0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что реактивный двигатель одновременно

2. Турбореактивный двигатель (трд)

2.1. Принцип создания тяги трд

Принцип создания тяги ТРД основан на увеличении количества движения рабочего тела, проходящего по тракту двигателя. На входе в двигатель (сечение 0–0) (рис. 2.1) секундное количество движения рабочего тела – МвV, на выходе (сечение с–с) – Мгсс, где: сс – скорость истечения газа из ТРД; Мв и Мг – секундные массовые расходы воздуха и газа через входное (0–0) и выходное (с–с) сечения ТРД соответственно, связанные соотношением:

где Мт – секундный массовый расход топлива, поступающего в камеру сгорания; Мв.отб – масса воздуха, отбираемого в секунду на охлаждение узлов двигателя и другие цели.

Так как МгМв, а сс > V, то Мг сс > МвV, тогда тяга ТРД

Величина R является тягой, определенной по внутренним параметрам ТРД. Часть этой тяги тратится на преодоление внешнего сопротивления ТРД с мотогондолой Хвн, оставшаяся часть Rэф (эффективная тяга) расходуется на совершение полезной тяговой работы (увеличение скорости полета V):

Рис. 2.1. Изменение параметров рабочего тела по тракту ТРД

Из формулы (2.2) видно, что при V = 0 тяга имеет максимальное значение Мвсс. При увеличении скорости полета все большая часть кинетической энергии истекающей струи газапревращается в полезную тяговую работу по увеличению скорости полета и величина избыточной тягиR уменьшается . При достижении скорости полетаV = сс вся превратится в полезную тяговую работу, и дальнейшее увеличение скорости полета станет невозможным (R = 0). Скорость V = сс называется скоростью «вырождения ТРД». Однако необходимо помнить, что на полезную тяговую работу тратится толькоRэф = RХвн. Из этого следует, что скорость полета всегда меньше скорости истечения газа из сопла и скорость «вырождения ТРД» достижима только теоретически.

2.2. Изменение параметров рабочего тела и превращения энергии по тракту трд

ТРД включает в себя (см. рис. 2.1):

– осевой компрессор (ОК);

– камеру сгорания (КС);

– газовую турбину (ГТ);

– реактивное сопло (РС).

В cечении н–н – невозмущенный воздушный поток (см. рис. 2.1).

Далее по тракту двигателя происходят следующие процессы:

между сечениями н–0 – предварительное сжатие за счет торможения воздушного потока в свободно расширяющейся струе газа перед входом в ВЗ;

между сечениями 0–вх – предварительное сжатие (торможение), выравнивание и стабилизация воздушного потока в расширяющемся канале ВЗ;

между сечениями вх–к – основное сжатие воздуха за счет подвода к нему механической работы от вращающихся рабочих лопаток компрессора;

между сечениями к–г – подвод тепла к рабочему телу за счет сжигания в воздухе горючего (авиационный керосин);

между сечениями г–т – расширение газа в ГТ и превращение части энтальпии в крутящий (располагаемый) момент Мт.расп на валу турбины, передаваемый через общий вал на вращение компрессора и привод дополнительных агрегатов;

между сечениями т–с – расширение газа в сопловом канале РС и превращение части энтальпии в кинетическую энергию истекающей струи газа (создание реактивной тяги R).

До сечения н–н (см. рис. 2.1) воздушный поток является невозмущенным. От сечения н–н до сечения вх–вх поток воздуха первоначально тормозится в свободно расширяющейся струе, а затем – в диффузоре ВЗ. Скорость потока с уменьшается, следовательно, уменьшается его кинетическая энергия c 2 /2. Так как на этом отрезке пути к воздуху не подводится и от него не отводится энергия, то, в соответствии с законом сохранения энергии, уменьшение кинетической энергии c 2 /2 приводит к возрастанию энтальпии i потока. Увеличение энтальпии сопровождается ростом давления и температуры рабочего тела (воздуха).

От сечения вх–вх до сечения к–к к потоку воздуха подводится механическая энергия от вращающихся лопаток ОК. Воздушный поток сжимается, следовательно, возрастает его давление и температура (энтальпия), но рост энтальпии, в основном, идет за счет подводимой механической работы и лишь частично за счет кинетической энергии самого потока, поэтому скорость потока с уменьшается незна­чительно.

Так как расход воздуха постоянный (Мв = const), а его объем уменьшается за счет существенного увеличения плотности при сжатии, для сохранения неразрывности потока необходимо уменьшать площадь проходного сечения тракта ТРДдля исключения значительного снижения скорости потока.

От сечения к–к до сечения г–г к рабочему телу, сжатому в ОК, подводится теплота QКС, выделяющаяся при сжигании в КС топливно-воздушной смеси (ТВС), состоящей из смеси воздуха и авиационного керосина.

Рабочий процесс в КС организован таким образом, что статическое давление остается постоянным, а температура резко возрастает , следовательно, резко возрастает энтальпия за счет подведенной извне энергии (теплоты).

От сечения г–г до сечения т–т рабочее тело (сжатый и нагретый воздух и газообразные продукты сгорания топлива) расширяется в ГТ. Часть энтальпии превращается в крутящий момент Мт.расп на валу ГТ, который необходим для привода ОК (благодаря ОК ТРД может создавать тягу при V = 0).

Так как ОК сжимает атмосферный (холодный) воздух, а в ГТ расширяется горячий газ, то располагаемая работа, совершаемая расширяющимся газом в ступени ГТ, значительно выше, чем потребная работа сжатия в ступени ОК. Это позволяет одноступенчатой ГТ вращать многоступенчатый компрессор.

От сечения т–т до сечения с–с происходит расширение рабочего тела (газа) в РС. Так как РС – энергоизолированная система (отсутствует подвод энергии извне и отвод энергии в окружающую среду), то при расширении газ совершает внешнюю механическую работу по разгону потока, то есть полная энергия рабочего тела не изменяется, но часть энтальпии превращается в кинетическую энергию .

Реактивный двигатель: принцип действия (кратко). Принцип работы реактивного двигателя самолета

Под реактивным понимают движение, при котором от тела с определенной скоростью отделяется одна из его частей. Возникающая в результате такого процесса сила действует сама по себе. Другими словами, у нее отсутствует даже малейший контакт с внешними телами.

Реактивное движение в природе

Во время летнего отдыха на юге практически каждый из нас, купаясь в море, встречался с медузами. Но мало кто задумывался о том, что эти животные перемещаются так же, как реактивный двигатель. Принцип работы в природе подобного агрегата можно наблюдать при перемещении некоторых видов морских планктонов и личинок стрекоз. Причем КПД этих беспозвоночных зачастую выше, чем у технических средств.

Кто еще может наглядно продемонстрировать, какой имеет реактивный двигатель принцип работы? Кальмар, осьминог и каракатица. Подобное движение совершают и многие другие морские моллюски. Возьмем, например, каракатицу. Она вбирает воду в свою жаберную полость и энергично выбрасывает ее через воронку, которую направляет назад или вбок. При этом моллюск способен совершать движения в нужную сторону.

Принцип работы реактивного двигателя можно наблюдать и при перемещении сальца. Это морское животное принимает воду в широкую полость. После этого мышцы его тела сокращаются, выталкивая жидкость через отверстие, находящееся сзади. Реакция получаемой при этом струи позволяет сальце совершать движение вперед.

Морские ракеты

Но самого большего совершенства в реактивной навигации достигли все-таки кальмары. Даже сама форма ракеты, кажется, скопирована именно с этого морского обитателя. При перемещении с низкой скоростью кальмар периодически изгибает свой ромбовидный плавник. А вот для быстрого броска ему приходится использовать собственный «реактивный двигатель». Принцип работы всех его мышц и тела при этом стоит рассмотреть подробнее.

У кальмаров есть своеобразная мантия. Это мышечная ткань, которая окружает его тело со всех сторон. Во время движения животное засасывает в эту мантию большой объем воды, резко выбрасывая струю через специальное узкое сопло. Такие действия позволяют кальмарам двигаться толчками назад со скоростью до семидесяти километров в час. Во время перемещения животное собирает в пучок все свои десять щупалец, что придает телу обтекаемую форму. В сопле имеется специальный клапан. Животное поворачивает его при помощи сокращения мышц. Это позволяет морскому обитателю менять направление движения. Роль руля во время перемещений кальмара играют и его щупальца. Их он направляет влево или вправо, вниз или вверх, легко уклоняясь от столкновений с различными препятствиями.

Существует вид кальмаров (стенотевтис), которому принадлежит звание лучшего пилота среди моллюсков. Опишите принцип работы реактивного двигателя — и вы поймете, почему, преследуя рыб, это животное порой выскакивает из воды, попадая даже на палубы судов, идущих по океану. Как же это происходит? Кальмар-пилот, находясь в водной стихии, развивает максимальную для него реактивную тягу. Это и позволяет ему пролететь над волнами на расстояние до пятидесяти метров.

Если рассматривать реактивный двигатель, принцип работы какого животного можно упомянуть еще? Это, на первый взгляд, мешковатые осьминоги. Пловцы из них не такие быстрые, как кальмары, но в случае опасности их скорости могут позавидовать даже лучшие спринтеры. Биологи, изучавшие миграции осьминогов, установили, что перемещаются они наподобие того, какой имеет реактивный двигатель принцип работы.

Читать еще:  4hj1 двигатель технические характеристики

Животное с каждой струей воды, выброшенной из воронки, делает рывок на два или даже на два с половиной метра. При этом плывет осьминог своеобразно – задом наперед.

Другие примеры реактивного движения

Существуют свои ракеты и в мире растений. Принцип реактивного двигателя можно наблюдать тогда, когда даже при очень легком прикосновении «бешеный огурец» с высокой скоростью отскакивает от плодоножки, одновременно отторгая клейкую жидкость с семенами. При этом сам плод отлетает на значительное расстояние (до 12 м) в противоположном направлении.

Принцип работы реактивного двигателя можно наблюдать также, находясь в лодке. Если из нее в воду в определенном направлении бросать тяжелые камни, то начнется движение в противоположную сторону. Такой же имеет и ракетный реактивный двигатель принцип работы. Только там вместо камней используются газы. Они создают реактивную силу, обеспечивающую движение и в воздухе, и в разряженном пространстве.

Фантастические путешествия

О полетах в космос человечество мечтало давно. Об этом свидетельствуют произведения писателей-фантастов, которые для достижения этой цели предлагали самые разнообразные средства. Например, герой рассказа французского писателя Эркюля Савиньена Сирано де Бержерака достиг Луны на железной повозке, над которой постоянно подбрасывался сильный магнит. До этой же планеты добрался и знаменитый Мюнхгаузен. Совершить путешествие ему помог гигантский стебель боба.

Реактивное движение использовалось в Китае еще в первом тысячелетии до нашей эры. Своеобразными ракетами для забавы при этом служили бамбуковые трубки, которые начинялись порохом. Кстати, проект первого на нашей планете автомобиля, созданный Ньютоном, был также с реактивным двигателем.

История создания РД

Только в 19-м в. мечта человечества о космосе стала приобретать конкретные черты. Ведь именно в этом столетии русским революционером Н. И. Кибальчичем был создан первый в мире проект летательного аппарата с реактивным двигателем. Все бумаги были составлены народовольцем в тюрьме, куда он попал после покушения на Александра. Но, к сожалению, 03.04.1881 г. Кибальчич был казнен, и его идея не нашла практического воплощения.

В начале 20-го в. мысль об использовании ракет для полетов в космос выдвинул русский ученый К. Э. Циолковский. Впервые его работа, содержащая описание движения тела переменной массы в виде математического уравнения, была опубликована в 1903 г. В дальнейшем ученый разработал саму схему реактивного двигателя, приводящегося в движение при помощи жидкого топлива.

Также Циолковским была изобретена многоступенчатая ракета и высказана идея о создании на околоземной орбите настоящих космических городов. Циолковский убедительно доказал, что единственным средством для космических полетов является ракета. То есть аппарат, оборудованный реактивным двигателем, заправляемый горючим и окислителем. Только такая ракета способна преодолеть силу тяжести и совершать полеты за пределами атмосферы Земли.

Освоение космоса

Статья Циолковского, опубликованная в периодическом издании «Научное обозрение», утвердила за ученым репутацию мечтателя. Его доводов никто не принял всерьез.

Идею Циолковского реализовали советские ученые. Возглавляемые Сергеем Павловичем Королевым, они осуществили запуск первого искусственного спутника Земли. 4 октября 1957 г. этот аппарат доставила на орбиту ракета с реактивным двигателем. Работа РД была основана на преобразовании химической энергии, которая передается топливом газовой струе, превращаясь в энергию кинетическую. При этом ракета совершает движение в обратном направлении.

Реактивный двигатель, принцип работы которого используется уже много лет, находит свое применение не только в космонавтике, но и в авиации. Но более всего его используют для запуска ракет. Ведь только РД способен перемещать аппарат в пространстве, в котором отсутствует любая среда.

Жидкостный реактивный двигатель

Тот, кто стрелял из огнестрельного оружия или просто наблюдал этот процесс со стороны, знает, что существует сила, которая непременно оттолкнет ствол назад. Причем при большем количестве заряда отдача непременно увеличивается. Так же работает и реактивный двигатель. Принцип работы его схож с тем, как происходит отталкивание ствола назад под действием струи раскаленных газов.

Что касается ракеты, то в ней процесс, во время которого происходит воспламенение смеси, является постепенным и непрерывным. Это самый простой, твердотопливный двигатель. Он хорошо знаком всем ракетомоделистам.

В жидкостном реактивном двигателе (ЖРД) для создания рабочего тела или толкающей струи применяется смесь, состоящая из топлива и окислителя. Последним, как правило, выступает азотная кислота или жидкий кислород. Топливом в ЖРД служит керосин.

Принцип работы реактивного двигателя, который был в первых образцах, сохранен и до настоящего времени. Только теперь в нем используется жидкий водород. При окислении этого вещества удельный импульс увеличивается по сравнению с первыми ЖРД сразу на 30%. Стоит сказать о том, что идея применения водорода была предложена самим Циолковским. Однако существующие на тот момент трудности работы с этим чрезвычайно взрывоопасным веществом были просто непреодолимы.

Каков принцип работы реактивного двигателя? Топливо и окислитель попадают в рабочую камеру из отдельных баков. Далее происходит превращение компонентов в смесь. Она сгорает, выделяя при этом колоссальное количество тепла под давлением в десятки атмосфер.

Компоненты в рабочую камеру реактивного двигателя попадают по-разному. Окислитель вводится сюда напрямую. А вот топливо проходит более длинный путь между стенками камеры и сопла. Здесь оно разогревается и, уже имея высокую температуру, вбрасывается в зону горения через многочисленные форсунки. Далее струя, сформированная соплом, вырывается наружу и обеспечивает летательному аппарату толкающий момент. Вот так можно рассказать, какой имеет реактивный двигатель принцип работы (кратко). В данном описании не упоминаются многие компоненты, без которых работа ЖРД была бы невозможной. Среди них компрессоры, необходимые для создания нужного для впрыска давления, клапана, питающие турбины и т. д.

Современное использование

Несмотря на то что работа реактивного двигателя требует большого количества топлива, ЖРД продолжают служить людям и сегодня. Их применяют в качестве основных маршевых двигателей в ракетоносителях, а также маневровых для различных космических аппаратов и орбитальных станций. В авиации же используются другие виды РД, которые имеют несколько иные рабочие характеристики и конструкцию.

Развитие авиации

С начала 20-го столетия, вплоть до того периода, когда разразилась Вторая мировая война, люди летали только на винтомоторных самолетах. Эти аппараты были оснащены двигателями внутреннего сгорания. Однако прогресс не стоял на месте. С его развитием появилась потребность в создании более мощных и быстрых самолетов. Однако здесь авиационные конструкторы столкнулись с, казалось бы, неразрешимой проблемой. Дело в том, что даже при незначительном увеличении мощности двигателя значительно возрастала масса самолета. Однако выход из создавшего положения был найден англичанином Френком Уиллом. Он создал принципиально новый двигатель, названный реактивным. Это изобретение дало мощный толчок для развития авиации.

Принцип работы реактивного двигателя самолета схож с действиями пожарного брандспойта. Его шланг имеет зауженный конец. Вытекая через узкое отверстие, вода значительно увеличивает свою скорость. Создающаяся при этом сила обратного давления настолько сильна, что пожарный с трудом удерживает в руках шланг. Таким поведением воды можно объяснить и то, каков принцип работы реактивного двигателя самолета.

Прямоточные РД

Этот тип реактивного двигателя является самым простым. Представить его можно в виде трубы с открытыми концами, которая установлена на движущемся самолете. В передней части ее поперечное сечение расширяется. Благодаря такой конструкции входящий воздух снижает свою скорость, а его давление увеличивается. Самое широкое место такой трубы является камерой сгорания. Здесь происходит впрыскивание топлива и его дальнейшее сгорание. Такой процесс содействует нагреванию образовавшихся газов и их сильному расширению. При этом возникает тяга реактивного двигателя. Ее производят все те же газы, когда с силой вырываются наружу из узкого конца трубы. Именно эта тяга и заставляет самолет лететь.

Проблемы использования

Прямоточные реактивные двигатели имеют некоторые недостатки. Они способны работать только на том самолете, который находится в движении. Летательный аппарат, находящийся в состоянии покоя, прямоточные РД привести в действие не могут. Для того чтобы поднять в воздух такой самолет нужен любой другой стартовый двигатель.

Решение проблемы

Принцип работы реактивного двигателя самолета турбореактивного типа, который лишен недостатков прямоточного РД, позволил авиационным конструкторам создать самый совершенный летательный аппарат. Как действует это изобретение?

Основной элемент, находящийся в турбореактивном двигателе, – газовая турбина. С ее помощью приводится в действие воздушный компрессор, проходя через который, сжатый воздух направляется в специальную камеру. Полученные в результате сгорания топлива (обычно это керосин) продукты попадают на лопасти турбины, чем приводят ее в действие. Далее воздушно-газовый поток переходит в сопло, где разгоняется до больших скоростей и создает огромнейшую реактивную силу тяги.

Увеличение мощности

Реактивная сила тяги может значительно возрасти за короткий промежуток времени. Для этого используется дожигание. Оно представляет собой впрыскивание дополнительного количества топлива в поток газа, вырывающийся из турбины. Неиспользованный в турбине кислород способствует сгоранию керосина, что и увеличивает тягу двигателя. На больших скоростях прирост ее значения достигает 70%, а на малых – 25-30%.

Читать еще:  Шумно работает двигатель 2az

История создания и принцип работы турбореактивного двигателя

Реактивные авиадвигатели во второй половине XX века открыли новые возможности в авиации: полеты на скоростях, превышающих скорость звука, создание самолетов с высокой грузоподъемностью, сделали возможным массовые путешествия на большие расстояния. Турбореактивный двигатель по праву считается одним из самых важных механизмов ушедшего века, несмотря на простой принцип работы.

Первый самолет братьев Райт, самостоятельно оторвавшийся от Земли в 1903 году, был оснащен поршневым двигателем внутреннего сгорания. И на протяжении сорока лет этот тип двигателя оставался основным в самолетостроении. Но во время Второй мировой войны стало ясно, что традиционная поршнево-винтовая авиация подошла к своему технологическому пределу – как по мощности, так и по скорости. Одной из альтернатив был воздушно-реактивный двигатель.

Идею применения реактивной тяги для преодоления земного притяжения впервые довел до практической осуществимости Константин Циолковский. Еще в 1903 году, когда братья Райт запускали свой первый самолет «Флайер-1», российский ученый опубликовал свой труд «Исследование мировых пространств реактивными приборами», в котором он разработал основы теории реактивного движения. Опубликованная в «Научном обозрении» статья утвердила за ним репутацию мечтателя и не была воспринята всерьез. Циолковскому потребовались годы трудов и смена политического строя, чтоб доказать свою правоту.

Тем не менее, родиной серийного турбореактивного двигателя суждено было стать совсем другой стране – Германии. Создание турбореактивного двигателя в конце 1930-х было своеобразным хобби немецких компаний. В этой области отметились практически все известные ныне бренды: Heinkel, BMW, Daimler-Benz и даже Porsche. Основные лавры достались компании Junkers и ее первому в мире серийному турбореактивному двигателю 109-004, устанавливаемому на первый же в мире турбореактивный самолет Me 262.

Несмотря на невероятно удачный старт в реактивной авиации первого поколения, немецкие решения дальнейшего развития нигде в мире не получили, в том числе и в Советском Союзе.

В СССР разработкой турбореактивных двигателей наиболее удачно занимался легендарный авиаконструктор Архип Люлька. Еще в апреле 1940 года он запатентовал собственную схему двухконтурного турбореактивного двигателя, позже получившую мировое признание. Архип Люлька не нашел поддержки у руководства страны. С началом войны ему вообще предложили переключиться на танковые двигатели. И только когда у немцев появились самолеты с турбореактивными двигателями, Люльке было приказано в срочном порядке возобновить работы по отечественному турбореактивному двигателю ТР-1.

Уже в феврале 1947 года двигатель прошел первые испытания, а 28 мая свой первый полет совершил реактивный самолет Су-11 с первыми отечественными двигателями ТР-1, разработки КБ А.М. Люльки, ныне филиала Уфимского моторостроительного ПО, входящего в Объединенную двигателестроительную корпорацию (ОДК).

Принцип работы

Турбореактивный двигатель (ТРД) работает на принципе обычной тепловой машины. Не углубляясь в законы термодинамики, тепловой двигатель можно определить как машину для преобразования энергии в механическую работу. Этой энергией обладает так называемое рабочее тело – используемый внутри машины газ или пар. При сжатии в машине рабочее тело получает энергию, а при последующем его расширении мы имеем полезную механическую работу.

При этом понятно, что работа, затрачиваемая на сжатие газа должна быть всегда меньше работы, которую газ может совершить при расширении. Иначе никакой полезной «продукции» не будет. Поэтому газ перед расширением или во время него нужно еще и нагревать, а перед сжатием – охладить. В итоге за счет предварительного нагрева энергия расширения значительно повысится и появится ее излишек, который можно использовать для получения необходимой нам механической работы. Вот собственно и весь принцип работы турбореактивного двигателя.

Таким образом, любой тепловой двигатель должен иметь устройство для сжатия, нагреватель, устройство для расширения и охлаждения. Все это есть у ТРД, соответственно: компрессор, камера сгорания, турбина, а в роли холодильника выступает атмосфера.

Рабочее тело – воздух, попадает в компрессор и сжимается там. В компрессоре на одной вращающейся оси укреплены металлические диски, по венцам которых размещены так называемые «рабочие лопатки». Они «захватывают» наружный воздух, отбрасывая его внутрь двигателя.

Далее воздух поступает в камеру сгорания, где нагревается и смешивается с продуктами сгорания (керосина). Камера сгорания опоясывает ротор двигателя после компрессора сплошным кольцом, либо в виде отдельных труб, которые называются жаровыми трубами. В жаровые трубы через специальные форсунки и подается авиационный керосин.

Из камеры сгорания нагретое рабочее тело поступает на турбину. Она похожа на компрессор, но работает, так сказать, в противоположном направлении. Ее раскручивает горячий газ по тому же принципу, как воздух детскую игрушку-пропеллер. Ступеней у турбины немного, обычно от одной до трех-четырех. Это самый нагруженный узел в двигателе. Турбореактивный двигатель имеет очень большую частоту вращения – до 30 тысяч оборотов в минуту. Факел из камеры сгорания достигает температуры от 1100 до 1500 градусов Цельсия. Воздух здесь расширяется, приводя турбину в движение и отдавая ей часть своей энергии.

После турбины – реактивное сопло, где рабочее тело ускоряется и истекает со скоростью большей, чем скорость встречного потока, что и создает реактивную тягу.

Поколения турбореактивных двигателей

Несмотря на то, что точной классификации поколений турбореактивных двигателей в принципе не существует, можно в общих чертах описать основные типы на различных этапах развития двигателестроения.

К двигателям первого поколения относят немецкие и английские двигатели времен Второй мировой войны, а также советский ВК-1, который устанавливался на знаменитый истребитель МИГ-15, а также на самолеты ИЛ-28 и ТУ-14.

ТРД второго поколения отличаются уже возможным наличием осевого компрессора, форсажной камеры и регулируемого воздухозаборника. Среди советских примеров двигатель Р-11Ф2С-300 для самолета МиГ-21.

Двигатели третьего поколения характеризуются увеличенной степенью сжатия, что достигалось увеличением ступеней компрессора и турбин, и появлением двухконтурности. Технически это самые сложные двигатели.

Появление новых материалов, которые позволяют значимо поднять рабочие температуры, привело к созданию двигателей четвертого поколения. Среди таких двигателей – отечественный АЛ-31 разработки ОДК для истребителя Су-27.

Сегодня на уфимском предприятии ОДК начинается выпуск авиационных двигателей пятого поколения. Новые агрегаты установят на истребитель Т-50 (ПАК ФА), который приходит на смену Су-27. Новая силовая установка на Т-50 с увеличенной мощностью сделает самолет еще более маневренным, а главное – откроет новую эпоху в отечественном авиастроении.

Уважаемые читатели! Подписывайтесь на нас в Твиттере, Вконтакте, Одноклассниках или Facebook.

Что реактивный двигатель одновременно

В Советском Союзе в 50-х годах прошлого столетия реактивные двигатели для авиамоделей получили некоторое распространение в результате создания пульсирующих воздушно-реактивных двигателей (ПуВРД). Такие микродвигатели в нашей стране строились энтузиастами-авиамоделистами, и в дальнейшем было организовано промышленное производство и их продажа в специализированных магазинах для юных техников (реактивные микродвигатели РАМ-1, РАМ-2). Применение ПуВРД позволило отечественным авиамоделистам-спортсменам установить ряд мировых рекордов скорости полета авиамодели с реактивным двигателем, например, мировой рекорд скорости авиамодели с реактивным двигателем, установленный мастером спорта СССР И.И. Иванниковым.

Несмотря на конструктивную простоту ПуВРД, они имели и ряд существенных недостатков, например, очень громкий, режущий слух звук, разогрев камеры сгорания и резонансной трубы до цвета белого каления. Все это не позволяло использовать такой двигатель для ряда моделей самолетов без специальных мер защиты. Высокочастотные, при высоких температурах, знакопеременные нагрузки на клапаны приводили к их малому ресурсу. Они быстро прогорали, несмотря на то, что выполнялись из лучших сортов жаростойких сталей. Клапаны ПуВРД превратились в слабое звено двигателя. Вскоре производство авиамодельных ПуВРД в СССР из-за большой пожароопасности и высокого уровня шума, создаваемого ими, было прекращено. Летающие модели с применением ПуВРД были исключены из соревнований всех рангов.

Бесклапанные ПуВРД из-за их формы, габаритов, проблем обеспечения охлаждения и сложности организации горения в малом объеме не всегда компоновались на моделях, строившихся авиамоделистами. Производство таких двигателей было отработано некоторыми научно-исследовательскими институтами и предприятиями авиационной промышленности для применения на беспилотных летательных аппаратах с дозвуковой скоростью полета класса мини и более тяжелых классов.

Таким образом, возникла задача создания компактного реактивного двигателя для авиамоделей-копий и позднее для микро-БЛА, имеющего более продолжительное время работы, чем у пороховых ракетных двигателей, но более дешевого в производстве, чем турбореактивный микродвигатель. Такая задача решалась авиамоделистами Общества «Ювенал» города Таганрога в рамках инициативной программы «Рубикон». Исследования и эксперименты с реактивными двигателями разных принципов работы привели к конструкции авиамодельных реактивных двигателей, описание которых предлагается.

Конструкция микродвигателя №1

Данный тип реактивного двигателя с термоокислителем (РДТО – 1) является несложным реактивным двигателем, работа которого обеспечивается сгоранием в специальной камере углеводородного горючего в присутствии окислителя. Окислитель (кислород) вырабатывается в двигателе посредством термического разложения перманганата калия при температуре выше +250 градусов.

Читать еще:  Электро схема системы охлаждения двигателя

2КМnО4 = К2МnО4 + МnО2 + О2

При этом запас перманганата калия находится в замкнутом объеме либо внутри камеры сгорания, либо снаружи, охватывая её.

Выделенный из перманганата калия кислород поступает в камеру сгорания, смешивается с горючим (бензином, керосином) и обеспечивает его непрерывное сгорание. Продукты сгорания при определенном давлении и высокой температуре разгоняются в сопле двигателя и с высокой скоростью покидают сопло, развивая необходимую тягу.

Конструктивно данный тип микродвигателя состоит из: газогенератора кислорода 1, охватываемого камерой сгорания 2, которая отделена от окружающего пространства внешним теплоизолирующим контуром 3, он одновременно является эжекторным усилителем тяги. Внешний теплоизолирующий контур 3 образован внешней оболочкой двигателя 4 и кожухом камеры сгорания 5, установленными с расчетным кольцевым зазором посредством центрирующих винтов 10. Герметичная оболочка 6 совместно со съемным стекателем 7 образует газогенератор 1. Cъемный стекатель 7 оснащен автоматическим регулятором 8 сброса давления кислорода на случай его внезапного увеличения.

Камера сгорания 2 плавно переходит в реактивное сопло 9. Она оснащена стабилизаторами пламени 11. В камеру сгорания 2 направлены форсунки подачи горючего 12 из кольцевой проточки 13, в которую, в свою очередь, вставлен жиклер подачи горючего 14 по трубопроводу 15. В передней части камеры сгорания 2 закреплена головка 16, скрепленная герметично винтами с коллектором подачи горючего и окислителя 17.

Выход из газогенератора 1 сообщается с коллектора подачи горючего и окислителя 17 через фильтрующую сетку 18, которая предотвращает попадание мелкой пыли перманганата калия в коллектор, защищая форсунки 12 подачи кислорода от их засорения.

Пусковое термическое разложение перманганата калия для запуска реактивного двигателя осуществляется нагревом перманганата калия при температуре немногим более +250 градусов специальным электронагревательным пусковым устройством 19. Устройство 19 на резьбе герметично установлено по центру головки 16 и своим нагревательным элементом погружено в перманганат калия, содержащийся в газогенераторе 1 .

К устройству 19 во время запуска двигателя подводится электропитание по клеммам 20.

Подготовка, пуск и работа реактивного двигателя с термоокислителем РДТО – 1.

При подготовке двигателя к работе он переводится в вертикальное положение реактивным соплом вверх. Откручиваются винты крепления съемного стекателя 7, и он отстыковывается от газогенератора 1. Внутренняя полость газогенератора 1 заправляется порцией перманганата калия. Съемный стекатель 7 устанавливается на свое место, стыкуясь с газогенератором 1, и обеспечивается герметичное соединение. После заправки перманганатом калия двигатель переводится в горизонтальное положение. Трубопровод 15 соединяется с бачком для горючего. К бачку для горючего подсоединяется система поддавливания (вытеснения).

При пуске двигателя убеждаются в герметичности всех соединений, подсоединяются клеммы питания специального электронагревательного пускового устройства 20 к источнику электропитания. После подачи электропитания на клеммы электронагревательное пусковое устройство 19 нагревается, вызывая начало термического разложения перманганата калия и получение таким образом кислорода для запуска реактивного двигателя. Жиклером подачи горючего 14 устанавливается режим пусковой подачи горючего в камеру сгорания 2 и, при соблюдении всех правил по технике безопасности и противопожарной защиты, специальной зажигалкой или факелом производится розжиг горючекислородной смеси на срезе сопла 9. Воспламенившаяся горючекислородная смесь из сопла 9 пробивается в камеру сгорания 2 и удерживается в своем положении стабилизаторами пламени 11. При наличии устойчивого горения в камере сгорания 2 источник электропитания отсоединяется от клемм питания 20 специального электронагревательного пускового устройства.

Работа двигателя сопровождается интенсивным выделением продуктов сгорания, которые при своем расширении развивают большие давления и скорости. Скорость истечения продуктов сгорания и их масса прямо пропорциональна развиваемой реактивной тяге двигателя. Установившееся в камере сгорания 2 пламя от сгорания горючего в среде окислителя обладает высокой температурой. Пламя, с одной стороны, разогревает газогенератор 1, который производит кислород, с другой стороны, разогревает кожух камеры сгорания 5, нагрев которого нежелателен, и потому через внешний теплоизолирующий контур 3 он экранирован внешней оболочкой двигателя 4.

Струя выхлопных газов, устремляющаяся из камеры сгорания 2 в сопло двигателя 9, создает на срезе сопла пониженное давление и эжектирует из внешнего теплоизолирующего контура 3 воздух, который охлаждает камеру сгорания 2 и создает дополнительную силу тяги. Таким образом, внешний теплоизолирующий контур 3, кроме снижения температуры, повышает тягу двигателя за счет протекания через него дополнительного количества эжектируемого воздуха.

При непредвиденном росте давления кислорода, вырабатываемого в газогенераторе 1, выше некоторого расчетного значения срабатывает автоматический регулятор 8 сброса давления кислорода. Излишки кислорода выбрасываются за срезом сопла 9 из дюзы регулятора 8, который расположен в вершине конуса съемного стекателя 7.

В головке 16 посредством резьбового соединения закреплен жиклер подачи горючего 14, который имеет связь с кольцевой проточкой коллектора 17.

Режим подачи горючего в коллектор 17 устанавливается иглой жиклера 14.

Режим подачи кислорода в коллектор 17 заранее оттаррирован.

Конструкция микродвигателя №2

Другая конструкция реактивного двигателя с термоокислителем (РДТО – 2) отличается от предыдущей измененной компоновкой основных узлов при полном сохранении принципа работы двигателя. Газогенератор в данном двигателе охватывает часть камеры сгорания и начало выхлопной трубы, образуя герметичный объем.

Конструктивно данный микродвигатель состоит из: камеры сгорания 1, к которой пристыкован газогенератор 2, подающий окислитель по трубопроводу 3, а горючее по трубопроводу 4 в камеру сгорания 1. Продукты сгорания из двигателя выбрасываются в атмосферу из выхлопной трубы 5, оканчивающейся срезом реактивного сопла. Спереди камеры сгорания винтами прикреплена головка, состоящая из собственно головки с форсунками 6 и крышки 7. В центре крышки 7 на резьбе установлен жиклер двигателя 8, имеющий трубку впрыска 9 и регулировочную иглу 10. Количество горючего устанавливается иглой жиклера 10. Трубка впрыска 9 имеет резьбу, позволяя её приближать или удалять от форсунки 11, что необходимо при настройке системы питания двигателя на оптимальное соотношение горючего и окислителя при их подаче в камеру сгорания 1.

Пусковое термическое разложение перманганата калия для запуска реактивного двигателя осуществляется нагревом перманганата калия специальным электронагревательным пусковым устройством 12. Устройство 12 на резьбе герметично установлено в газогенераторе 2 и своим нагревательным элементом погружено в перманганат калия, содержащийся в газогенераторе 2.

К устройству 12 во время запуска подводится электропитание по клеммам 13. Винты с гайками 14 соединяют одновременно головку 6 с крышкой 7 и стабилизатор пламени 15. Жиклер после всех регулировок и настроек двигателя зажимается контргайкой 16. Рабочий процесс в двигателе начинается путем зажигания горючекислородной смеси электрической свечой зажигания 17. Микродвигатель оснащен автоматическим регулятором 18 сброса давления кислорода на случай его внезапного увеличения.

Подготовка, запуск и работа

Заправка микродвигателя РДТО – 2 производится через отверстие демонтированного специального электронагревательного пускового устройства 12 путем засыпки перманганата калия через воронку в газогенератор 2. После операции заправки специальное электронагревательное пусковое устройство 12 устанавливается на место с максимальным обеспечением герметичности. Подсоединяется проводка к специальному электронагревательному пусковому устройству 12 и к электрической свече зажигания 17.

После подачи электропитания на клеммы 13 электронагревательное пусковое устройство 12 нагревается, вызывая начало термического разложения перманганата калия и получение таким образом кислорода для запуска реактивного двигателя. Вырабатываемый в газогенераторе 2 кислород по трубопроводу 3 подается в камеру головки 6 тангенциально и, закручиваясь вместе с горючим, впрыскивается в камеру сгорания 1. Избыточное давление горючего создается путем его поддавливания газом из баллона для зажигалок. Иглой жиклера подачи горючего 10 устанавливается режим пусковой подачи горючего в камеру сгорания 1 и, при соблюдении всех правил по технике безопасности и противопожарной защиты, подается питание на электрическую свечу зажигания 17. В камере сгорания 1 происходит розжиг горючекислородной смеси.

Пламя в камере сгорания удерживается стабилизатором пламени 15. При наличии устойчивого горения горючекислородной смеси в камере сгорания 1 выделяется большое количество продуктов сгорания, которые при своем расширении развивают большие скорости и давления, создавая тягу микродвигателя.

Рабочий режим подачи горючего в головку 6 устанавливается иглой жиклера 10.

Режим подачи кислорода в форсунку 11 регулируется изменением расстояния трубки впрыска 9 от форсунки 11.

При сравнении описанных реактивных микродвигателей проявляются достоинства и недостатки обеих конструкций. Так, микродвигатель РДТО – 1 имеет более низкую рабочую температуру внешней поверхности, что позволяет рассматривать вопросы его применения для более широкой номенклатуры технических средств. Он более защищен от внешнего воздействия и последствий внутренних неконтролируемых процессов резкого увеличения давления в газогенераторе. Однако за эти достоинства приходится расплачиваться увеличением массы двигателя.

Микродвигатель РДТО – 2 более легкий, но передняя часть камеры сгорания имеет непосредственный высокотемпературный контакт с внешней средой. Требуется более эффективная теплоизоляция при установке двигателя на объект. Газогенератор, кроме своего корпуса, ничем не защищен.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector