0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что приводит в действие приводной двигатель генераторного автомата

VI Международная студенческая научная конференция Студенческий научный форум — 2014

КАК ВОЗБУДИТЬ ГЕНЕРАТОРЫ БРОНЕТРАНСПОРТЕРА БТР-80 В ОСОБЫХ УСЛОВИЯХ ПОСЛЕ ПУСКА ДИЗЕЛЯ МАШИНЫ БУКСИРОВАНИЕМ

  • Авторы
  • Файлы работы
  • Сертификаты

В БТР-80 установлены две генераторные установки, работающие параллельно на одну нагрузку. Каждая генераторная установка состоит из генератора Г290В с его приводом (рисунок 1) и реле-регулятора РР390-Б1.

1, 2 – генераторы; 3 – ремни генераторов

Рисунок 1 – Установка генератора

Генератор Г290В, представленный в соответствии с рисунком 2, является генератором переменного тока со встроенным выпрямителем, имеет номинальную мощность 3,4 кВт, номинальный ток нагрузки – 120 А, номинальное напряжение – 28 В, передаточное число ременного привода – 2,36, сопротивление обмотки возбуждения – 7 Ом.

Генератор Г290В с принудительным (независимым) возбуждением.

а – генератор Г 290В; б – его устройство

1 — щетка; 2 — щеткодержатель; 3 — вал ротора; 4 — шарикоподшипник; 5 — экран; 6 — крышка со стороны контактных колец; 7 — стяжной болт; 8 — обмотка возбуждения; 9 — крышка со стороны привода; 10 — вентилятор; 11 – шкив; 12 – диод; 13 — схема генератора; 14 — полюсный наконечник; 15 — втулка; 16 — обмотка статора; 17 — контактное кольцо

Рисунок 2 – Генератор Г 290В

Включение генераторных установок в работу производится выключателями: ГЕНЕРАТОРЫ ЛЕВ., ПРАВ. на щитке приборов механика-водителя (рисунок 3).

Принцип работы генератора переменного тока с принудительным (независимым) возбуждением следующий. Напряжение бортовой сети (в момент электростартерного пуска и при частоте вращения ротора генератора меньше 900 мин -1 напряжение аккумуляторных батарей) при работе двигателя подается через щетки и кольца в обмотку возбуждения, установленную на роторе, которая, вращаясь, создает переменное магнитное поле. При вращении ротора магнитное поле пересекает проводники обмотки статора и индуцирует в ней трехфазную ЭДС, которая поступает на выпрямительный блок, преобразуется в постоянное выходное напряжение генератора. Но при изменении частоты вращения двигателя машины и количества подключаемых потребителей (нагрузки), напряжение генератора колеблется по своей величине в очень широком диапазоне, что нарушает нормальную работу электрооборудования. Поэтому для получения напряжения генератора с требуемыми показателями качества генераторы работают с реле-регуляторами.

Рисунок 3 – Выключатели «ПРАВ. ГЕНЕРАТОР» и «ЛЕВ. ГЕНЕРАТОР»

Если на БТР нет аккумуляторных батарей или они сильно разряжены, то после пуска двигателя бронетранспортера с буксира его генераторы не возбудятся. Поэтому при работающем двигателе машины они не будут давать напряжение в бортовую сеть.

При неисправности аккумуляторных батарей допускается временная работа двигателя при снятых батареях. Но в этом случае пуск двигателя производить от внешнего источника питания, предварительно приняв меры по исключению замыкания наконечника плюсовой шины на корпус машины. Но в особых условиях при неисправных батареях иногда приходится осуществлять пуск дизеля бронетранспортера с буксира (путем его буксирования другой машиной). При таком способе пуска двигатель внутреннего сгорания БТР-80 легко выходит на рабочий режим, но генераторы в силу их конструкции не возбуждаются. Поэтому не работает все электрооборудование боевой машины.

Чтобы возбудить генераторы необходимо действовать в такой последовательности:

– выключить все потребители электрической энергии на машине;

– осуществить пуск дизеля с буксира;

– после пуска дизеля бронетранспортера с буксира на слух установить обороты коленчатого вала дизеля порядка 3000 мин -1 (обороты роторов генераторов при этом будут 7100 мин -1 );

– установить на ровной площадке бронетранспортер и другую машину, например автомобиль Камаз, на соответствующем расстоянии так чтобы аккумуляторные батареи машин находились напротив друг друга (рисунок 4);

1 – автомобиль КАМАЗ; 2 – бронетранспортер БТР-80; 3, 4 – военнослужащие; 5 – аккумуляторные батареи

Рисунок 4 – Способ принудительного возбуждения генераторов

бронетранспортера БТР-80 в особых условиях

– открыть люк ниши аккумуляторных батарей бронетранспортера, включить вручную выключатель батарей (рисунок 5, а). При этом необходимо следить, чтобы положительная шина не касалась корпуса бронетранспортера;

– включить на щитке приборов БТР-80 Выключатели «ПРАВ. ГЕНЕРАТОР» и «ЛЕВ. ГЕНЕРАТОР» (рисунок 3);

а – установка выключателя батарей и предохранителя плавкого в нише аккумуляторных батарей; б – установка выключателя батарей на перегородке отделения силовой установки

Рисунок 5 – Расположение выключателя батарей и предохранителя плавкого в нише аккумуляторных батарей

– снять крышку контейнера аккумуляторных батарей автомобиля КамАЗ и включить выключатель аккумуляторных батарей;

– с помощью лома из шанцевого инструмента ЗИП БТР-80 надежно соединить корпус бронетранспортера и раму автомобиля. Лом (или любой другой металлический проводник с сечением не меньше 1 мм 2 ) должен быть соединен с поверхностью, очищенной от краски;

– любым другим проводом с сечением не меньше 1 мм 2 надежно соединить положительные выводы аккумуляторных батарей машин;

– проверить работу генераторных установок по вольтметру вольтамперметра (напряжение бортовой сети должно быть от 26 до 28 В);

– после этого подключить потребители электроэнергии, при этом поддерживать обороты коленчатого вала дизеля порядка (1500 – 2000) мин -1 для устойчивой работы генераторов под нагрузкой.

Литература, использованная авторами:

1 Техническое описание и инструкция по эксплуатации объекта 5903 [Текст]: – Рязань: Министерство Обороны Российской Федерации. Главное автобронетанковое управление. 2006 – 494 с.

Мотор-генератор — Motor–generator

Мотор-генератор (ое множество М-G ) представляет собой устройство для преобразования электрической энергии в другую форму. Мотор-генераторные установки используются для преобразования частоты , напряжения или фазы мощности. Их также можно использовать для изоляции электрических нагрузок от линии электропитания. Большие моторы-генераторы широко использовались для преобразования промышленных объемов энергии, в то время как меньшие мотор-генераторы (такие как показанный на рисунке) использовались для преобразования энергии батарей в более высокие напряжения постоянного тока.

В то время как мотор-генераторная установка может состоять из отдельных двигателей и генераторных машин, соединенных вместе, единый динамо- двигатель (для динамо -двигателя) имеет катушки двигателя и катушки генератора, намотанные вокруг единственного ротора; Поэтому и двигатель, и генератор используют одни и те же катушки внешнего поля или магниты. Обычно катушки двигателя приводятся в действие от коммутатора на одном конце вала, в то время как катушки генератора обеспечивают выходной сигнал другому коммутатору на другом конце вала. Весь узел ротора и вала меньше, легче и дешевле, чем пара машин, и не требует открытых приводных валов.

В маломощных потребительских устройствах, таких как автомобильные радиоприемники на электронных лампах, не использовались дорогие, шумные и громоздкие мотор-генераторы. Вместо этого они использовали инверторную схему, состоящую из вибратора (самовозбуждающего реле) и трансформатора для выработки более высоких напряжений, необходимых для электронных ламп, от автомобильной аккумуляторной батареи на 6 или 12 В.

СОДЕРЖАНИЕ

  • 1 Работа с электроэнергией
    • 1.1 Маховик-генератор
  • 2 конверсии
  • 3 Источник питания переменного напряжения
  • 4 высокочастотные машины
  • 5 Мотор-генераторы, используемые для увеличения времени проезда
  • 6 Современное использование мотор-генераторов
  • 7 Современное использование термина
  • 8 См. Также
  • 9 ссылки

Электроэнергетика

В контексте производства электроэнергии и крупных стационарных электроэнергетических систем мотор-генератор состоит из электродвигателя, механически соединенного с электрическим генератором (или генератором переменного тока ). Двигатель работает от входного электрического тока, в то время как генератор создает выходной электрический ток, при этом мощность передается между двумя машинами в виде механического крутящего момента ; это обеспечивает электрическую изоляцию и некоторую буферизацию мощности между двумя электрическими системами.

Одно из применений — устранение скачков и колебаний «грязной мощности» ( согласование мощности ) или обеспечение согласования фаз между различными электрическими системами.

Читать еще:  Двигатель втековский что это

Маховик-генератор

Другое использование — это буфер для экстремальных нагрузок на энергосистему. Например, термоядерные устройства токамака создают очень большие пиковые нагрузки, но относительно низкие средние нагрузки на электрическую сеть. DIII-D токамак в General Atomics , тем Princeton Large Torus (PLT) в лаборатории физики Принстонского Plasma и синхротронного Нимрод в Appleton лаборатории Резерфорда каждый использовал большие маховики на нескольких вышек мотор-генератора на уровне нагрузки накладывается на электрическое Система: сторона двигателя медленно ускоряла большой маховик для накопления энергии , которая быстро потреблялась во время эксперимента по термоядерному соединению, поскольку сторона генератора действовала как тормоз на маховике. Точно так же электромагнитная система запуска самолетов (EMALS) авианосца ВМС США следующего поколения будет использовать двигатель-генератор с маховиком для мгновенной подачи энергии для запусков самолетов, мощность которых превышает установленную на корабле мощность генератора.

Конверсии

Мотор-генераторы могут использоваться для различных преобразований, в том числе:

  • Переменный ток (AC) в постоянный ток (DC)
  • Постоянный ток в переменный ток
  • Постоянный ток при одном напряжении до постоянного тока при другом напряжении. (Также называется динамо-мотором, сокращенно от динамо-мотора)
  • Создание или балансировка трехпроводной системы постоянного тока .
  • Переменный ток одной частоты на переменный ток другой гармонически связанной частоты
  • Переменный ток при фиксированном напряжении на переменный ток переменного напряжения
  • AC однофазный к сети переменного трехфазного

Источник питания переменного напряжения

До того, как твердотельное регулирование напряжения переменного тока стало доступным или рентабельным, мотор-генераторные установки использовались для обеспечения переменного напряжения переменного тока. Напряжение постоянного тока, подаваемое на якорь генераторов, можно изменять вручную или электронным способом для управления выходным напряжением. При таком использовании набор MG эквивалентен изолированному регулируемому трансформатору.

Высокочастотные машины

Александерсон генератора переменного тока является приводом от двигателя, высокочастотный генератор , который обеспечивает радиочастотную мощность. На заре развития радиосвязи высокочастотную несущую волну приходилось генерировать механически, используя генератор с множеством полюсов, приводимых в движение на высоких скоростях. Генераторы переменного тока Alexanderson производили ВЧ до 600 кГц с большими блоками, способными выдавать выходную мощность 500 кВт. В то время как электромеханические преобразователи регулярно использовались для передачи длинных волн в первые три десятилетия 20-го века, электронные методы требовались на более высоких частотах. Генератор Alexanderson был в значительной степени заменен генератором на электронных лампах в 1920-х годах.

Мотор-генераторы, используемые для увеличения времени проезда

Мотор-генераторы использовались даже там, где входной и выходной токи практически одинаковы. В этом случае механическая инерция комплекта M – G используется для фильтрации переходных процессов во входной мощности. Электрический ток на выходе может быть очень чистым (без шума) и сможет выдерживать кратковременные отключения электроэнергии и переключать переходные процессы на входе в установку M – G. Это может обеспечить, например, безупречное переключение с сети на мощность переменного тока, обеспечиваемую дизель- генераторной установкой.

Мотор-генераторная установка может содержать большой маховик для улучшения ее проходимости; тем не менее, в этом приложении необходимо учитывать, поскольку двигатель-генератор потребует большого количества тока при повторном включении, если до момента отрыва достигается момент, приводящий к отключению. Однако пусковой ток во время повторного включения будет зависеть от многих факторов. Например, двигателю-генератору мощностью 250 кВА, работающему при токе полной нагрузки 300 ампер, потребуется 1550 ампер пускового тока во время повторного включения через 5 секунд. В этом примере использовался неподвижно установленный маховик, размер которого обеспечивал скорость нарастания 1 ⁄ 2 Гц в секунду . Мотор-генератор представлял собой двухопорную машину вертикального типа с подшипниками в масляной ванне.

Двигатели и генераторы могут быть соединены непроводящим валом на объектах, где необходимо строго контролировать электромагнитное излучение, или там, где требуется высокая изоляция от переходных импульсных перенапряжений.

Современное использование мотор-генераторов

Для некоторых целей мотор-генераторные установки были заменены полупроводниковыми приборами . В прошлом наборы MG широко использовались в лифтах . Поскольку требовалось точное регулирование скорости подъемной машины, непрактичность изменения частоты для мощного двигателя переменного тока означала, что использование комплекта MG с подъемным двигателем постоянного тока было почти стандартным отраслевым решением. Современные частотно-регулируемые приводы переменного тока и совместимые двигатели все чаще вытесняют традиционные лифтовые установки с приводом от MG, поскольку приводы переменного тока обычно более эффективны на 50% или более, чем механизмы, работающие на постоянном токе.

Еще одно применение MG было в южном районе British Rail . Они использовались для преобразования линейного напряжения питания 600 В — 850 В постоянного тока с третьей шины в 70 В постоянного тока для питания органов управления используемого запаса EMU . С тех пор они были заменены твердотельными преобразователями на новом подвижном составе.

Точно так же наборы MG использовались в трамвае PCC для выработки выхода 36 В постоянного тока от тягового источника 600 В постоянного тока. Низковольтный выход заряжает аккумуляторные батареи трамвая и подает ток на управляющее и вспомогательное оборудование (включая фары, гонгеры, двигатели дверей и электромагнитные гусеничные тормоза).

С другой стороны, в промышленных условиях, где требуется подавление гармоник, преобразование частоты или изоляция линий, наборы MG остаются популярным решением. Полезная особенность двигателей-генераторов заключается в том, что они могут выдерживать большие кратковременные перегрузки лучше, чем полупроводниковые устройства с той же средней номинальной нагрузкой. Учтите, что компоненты большого полупроводникового инвертора с ограничением теплового тока представляют собой твердотельные переключатели массой несколько граммов с тепловой постоянной времени на их радиаторах, вероятно, более 100 мс, тогда как компоненты MG с ограничением теплового тока представляют собой медные обмотки. иногда с массой в сотни килограммов, которые неразрывно связаны с их собственной большой тепловой массой. Они также обладают отличной устойчивостью к электростатическому разряду (ESD).

Современное использование термина

В принципе, любой электрогенератор также может служить электродвигателем или наоборот. В гибридных транспортных средствах и других легких силовых системах «двигатель-генератор» представляет собой отдельную электрическую машину, которая может использоваться как электродвигатель или генератор , преобразующий электрическую энергию в механическую .

С сезона 2014 года гоночные автомобили Формулы 1 будут иметь два так называемых «мотор-генераторных агрегата» (MGU). Это делает автомобили более экономичными за счет сбора энергии от турбокомпрессора и при торможении . Однако это не мотор-генераторы , как описано здесь, но больше похожи на dynamotors , отдельные единицы , которые могут выступать в качестве либо генератора или двигателя. Их можно использовать для обеспечения дополнительных 160 л.с. колесам для ускорения и обгона, или их можно использовать для раскрутки турбонагнетателя, чтобы быстрее увеличить давление наддува, тем самым уменьшая турбо-лаг .

курсовая работа Проектирование судовой электрической станции

Выбор количества, типов и параметров основных и стояночного генератора. Режимы работы основных генераторов, проверка загруженности по режимам, устройство и принцип действия. Расчет и выбор генераторных автоматов и контакторов. Виды защит генераторов.

Нажав на кнопку «Скачать архив», вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Читать еще:  Шевроле лачетти неисправность горящий сигнализатор системы двигателя

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку «Скачать архив»

РубрикаФизика и энергетика
Видкурсовая работа
Языкрусский
Дата добавления26.02.2012
Размер файла223,7 K
  • посмотреть текст работы
  • полная информация о работе

Подобные документы

Обоснование выбора рода тока и рабочего напряжения электрической станции проекта. Выбор типа, числа и мощности генераторных агрегатов. Выбор устройств автоматизации проектируемой электрической станции. Разработка схемы распределения электроэнергии.

курсовая работа [4,9 M], добавлен 17.02.2015

Выбор типов генераторов и проектирование структурной схемы станции. Выбор трансформаторов, источников питания системы собственных нужд, схем распределительных устройств, токоведущих частей. Расчет токов короткого замыкания на шинах, выводах генератора.

курсовая работа [2,5 M], добавлен 27.01.2016

Порядок расчета судовой электрической сети аналитическим методом. Выбор количества и единичной мощности генераторных агрегатов. Расчет Фидера от генератора до распределительного щита. Расчет силовой и осветительной систем. Схема судовой электростанции.

курсовая работа [590,4 K], добавлен 27.12.2012

Проект конденсационной электрической станции. Разработка вариантов структурных схем. Выбор типов и конструкции синхронных генераторов и трансформаторов. Расчет токов короткого замыкания. Выбор коммутационных аппаратов, контрольно-измерительных приборов.

дипломная работа [1,3 M], добавлен 23.03.2015

Расчет мощности и числа генераторов судовой электростанции табличным методом. Выбор источников питания и трансформаторов, силовых кабелей и шин. Проектирование схемы распределения электроэнергии. Проверка электрооборудования по режиму короткого замыкания.

курсовая работа [68,1 K], добавлен 20.01.2010

Выбор типа турбогенератора, обоснование вариантов структурной схемы электростанции. Выбор способа синхронизации генераторов и сети. Расчет релейной защиты элемента схемы станции. Защита от замыканий на землю в обмотках статора генератора и трансформатора.

дипломная работа [1,2 M], добавлен 22.10.2015

Выбор числа и мощности генераторов, преобразователей и аварийных источников электроэнергии. Разработка судовой электростанции рейдового буксирного теплохода, мощностью 800 л. Расчет судовых электрических сетей. Проверка генераторов по провалу напряжения.

курсовая работа [170,8 K], добавлен 09.09.2012

Как устроена коробка-автомат с гидротрансформатором

Достоинство гидротрансформаторной трансмиссии заключается, конечно же, в удобстве управления тягой автомобиля. В упрёк таким трансмиссиям можно поставить медлительность, невысокий КПД и относительно небольшой ресурс. Хотя надо отдать им должное — современные коробки отличаются завидной «скорострельностью».

Не падайте в обморок, ничего сложного здесь нет. Сейчас всё растолкуем. Но сначала давайте определимся с терминологией. Дело в том, что многие по ошибке автоматической коробкой передач называют два агрегата, соединённых воедино: собственно саму коробку и гидротрансформатор.

Гидротрансформатор состоит из двух лопастных машин — центробежного насоса и центростремительной турбины. Между ними расположен направляющий аппарат — реактор. Насосное колесо жёстко связано с коленчатым валом двигателя, турбинное — с валом коробки передач. Реактор же, в зависимости от режима работы, может свободно вращаться, а может быть заблокирован при помощи обгонной муфты.

Передача крутящего момента от двигателя к коробке передач осуществляется потоками рабочей жидкости (масла), которая отбрасывается лопатками насосного колеса на лопасти колеса турбинного. Между насосным колесом и турбиной обеспечены минимальные зазоры, а их лопастям придана специальная геометрия, которая формирует непрерывный круг циркуляции рабочей жидкости. Так что получается, что жёсткая связь между двигателем и трансмиссией отсутствует. Это обеспечивает работу двигателя и остановку автомобиля с включённой передачей, а также способствует плавности передачи тягового усилия.

Надо сказать, что по описанной выше схеме работает гидромуфта, которая просто передаёт крутящий момент, не трансформируя его величину. Чтобы изменять момент, в конструкцию гидротрансформатора введён реактор. Это такое же колесо с лопатками, но оно, имея связь с картером (корпусом) коробки передач, не вращается (заметим, до определённого момента). Лопатки реактора расположены на пути, по которому масло возвращается из турбины в насос, и они имеют особый профиль. Когда реактор неподвижен (гидротрансформаторный режим), он увеличивает скорость потока рабочей жидкости, циркулирующей между колёсами. Чем выше скорость движения масла, тем выше его кинетическая энергия, тем она большее оказывает воздействие на турбинное колесо. Благодаря этому эффекту момент, развиваемый на валу турбинного колеса, удаётся значительно поднять.

Представьте себе стандартную ситуацию — передача в коробке уже включена, а мы стоим на месте и жмём себе на педаль тормоза! Что происходит в этом случае? Турбинное колесо находится в неподвижном состоянии, а момент на нём в раза выше (в зависимости от конструкции) того, что развивает двигатель на этих оборотах. Кстати, момент на выходном валу гидротрансформатора будет тем больше, чем будут выше обороты двигателя. Стоит отпустить педаль тормоза, и автомобиль тронется. Разгон будет продолжаться до тех пор, пока момент на колёсах не сравняется с моментом сопротивления движению машины.

Когда турбинное колесо приближается по оборотам к скорости вращения насосного колеса, реакторное колесо освобождается и начинает вращаться вместе с двумя «напарниками». В этом случае говорят, что гидротрансформатор перешёл в режим гидромуфты. Так снижаются потери, и увеличивается КПД гидротрансформатора.

А поскольку в некоторых случаях надобность в преобразовании крутящего момента и скорости отпадает, в определённые моменты гидротрансформатор и вовсе может быть заблокирован при помощи фрикционного сцепления. Этот режим помогает довести КПД передачи практически до единицы, проскальзывание между лопаточными колёсами в этом случае исключено по определению.

Но представьте себе такую ситуацию. Вы едете по прямой с постоянной скоростью и вдруг начинаете подниматься в горку. Скорость автомобиля начнёт падать, а нагрузка на ведущие колёса увеличится. На это изменение тут же отреагирует гидротрансформатор. Как только станет уменьшаться частота вращения турбины, реакторное колесо начнёт автоматически затормаживаться, в результате скорость циркуляции рабочей жидкости возрастёт, что автоматически приведёт к увеличению крутящего момента, который будет передаваться на вал от турбинного колеса (читай на колёса). В некоторых случаях увеличившегося момента хватит для того, чтобы преодолеть подъём без перехода на низшую передачу.

Поскольку гидротрансформатор не может преобразовывать скорость вращения и передаваемый крутящий момент в широких пределах, к нему присоединяют многоступенчатую коробку передач, которая, вдобавок ко всему, способна обеспечить и реверсивное вращение (иными словами — задний ход). Те коробки, которые работают в паре с гидротрансформаторами, обычно включают в себя ряд планетарных передач и имеют много общего с привычными нам «ручными» коробками.

В механической коробке шестерни находятся в постоянном зацеплении, при этом ведомые — свободно вращаются на вторичном валу. Включая передачу, мы механически блокируем соответствующую шестерню на ведомом валу. Работа автоматической коробки передач построена на таком же принципе. Но планетарные передачи (или редукторы) имеют некоторые интересные особенности. Они включают в себя несколько элементов: водило, сателлиты, солнечную и кольцевую шестерни.

Приводя во вращение одни элементы и фиксируя другие, такие редукторы позволяют менять передаточные отношения, то есть скорость вращения и передаваемое через планетарную передачу усилие. Приводятся планетарные передачи от выходного вала гидротрансформатора, а их соответствующие элементы фиксируются при помощи фрикционных лент или фрикционных пакетов (в механической коробке эту роль играют синхронизаторы и блокирующие муфты).

Включается передача следующим образом. На фрикцион давит гидравлический толкатель, который в свою очередь приводится в действие давлением рабочей жидкости, той самой, что используется в гидротрансформаторе. Давление это создаётся специальным насосом, а распределяется оно между соответствующими фрикционами передач под неусыпным контролем электроники при помощи специальной системы электромагнитных клапанов — соленоидов в соответствии с алгоритмом работы коробки.

Читать еще:  Что такое двигатель типтроник

Существенное отличие АКПП от обычных механических коробок заключается в том, что передачи в них переключаются практически без разрыва потока мощности. Одна выключилась, другая почти в тот же момент включилась. Сильные рывки при переключениях практически исключены, поскольку их гасит уже упомянутый выше гидротрансформатор. Хотя, надо отметить, современные коробки со спортивной настройкой не могут похвастать плавной работой. Толчки при их работе обусловлены более быстрой сменой передач: такой расклад позволяет отыграть некоторое количество времени при разгоне, но приводит к ускоренному износу фрикционов. На трансмиссии и ходовой части в целом это тоже сказывается не лучшим образом.

В автоматических трансмиссиях первого поколения системы управления были целиком гидравлическими. В дальнейшем гидравлику оставили только в качестве исполнительной части системы управления, задавать же алгоритм работы стала электроника. Благодаря ей возможно реализовывать различные алгоритмы работы коробки — режим резкого ускорения, спортивный, экономичный, зимний…

В спортивном режиме, например, тяга двигателя используется на все сто процентов. Включение каждой последующей передачи происходит при частотах коленчатого вала, близких к частотам, на которых развивается максимальный крутящий момент. При дальнейшем ускорении частота вращения коленчатого вала доводится до максимальных значений, при которых двигатель развивает максимальную мощность. И так далее. Автомобиль в этом случае развивает значительно большие ускорения по сравнению с теми, что осуществляются при работе «экономичной» или «нормальной» программ.

На большинстве современных автомобилей с автоматической трансмиссией те или иные алгоритмы управления активизируются в зависимости от манеры вождения. Электроника адаптирует работу тандема двигатель-трансмиссия самостоятельно. Компьютер, анализируя информацию от многочисленных датчиков, принимает решение о переключении передач в те или иные моменты, в зависимости от требуемого характера переключений. Если манера движения размеренная и плавная, контроллер делает соответствующие поправки, при которых двигатель не выводится на мощностные режимы работы, что положительно сказывается на расходе топлива. Как только водитель «занервничал» и начал чаще и резче нажимать на педаль газа, искусственный интеллект тут же понимает, что ускорения и разгоны нужно производить резвее, и силовой агрегат сразу же начнёт работать по «спортивной» программе. Если же водитель станет педалировать плавно, «умная» электроника переведёт коробку и двигатель в штатный режим работы.

Всё большее количество автомобилей оснащается коробками, в которых наряду с автоматическим предусмотрен и полуавтоматический режим управления. Здесь команды на переключение передач даёт водитель, а сами переключения обеспечивает система управления. Но это совсем не означает, что электроника позволит вам сильно разгуляться. Часто скорость перехода с одной передачи на другую в этом режиме увеличивают, но многие производители, заботясь о ресурсе силового агрегата, время переключений оставляют таким же, как в автоматическом режиме. Машиностроители называют эти системы — Autostick, Steptronic, Tiptronic.

Кстати, с недавних пор некоторые АКПП можно тюнинговать. А возможно это стало благодаря перепрограммированию блоков управления двигателем и коробки. В угоду скорости разгона в программе управления АКПП меняют моменты перехода с передачи на передачу и существенно сокращают время переключений.

Электроника из года в год становится всё умнее. Компьютеры научили анализировать степень износа фрикционов и генерировать соответствующее давление, необходимое для включения каждой муфты. Регистрируя давление, можно прогнозировать степень износа фрикционных дисков, а следовательно, и коробки в целом. Блок управления постоянно контролирует исправность системы, записывая в свою память коды неисправностей тех элементов, в которых происходили сбои в процессе работы.

В некоторых случаях блок управления начинает работать по обходной программе. Обычно в аварийном режиме в коробке передач запрещаются все переключения, и включается одна передача, как правило, — вторая или третья. Эксплуатировать, в этом случае автомобиль не рекомендуется (да и не получится), но доехать своим ходом до мастерской программа поможет.

Все типы коробок способны доставлять радость владельцам автомобилей своей службой при пробеге в 200 тысяч километров с лишним. Но есть одно «но» — безотказная работа возможна при правильной эксплуатации и регулярном квалифицированном ТО.

Режимы автоматической трансмиссии

«P» — parking. В этом режиме все передачи выключены, выходной вал КПП и «ветка» трансмиссии, связанная с ведущими колёсами, заторможены блокирующим механизмом коробки. При работающем двигателе ограничитель частоты вращения коленчатого вала срабатывает гораздо раньше, чем при разгоне. Такая «защита от дурака» не позволяет «перекручивать» мотор и без толку перелопачивать трансмиссионную жидкость.

«R» — reverse, — задний ход.

«N» — нейтраль. В этом режиме двигатель и ведущие колёса не связаны. Автомобиль может двигаться накатом, его можно также буксировать без вывешивания ведущей оси.

Режим «D» или «Drive» разрешает движение. В этом режиме смена передач осуществляется автоматически.

«S», «Sport», «PWR», «Power» или «Shift» — спортивный режим. Самый динамичный и самый расточительный. При разгонах двигатель «загоняется» в режим максимальной мощности. Скорость перехода с одной передачи на другую (в зависимости от конструкции и программы) может быть увеличена. Двигатель в этом случае всегда находится в тонусе, как правило, работая на оборотах, которые не ниже тех, на которых развивается максимальный крутящий момент. Забудьте об экономичности.

«» — режим, в котором осуществляется переход на пониженную передачу для осуществления интенсивного ускорения, например, при обгоне. Резкий подхват происходит за счёт того что двигатель выводится в режим максимальной отдачи, и за счёт большего передаточного отношения понижающей передачи. Чтобы трансмиссия перешла в этот режим, по педали газа нужно хорошенько топнуть. В трансмиссиях более старшего поколения для срабатывания «кикдауна» нужно было обязательно нажать педаль газа, что называется, «в пол» до характерного щелчка.

При работе в режиме «Overdrive» или «O/D» повышающая передача будет включаться чаще, переводя двигатель на пониженные обороты. «Овердрайв» обеспечивает экономичное передвижение, но его активация может привести к существенной потере в динамике.

«Norm» реализует наиболее сбалансированный режим движения. Переключения на повышающие передачи, как правило, происходят по достижении средних оборотов и на оборотах несколько выше средних.

Если поставить селектор напротив «1» (L, Low), «2» или «3», ваша коробка не будет переходить выше выбранной передачи. Режимы востребованы в тяжёлых дорожных условиях, например, при движении по горным дорогам, при буксировке прицепа или другого автомобиля. В этом случае двигатель может работать в области средних и высоких нагрузок без перехода на повышающую передачу.

«W», «Winter», «Snow» — так называемый «зимний» режим работы АКПП. В целях предотвращения пробуксовки ведущих колёс трогание с места осуществляется со второй передачи. Дабы не спровоцировать лишние проскальзывания, переход с одной передачи на другую в этом случае тоже может осуществляться более мягко и при более низких оборотах. Разгон при этом может быть не слишком динамичным.

Наличие значков «+» и «-» определяет совсем не полюсность, а возможность ручного переключения передач. Разные производители «перемешивать» передачи позволяют : селектором управления АКПП, кнопками на руле или подрулевыми переключателями… В этом режиме электроника не позволит перейти на те передачи, которые, по её мнению, неуместны в данный момент. При работе со знаками «сложения» и «вычитания» скорость смены ступеней не будет выше той, что определена программой в режиме «Sport». Достоинство ручного режима — возможность действовать на опережение.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector