 173об/мин и обладал КПД в 26%. Даже перспективный двигатель Отто с принудительным зажиганием обеспечивал всего 20%!

Больше – меньше

Итак, отчего же дизельные моторы получились настолько экономичнее? Тому есть две фундаментальные причины.

Первая заключается в более высокой степени сжатия дизелей – от 13 до 25 против 12 у лучших бензиновых представителей. Эти цифры не стоит недооценивать, ведь от них зависит КПД мотора: чем они выше, тем в большей степени расширяются раскаленные отработавшие газы и, соответственно, тем полнее их тепловая энергия преобразуется в механическую. Если сравнить современные дизельные и бензиновые моторы, то первые способны усвоить 38–50% процентов теплоты, выделившейся при сгорании топлива, а вторые – лишь 25–38%.

Возникает вопрос: что мешает поднять степень сжатия бензиновых агрегатов? Мешает детонация, то есть самопроизвольное воспламенение топливно-воздушной смеси от сильного нагрева при излишне большом сжатии. При этом мало того что сгорание происходит не в тот момент, когда нужно, так оно еще и сопровождается чрезвычайно резким нарастанием давления в цилиндре, что приводит к стукам, перегреву и высокой токсичности выхлопа.

Читать еще:  Чтобы двигатель работал дольше

В дизеле же поднятие степени сжатия лишь увеличивает надежность воспламенения впрыскиваемого топлива: чем горячее будет воздух в цилиндре, тем быстрее оно испарится и начнется процесс сгорания. Но кроме степени сжатия есть и второе, не менее важное обстоятельство – низкое сопротивление впускной системы дизеля. Ведь в отличие от бензинового мотора ему не требуется «перекрывать кислород» дроссельной заслонкой, управление мощностью осуществляется простым дозированием впрыскиваемого горючего: нужна большая отдача – подаем больше топлива. А уж насколько избыточно количество воздуха в цилиндре, дело десятое, главное, чтобы его хватало для окисления.

С бензиновым мотором такой трюк не пройдет. Если воздуха окажется слишком много (то есть концентрация паров бензина в нем будет очень низкой), то от искры смесь просто не вспыхнет. Вот и приходится ставить на впуске заслонку, регулирующую расход воздуха и, опосредованно, количество подаваемого топлива. Поэтому при небольших нагрузках (например, в пробках), бензиновые автомобили тратят силы на всасывание воздуха сквозь чуть приоткрытую дроссельную заслонку, создавая огромное разряжение во впускном коллекторе. «Дыхание» же дизеля всегда свободно!

Мощность? Момент!

Часто можно слышать, как в оправдание небольшой мощности дизеля приводят впечатляющие цифры его крутящего момента. Цифры эти, конечно, свидетельствуют о совершенстве мотора, но отнюдь не означают, что крутящий момент на колесах бензинового автомобиля окажется меньше! Ведь дизельные двигатели низкооборотные, из-за чего приходится применять более растянутые передаточные отношения в узлах трансмиссии, что и ведет к снижению конечного крутящего момента. Сравним, например, Mercedes E280 и E280CDI. Мотор первого выдает 300Нм, второго – 440Нм, при этом автоматические коробки у них одинаковые, а редукторы разные, с передаточными отношениями 3,27 и 2,47 соответственно. В итоге на первой передаче на колеса бензиновой модели передается 4300 Нм, а дизельной – 4760. То есть вместо изначальной разницы в 1,5 раза остается превосходство всего в 1,1 раза.

Влияние этого фактора на общую экономичность оценить легко, достаточно сравнить расход бензиновых и дизельных моторов в различных режимах движения. Окажется, что наибольшее превосходство дизеля (почти двукратное) проявляется в городском цикле, когда на его стороне и высокая степень сжатия, и низкие потери во впускной системе. В загородном же режиме, на скорости, когда нагрузка на мотор больше, дроссельная заслонка открыта сильнее и бензиновому двигателю становится легче «дышать», у дизеля остается только один козырь – степень сжатия. В результате тает и его преимущество в расходе топлива.

Впрочем, в начале XX века все эти тонкости не особо волновали автопроизводителей. Нефть стоила дешево, и от двигателя требовалась простота конструкции и изготовления, а не экономичность. И дизели с их сложными механизмами подачи топлива пришлись не ко двору. Правда, благодаря большому ресурсу и неприхотливости к качеству горючего эти моторы все же нашли применение в сельской технике и грузовом транспорте. Пригодились они и военным – баки с соляркой не так пожароопасны, как плещущийся за спиной бензин. Первый же легковой автомобиль на тяжелом топливе – Mercedes-Benz 260D – появился лишь в 1936 году, а к 1970-му общее число выпущенных дизельных легковушек едва превысило 100 тыс.

В поисках выхода

Так бы и пылился дизель на задворках отрасли, если бы не подскочившие в 70-х годах цены на нефть. И тогда на пути массовой дизелизации осталась только одна преграда – низкая мощность таких моторов. А от этого, как известно, существуют два средства: расширение диапазона допустимых оборотов коленвала и увеличение крутящего момента.

Но первый вариант оказывается неэффективным, высокие обороты лишь углубляют и без того насущную для дизеля проблему нехватки времени на смесеобразование. Ведь чтобы топливо активно испарялось, оно должно впрыскиваться при температуре воздуха в цилиндре не менее 500 °C, то есть почти в конце такта сжатия. При 5000 об/мин это означает, что на испарение распыленных частиц топлива и дальнейшую химическую подготовку к воспламенению отводится не более одной тысячной секунды!

Не терпит суеты и процесс сгорания. За резким первоначальным всплеском следует растянутый период догорания, продолжающийся уже на такте расширения. А торопить мотор в таких условиях – это в буквальном смысле слова выбрасывать горючее в трубу.

Поэтому сделать дизель мощнее можно лишь за счет увеличения крутящего момента. А для этого нужно развить как можно большее давление в цилиндрах, то есть сжечь больше топлива. Но опять незадача, приготовленная наспех горючая смесь дизеля отличается значительной неравномерностью распределения топлива по объему. Поэтому во время сгорания в смеси может возникать локальная нехватка воздуха, из-за чего часть топлива не сгорает, а разлагается под воздействием высокой температуры.

Вам приходилось видеть, как дизельные автомобили дымят под нагрузкой? Та сажа, что они выбрасывают, и есть продукт крекинга, то есть разложения несгоревшего топлива. Но это лишь визуальный эффект, а есть еще и сугубо практический в виде снижения мощности, увеличения расхода топлива и вредных выбросов.

Как с этим бороться? Можно так плотно заполнять цилиндры воздухом, чтобы его гарантированно хватало для сгорания даже в зонах максимальной концентрации топлива. Однако процесс распыления горючего оказался столь несовершенен, что возросшие требования к объему воздуха не смог удовлетворить и наддув с интеркулером, в результате чего турбодизели проигрывали в крутящем моменте даже атмосферным бензиновым моторам!

Так что задача увеличения мощности дизеля естественно свелась к процессу оптимизации смесеобразования, в котором решающее значение имеет давление впрыска. Разумеется, поначалу топливные насосы не могли им похвастать, приходилось прибегать к различным ухищрениям, улучшающим распыление горючего. Например, воспользоваться завихрением сжимаемого воздуха, как было сделано в вихрекамерных дизелях. Или поделить камеру сгорания на две части и использовать для смесеобразования энергию газа, перетекающего из одной половины камеры в другую вследствие предварительного сгорания части топлива.

Все эти решения позволяли немного снизить требования к давлению впрыска, но отличались увеличенными тепловыми и гидравлическими потерями вследствие сложной и большой поверхности камеры сгорания. Это, конечно, вело и к ухудшению топливной экономичности моторов. И лишь в начале 90-х годов появились системы, позволившие поднять давление до 1500 бар, что положило конец массовому производству вихрекамерных и предкамерных дизелей, заменив их более экономичными моторами с непосредственным впрыском.

С этого момента и началась увлекательная погоня дизеля за бензиновым конкурентом. Системы питания Сommon Rail, рекордно высокие давления впрыска, сверхбыстрые пьезоэлектрические форсунки, распыляющие топливо до пяти раз за такт. Благодаря всем этим изобретениям ныне дизельные двигатели уже конкурируют с турбированными бензиновыми моторами. Впечатляющий прогресс!

Дизельные системы впрыска

Cистемы впрыска дизтоплива Сommon Rail, решения с насос-форсунками, рядным и распределительным ТНВД. Особенности, принцип работы.

Системы впрыска дизельного топлива – далее по тексту также СВДТ – это системы питания ДВС. Функционируют на дизельном топливе – смеси газойлевых соляровых и керосиновых фракций, которые предварительно прошли специальную обработку. Но речь идёт именно о наличии соляровых фракций которые прошли щелостную очистку, а не о классической солярке с недостающим уровнем вязкости и выкипающей при температуре 240-400 °C

Также в дизельных двигателях в качестве альтернативной топливной смеси может использоваться «Bio-Diesel» – смесь моноалкильных эфиров жирных кислот. Как правило, Bio-Diesel делают из рапсового масла.

Принцип работы

Воспламенение – результат сжатия и нагрева дизельного топлива под высоким давлением в цилиндрах. То есть на деле мы имеем дело с самовоспламенением впрыскиваемого топлива при его контакте с горячим воздухом. Все процессы происходят внутри. Этот принцип диаметрально противоположен бензиновым системам, у которых топливо воспламеняется от искры зажигания – внешнего источника.

Чтобы понимать, как функционируют системы впрыска топлива дизельного двигателя, важно чётко разбираться, за что ответственен каждый её элемент.


СВДТ включает в себя:

  1. Топливный бак. В нём непосредственно и хранится топливо.
  2. Насосное оборудование для подкачки топлива из бака.
  3. Фильтры грубой и тонкой очистки топлива. Главная функция – защита от загрязнений форсунок.
  4. ТНВД (топливный насос высокого давления). Самый сложный узел дизельного ДВС. Прямая задача ТНВД – не просто создавать давление, а распределять топливо по цилиндрам, то есть регулировать его объем. Исключение – СВДТ Common Rail. У них сразу создаётся оптимальный уровень давления. А остальные задачи решаются посредством инжектора. Установку ТНВД считают одну из наиболее сложных, но важных задач мастера. Точность взаимного позиционирования кулачкового вала ТНВД по отношению к коленчатому валу двигателя напрямую влияет на мощность ДВС и его топливную эффективность (экономичность).
  5. Форсунку. Корпус с клапаном.
  6. Сливную магистраль. Топливо из камеры управления вытекает через дроссель в сливную магистраль.
Читать еще:  Электрический двигатель число оборотов

Высокое давление создаёт идеальные условия для того, чтобы свежий заряд во время такта сжатия нагревался до температуры, которая превышает температуру воспламенения.

Работа осуществляется по следующей схеме:

  • Давление действует на поршень.
  • Поршень через шатун и кривошип коленчатого вала побуждают двигатель совершать полезную работу.
  • СВДТ дозирует само топливо, ориентируясь на текущую нагрузку ДВС.
  • Впрыск осуществляется на протяжении определенного промежутка времени с заданной интенсивностью.
  • Топливо распределяется по всему объему камеры.
  • Проводится фильтрация топливной смеси.
  • Топливо поступает в насосы, форсунки.


Типы дизельных систем питания

Решающее влияние на конструкцию системы впрыска дизельного двигателя оказывает способ подачи и распыливания.

Существует 4 основных типа СВДТ:

  • С рядным насосом. Системы с рядным ТНВД, работающие за счёт плунжерных пар, количество которых равно количеству цилиндров в системе. “Прародитель” СВДТ.
  • С насосом распределительного типа. Каждая секция взаимодействует с одним цилиндром.
  • Системы с насос-форсунками. ТНВД и форсунки консолидированы в единый узел. Плюс такого решения очевиден: нет препятствий для создания и поддержания высокого давления (включая давление более 2000 кг/см2).
  • Сommon Rail. Системы с электромагнитным клапаном. Обеспечивают электронное управление цикловой подачей. СВДТ знакома потребителю в двух модификациях: селективного и накопительного типа. Разница — в используемых каталитических конвертерах.

СВДТ с рядным насосом и насосом распределительного типа установлены, преимущественно, на старых авто: с рядным насосом – на грузовиках, спецтехнике, с насосом распределительного типа — на легковых авто, на старых легковых авто и грузовом транспорте с небольшими габаритами.

На рисунке — решения с рядным и распределительным ТНВД.

Если сравнивать рядные насосы и распределительные ТНВД, то важно понимать насосы распределительного типа полезны, когда нужны очень компактные и лёгкие решения. Рядные топливные насосы – при поиске оптимального варианта для ДВС тяжёлой техники.

Но будущее — за Сommon Rail и насос-форсунками. При этом особенно на практике хорошо себя зарекомендовали решения с индивидуальными — PLD-секциями. Плунжерная пара и управляющий элемент у них отделены от впрыскивающего элемента – форсунки, и соединены трубкой высокого давления.

Мастера СТО, принимая на диагностику автомобили с PDL-секций, могут гарантировать клиентам быстрое обнаружение неисправностей и ремонт СВДТ. Это обусловлено тем, что при диагностике и дальнейшем ремонте не нужно “вклиниваться” в головку блока цилиндров. Доступ к узлу – незатруднённый, поэтому сервис – максимально быстрый.

С рядным насосом

Конструкция с рядным насосным оборудованием появилась самой первой. Работает она по такому принципу:

  • Цилиндр движется в гильзе, создаёт давление и сжимает топливо.
  • При достижении нужного давления открывается клапан.
  • Дизтопливо поступает к форсункам (количество форсунок в таких конструкциях всегда соответствует количеству плунжерных пар).
  • Первые конструкции с рядным насосом были полностью механические, затем появились устройства с электромеханикой. Это облегчило регулировку цикловой подачи топлива.

Решения сумели зарекомендовать себя как достаточно надёжные и с большим ресурсом, но есть у них и заметные недостатки:

  • большой вес насосного оборудования,
  • проблемы при создании больших показателей давления (особенно, если речь — о полностью механических конструкциях),
  • низкое быстродействие,
  • сомнительная точность дозирования топливной смеси.

Требования к качеству дизельного топлива значительно выше, нежели к бензину. Это можно связать с конструктивными особенностями СВДТ.

Качество процесса сгорания топливной смеси в цилиндре зависит от самого начала подачи дизельной смеси. Управление началом процесса осуществляется посредством регулятора начала подачи.

Непосредственно за регулировку объема топлива, подаваемого в цилиндр за один цикл, как понятно из текста выше, отвечает плунжерная пара. Расстояние между втулкой и плунжером очень маленькое (речь идёт о десятых микрона). Такие же цифры характеризуют и точность изготовления распылителей форсунок. Вот почему и требования к качеству дизтоплива очень высокие. Если в нём много примесей, топливная аппаратура быстро выходит из строя.

С насосным оборудованием распределительного типа

Существенно улучшить ситуацию, найти оптимизированное решение, которое позволяет достигать большего давления, позволяют системы впрыска дизельного топлива распределительного типа. Да, существует зависимость давления от оборотов ДВС. Но, главное, в этом случае все под полным контролем.

Устройства с рядным насосом бывают механическими и с электрорегулировкой.

Плунжерная пара у первых ТНВД была всего одна, у более поздних моделей — с ротором — плунжерных пар несколько. Такие решения — более производительные. При этом плунжерная пара (или несколько пар) связаны сразу с несколькими форсунками: двумя, четырьмя, шести.

Плунжер совершает сразу два типа движений — вращательное и поступательное. Таким образом, в зоне его ответственности — как подача, так и распределение топливной смеси.

В противовес устройствам с рядным насосом габариты — существенно меньше, топливная экономичность — больше, но надежными такие системы назвать нельзя. Если случается неисправность насоса, то вся СВДТ может выйти из строя.

Ещё один значительный недостаток — чувствительность к завоздушиванию. В свое время это стало серьёзным поводом для “переключения” производителей на СВДТ другого типа (с насос-форсунками и и Сommon Rail).

Насос-форсунки

В СВДТ с насос-форсунками форсунки и плунжеры составляют единую конструкцию. Запуск узла осуществляется от распредвала (за счёт механической рейки + регуляторов или чаще электромагнитных клапанов — последние обеспечивают лучшую производительность и точность дозирования топливной смеси).

Давление можно увеличивать максимально быстро и при этом — на существенные значения. Это возможно благодаря тому, что магистрали высокого давления у СВДТ с насос-форсунками — очень короткие, а усилие от кулачков через коромысло направлено непосредственно к насос-форсунке.

Впрыск — многофазный:

  • Предварительный. Обеспечивает смеси дальнейшую плавность сгорания.
  • Основной. Осуществляется при целенаправленном движении плунжера вниз, направлен на качественное смесеобразование во всех режимах работы ДВС. чем больше давление, тем больше дизеля впрыскивается в камеру ДВС.
  • Дополнительный — очищающий. Плунжер продолжает двигаться вниз. Из фильтра интенсивно уходит сажа.
  • Кстати, у ряда автомобилистов часто возникает вопрос. “Сажа? Но откуда?” Ведь многие годы дизельные ДВС называли более чистыми, нежели бензиновые. Однако во внимание не бралось одно существенное «но». При сильном разгоне образуется достаточно много сажи.


Особенно эта проблема актуальна для решений с механическим управлением дозирования топливной смеси. Если же речь идёт о решениях, управляемых электроникой, всё существенно лучше, выхлопы — чище.

А вот весомый плюс всех решений с насос-форсунками, так это то, что производитель может позволить более высокую мощность ДВС, нежели в случае с рядным и распределительным насосом, дизтоплива водителю требуется меньше, уровень шума существенно уменьшается.

Система впрыска дизельного двигателя Сommon Rail

Решение Сommon rail (“общая магистраль”, аккумуляторная СВДТ позволяет организовать двойной впрыск.

  1. На первом этапе осуществляется предварительный впрыск небольшой порции топливной смеси.
  2. На втором этапе проводится основной впрыск под высоким давлением. С Common Rail нет проблем достигнуть давления 220 -300 МПа.

Шумность работы и образование сажи в этом случае ниже, а топливная эффективность выше.

Благодаря организации электронного управления цикловой подачей в случае использования с электромагнитным клапаном можно существенно повлиять на показатель скорости, с которой топливоподающей система реагирует на изменение нагрузки и давления наддува.

Сначала в процессе задействован клапан цикловой подачи, а далее в работу вступает тактовый клапан управления моментом подачи.

Common Rail обеспечивает возможность осуществить впрыск предварительной небольшой порции топлива, а только потом переходить к работе к основной порции дизтоплива, легко достичь ровной характеристики горения топливной смеси. Ведь в таких случаях давление получается удерживать практически стабильным.

Как и в случае с насос-форсунками работа ступенчата. Выделяется предварительный (на холостом ходу), основной (при увеличении нагрузки) и дополнительный впрыск (при нагрузке, достигающей плато).

Дизельные системы впрыска Common Rail создают идеальные условия для того, чтобы СВДТ соответствовали строгим экологическим нормам, ДВС были маломощными, производство компонентов было более дешевым, а диагностика — оперативной. Активным выпуском Common Rail заняты такие мировые гиганты, как BOSCH, DENSO, SIEMENS. СВДТ Common Rail активно устанавливается на Volvo, Volkswagen, Fiat, Toyota, Alfa Romeo, Mazda, Ford, Nissan,Honda, Hyundai, Kia и др.

Комплексно изучить дизельные двигатели автомобилей, включая плунжерное насосное оборудование,систему непосредственного впрыска Common Rail поможет интерактивная электронная программа “Дизельные двигатели автомобилей”

Видеообзор интерактивной программы

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector