0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое агр двигатель

Что такое клапан EGR, как он работает и как его проверить?

О клапанах EGR рассказано многое, но далеко не всё. Мы постарались рассказать о трех существующих типах клапанов EGR, об особенностях их устройства и диагностики.

Почти все владельцы автомобилей считают, что система EGR нужна для того, чтобы портить им жизнь и снижать ресурс двигателя. На самом деле это не так. Вкратце напомним о ее назначении.

Система EGR – exhaust gas recirculation – рециркуляция отработавших газов (РОГ) – служит для перенаправления отработавших газов обратно во впуск. Отработавшие газы не имеют в своем составе ни топлива, ни окислителя (кислорода), поэтому они не участвуют в горении. Т.е. в цилиндрах они, грубо говоря, просто занимают место. Зачем это нужно?

В первую очередь на дизельном двигателе, который способен работать на очень бедной топливо-воздушной смеси, отработавшие газы занимают место свежего воздуха. Меньше воздуха – значит в камере сгорания меньше кислорода, поэтому меньше очагов горения. Ведь кислород не только окисляет топливо, но и при больших температурах (порядка 1370 градусов) кислород взаимодействует с азотом с образованием вредных оксидов.

Кроме того, инертные отработавшие газы просто впитывают в себя избыточное тепло, тем самым снижается температура в камере сгорания.

Роль системы EGR на бензиновом двигателе такая же – снизить долю кислорода, снизить температуру в цилиндрах. Но бензиновый двигатель способен работать только на стехиометрической смеси, т.е. смеси, в которой количество кислорода ровно столько, сколько необходимо для полного окисления бензина. Поэтому объемы рециркуляции ОГ на бензине не такие большие, как на дизеле, где горение фактически регулируется подачей топлива, а объем кислорода не так важен.

Также система EGR способна на несколько процентов улучшить топливную экономичность бензинового двигателя, т.к. благодаря тому, что присутствие отработавших газов в цилиндрах позволяет снизить расход воздуха, а значит и расход топливо. Т.е. отработавшие газы позволяют готовить и сжигать чуть меньше стехиометрической топливовоздушной смеси.

На нашем YouTube-канале вы можете посмотреть обзор клапанов EGR.

Мифы про работу системы EGR

Часто можно слышать, что система EGR повторно направляет в цилиндры газы для «дожигания топлива». Это полная глупость.

В бензиновом двигателе никакое дополнительное топливо не сгорит в принципе, т.к. для этого нужно увеличивать и подачу кислорода. Никакая система управления бензиновым двигателем не учитывает эти порции мифического топлива, «перенаправленного для дожигания». Хотя, например, добавление паров топлива из адсорбера системы вентиляции бака ЭБУ учитывают.

В камерах сгорания дизельного двигателя если какое-то топливо и не сгорает, то оно мгновенно разлагается на углерод и оксиды в результате пиролиза. Пиролиз – это термическое разложение соединений на простейшие составляющие в отсутствии кислорода. Черный дым из выхлопной трубы дизеля – это не «несгоревшее топливо», а разложившееся топливо – в частности, сажа, углерод как таковой.

Типы клапана EGR по управлению

Любой клапан предназначен для регулирования потока чего-либо путем открытия, перекрытия или закрытия канала или трубопровода. Клапан EGR осуществляет регулирование потока отработавших газов во впускной тракт двигателя внутреннего сгорания. Механическая часть клапана EGR чаще всего представляет собой шток с игольчатым или тарельчатым клапаном, через который при открытии проходят отработавшие газы. Непосредственно за приведение в движение штока клапана EGR отвечают механизмы трех типов.

Вакуумный клапан EGR

Самые первые клапаны EGR имели пневматический или вакуумный привод. В этом случае шток приводится от диафрагмы, к которой прикладывается усилие от разряжения. Самые ранние варианты таких клапанов были самоуправляемыми. Разряжение во впускном коллекторе через трубки воздействовало на диафрагму, так могло учитываться давление газов в выпускном коллекторе. Самые ранние системы нередко имели возможность контроля или самодиагностики при помощи датчика дифференциального давления, реагирующего на поток отработавших газов. Позже некоторые производители начали устанавливать потенциометры на корпуса диафрагм таких клапанов.

На следующем этапе развитии системы EGR клапан перешел под управление электровакуумным клапаном (клапан N18 на VAG), который подчиняется блоку управления и поэтому работает по определенной программе. В электровакуумном клапане находится электромагнитная катушка, которая перемещает шток клапана, включенного в вакуумную линию.

Конструктивно клапан EGR с диафрагмой почти никогда не имеет обратной связи. Тем не менее, некоторые производители предусматривают способы контроля и диагностики работы системы рециркуляции. О том, поступают и ли отработавшие газы во впуск, блоку управления расскажет датчик абсолютного давления (ДАД) или датчик массового расхода воздуха (ДМРВ), а также, на бензиновом двигателе, лямбда-зонд.

ДАД может зафиксировать несоответствие расчетного давления и фактического давления во впуске.

ДМРВ в свою очередь может зафиксировать несоответствие реального расхода воздуха заданному.

Таким образом, присутствие или отсутствие отработавших газов во впуске в любом случае отражается на давлении и расходе воздуха.

В целом, такая система управления клапаном EGR не отличается высокой точностью. Поэтому двигатели, соответствующие нормам Евро-3 и выше, получили более послушные клапаны EGR.

В большинстве случаев такие клапаны нуждаются только в чистке, разрушение диафрагмы происходят крайне редко. Также сбои и некорректная работа происходят из-за подклинивания штока в управляющем электровакуумном клапане.

Клапан EGR с шаговым электродвигателем

Следующий этап развития – клапан EGR с шаговым мотором. В шаговом электродвигателе ротор не вращается постоянно, а перемещается на определенный угол – шаг. Усилие ротора прикладывается к штоку через небольшой редуктор, с помощью которого поворот ротора превращается в поступательное движение штока. Таким образом по команде ЭБУ шаговый электродвигатель может очень точно перемещать шток клапана. Распознать клапан EGR с шаговым электромотором можно по присутствию 6-ти пинов в его разъеме – 2 плюса на обмотки и 4 минуса для управления шаговым двигателем.

Читать еще:  Бензиновый двигатель компрессор принцип работы

Интересная особенность такого клапана EGR – это отсутствие обратной связи по его положению. При включении зажигания блок двигателя инициализирует этот клапан. Т.е. принудительно задает начальное положение и принимает его за точку отсчета. Далее при работе двигателя блок управления от этого положения отсчитывает шаги для открытия клапана EGR.

Но на практике в случае подклинивания клапана блок управления совершенно без проблем за нулевое положение может принять и открытое положение клапана. При этом, как правило, никаких ошибок по работе системы не появляется. Увидеть заклинившее положение клапана можно по последствиям такой неполадки: недостаточному разряжению во впуске или низкому расходу воздуха, по отрицательной коррекции топливной смеси.

Проверка клапана с шаговым электродвигателем

Как правило, питание на такой клапан подается по двум центральным проводам (пинам). Соответственно, на них должно быть напряжение при включении двигателя.

Обмотки шагового электродвигателя можно проверить по сопротивлению. Для этого сопротивление нужно мерить между центральным пином и соседними. В зависимости от производителя номинальное значение варьируется. Например, на клапанах EGR Mitsubishi это значение 20-24 Ома, на клапанах EGR Mazda – 12-16 Ом. Вообще сопротивление обмоток должно быть одинаковым.

Клапан EGR с электромотором и обратной связью

Самый совершенный и удобный привод клапана EGR – электромагнитом или электромотором при наличии датчика положения самого клапана. Непосредственно шток клапана приводится через редуктор.

Распознать такой клапан EGR можно по его электрическому разъему: в нем 5 пинов. 2 пина на питание электромотора/электромагнита, 2 пина на питание датчика, 1 пин на сигнал с датчика положения.

Питание электромотора приходит по двум проводам большего сечения. Расположение пинов в разъемах во многих случаях разное.

Что такое агр двигатель

Улу́чшенный реа́ктор с га́зовым охлажде́нием или (англ. Advanced gas-cooled reactor (AGR) ) это тип ядерного реактора, разработанного и построенного в Англии . Это второе поколение британских ядерных реакторов с газовым охлаждением, с использованием графита в качестве замедлителя нейтронов и углекислого газа в качестве теплоносителя. AGR был разработан на основе реакторов типа Magnox.

AGR сохранил графитовый замедлитель Магнокс и теплоноситель CO2, но увеличил свою рабочую температуру, чтобы повысить эффективность при преобразовании в пар. Пар, который он производил, был намеренно идентичным тому, что генерировался на угольных ТЭЦ, позволяя использовать те же турбины и оборудование для генерации. На начальных этапах проектирования системы конструкторы были вынуждены сменить бериллий, применяемый в качестве защитной оболочки для урановых топливных элементов на нержавеющую сталь. Сталь имеет более высокое ядерное сечение реакции, и это изменение повлекло изменение топлива с природного урана на обогащенное урановое топливо для поддержания критичности. В рамках этого изменения новый проект имел более высокий уровень выгорания 18 000 МВт / сут. на тонну топлива, требуя менее частых заправок.

Первый прототип AGR был запущен в 1963 году [1] , но первый коммерческий только в 1976. В общей сложности 14 реакторов были построены на шести объектах с 1976 по 1988 годы. Все они сконфигурированы с двумя реакторами в одном здании. Каждый реактор имеет расчетную тепловую мощность 1500 МВт, управляя турбогенератором в 660 МВт. Различные станции AGR производят на выходе в диапазоне от 555 МВт до 670 МВт, некоторые из них работают ниже проектной мощности из-за эксплуатационных ограничений [2] . Все они используют топливо Westinghouse [3] .

Содержание

  • 1 Устройство
  • 2 Характеристики AGR
  • 3 История
  • 4 AGR реакторы Великобритании
  • 5 Примечания
  • 6 Ссылки

Устройство [ | ]

  1. Charge tubes
  2. Control rods
  3. Graphite moderator
  4. Fuel assemblies
  5. Concrete pressure vessel and radiation shielding
  6. Gas circulator
  7. Water
  8. Water circulator
  9. Heat exchanger
  10. Steam

Конструкция AGR такова, что пар, полученный при работе реактора, такой же, как и на традиционных угольных электростанциях, поэтому AGR может использовать те же турбогенераторы. Средняя температура теплоносителя на выходе из реактора 648 °C. Чтобы получить эти высокие температуры, но при этом обеспечить полезный срок службы графита (графит окисляется легко в CO2 при высокой температуре), рециркулирующий поток теплоносителя при более низкой температуре на выходе из котла в 278 °C используется для охлаждения графита, гарантируя, что температура графитового сердечника не слишком сильно отличается от температуры, наблюдаемой на станции Магнокс. Температура и давление на выходе парогенератора составляли 170 бар и 543 °C.

В качестве топлива используются гранулы диоксида урана, обогащённого до 2,5-3,5 %, в ТВЭЛах из нержавеющей стали [4] . Первоначальной концепцией дизайна AGR было использование покрытия на основе бериллия. Когда это оказалось непригодным из-за его хрупкости [5] , уровень обогащения топлива был повышен, чтобы компенсировать высокий уровень потерь нейтронов в оболочке из нержавеющей стали. Это значительно увеличило стоимость электроэнергии, производимой AGR. Теплоноситель циркулирует через сердечник, достигая 640 °C (1,184 °F) и давлении около 40 бар, а затем проходит через узлы бойлера (парогенератора) вне активной зоны, но все еще находится внутри стального баллона, сосуда высокого давления. Управляющие стержни проникают в графитовый замедлитель, а вторичная система включает в себя впрыскивание азота в теплоноситель для снижения температуры в реакторе. Система третичного останова, которая работает путем впрыскивания борных шариков в реактор, включается в случае сброса давления в реакторе при недостаточном опускании управляющих стержней. Это означало бы, что давление азота нельзя поддерживать. [6] [7]

Читать еще:  Что сделать если на двигатели просела гильза

AGR был спроектирован так, чтобы иметь высокий кпд — около 41%, что лучше, чем у водо-водяных реакторов, которые имеют типичный термический КПД 34%. Это связано с более высокой температурой выхода теплоносителя около 640 °C (1,184 °F), типичной для газового теплоносителя, по сравнению с примерно 325 °C (617 °F) для PWR. Однако ядро реактора должно быть больше при одинаковой выходной мощности, а коэффициент выгорания топлива при высвобождении ниже, поэтому топливо используется менее эффективно, что является платой за высокий КПД. [8]

Подобно реакторам Магнокс, CANDU и РБМК, и в отличие от водо-водяных реакторов, AGR предназначены для заправки топливом без остановки самого реактора. Это было важным аргументом при выборе в пользу AGR по сравнению с другими типами реакторов, а в 1965 году разрешила Центральному управлению электроэнергетики (CEGB) и правительству утверждать, что AGR будет производить электроэнергию дешевле, чем лучшие угольные ТЭЦ. Однако проблемы с вибрацией топливных сборок возникли во время дозаправки на полной нагрузке при полной мощности, поэтому в 1988 году правительством был запрещен такой вид заправки до середины 1990-х годов, когда дальнейшие испытания привели к тому, что топливный стержень застрял в активной зоне реактора. Только дозаправка при частичной нагрузке или при выключении реактора теперь выполняется в AGR. [9]

В предварительно напряженном бетонном сосуде высокого давления содержится ядро реактора и котлы. Чтобы свести к минимуму количество проникновений в сосуд (и, следовательно, уменьшить количество возможных мест утечек), котлы имеют сквозную конструкцию, где всё кипячение и перегрев осуществляются внутри труб котла. Это требует использования ультрачистой воды для минимизации образования солей в испарителе и последующих проблем с коррозией.

AGR была представлена как превосходная британская альтернатива американским проектам с легкими водными реакторами. Это подавалось как развитие определенно (если не экономически) успешного дизайна Магнокс и было выбрано из множества конкурирующих британских альтернатив — гелиевого высокотемпературного реактора, SGHWR и реактора-размножителя — также как американские легководные с повышенным давлением и реакторы кипящей воды (PWR и BWR) и канадские проекты CANDU. CEGB провела детальную экономическую оценку конкурирующих проектов и пришла к выводу, что предлагаемая AGR для Дандженесс B будет генерировать самое дешевое электричество, дешевле любого конкурирующего проекта и лучших угольных станций.

Характеристики AGR [ | ]

Могут и будут отличаться от реальных, из технической документации: [10]

ХарактеристикаДандженесс BХартлпулТорнесс
Тепловая мощность реактора, МВт149615001623
Электрическая мощность блока, МВт660660660
КПД блока, %41.641,140,7
Количество топливных каналов в реакторе408324332
Диаметр активной зоны9,5 м9,3 м9,5 м
Высота активной зоны8,3 м8,2 м8,3 м
Среднее давление газа32 бар41 бар41 бар
Средняя температура входящего газа °C320286339
Средняя температура выходящего °C675648639
Общяя подача газа3378 кг/с3623 кг/с4067 кг/с
Используемое топливоUO2UO2UO2
Вес урана в тоннах152129123
Внутренний диаметр баллона (сосуда) высокого давления20 м13,1 м20,3 м
Высота балона17,7 м18,3 м21,9 м
Количество газовых нагнетателей488
Турбин высокого давления111
Турбин среднего давления222
Турбин низкого давления664
Число подогревателей воды444

История [ | ]

Были большие надежды на дизайн AGR. [11] Вскоре была развернута амбициозная программа строительства пяти двух-реакторных станций, Дандженесс B, Хинкли-Пойнт B, Хантерстон B, Хартлпул и Хейшем, и также предполагались заказы строительства в других странах. Однако конструкция AGR оказалась слишком сложной для постройки вне страны и сложной для строительства на месте. Начавщиеся в то время проблемы с работниками и профсоюзами осложняли ситуацию. Ведущая станция Дандженесс B была заказана в 1965 году с заданной датой завершения 1970 года. После проблем с почти каждым аспектом конструкции реактора она наконец начала производить электричество в 1983 году, опоздав на 13 лет. [11] Следующие конструкции реактора на Хинкли-Пойнт B и Хантерстон B были значительно улучшены от оригинальной конструкции и были введены в эксплуатацию ранее чем Дандженесс. Следующий проект AGR в Хейшем и Хартлпул стремился снизить общую стоимость проектирования за счет сокращения площади станции и количества вспомогательных систем. Последние два AGR в Торнесс и Хейшем 2 вернулись к модифицированному дизайну Хинкли-Пойнт B и зарекомендовали себя как самые успешные. [12] Бывший советник по экономическим вопросам, Дэвид Хендерсон, описал программу AGR как одну из двух наиболее дорогостоящих ошибок, связанных с финансированием правительством Великобритании, наряду с Конкорд. [13]

Когда правительство начало приватизировать электроэнергетическую отрасль в 1980-х годах, анализ затрат для потенциальных инвесторов показал, что реальные эксплуатационные расходы были занижены на протяжении многих лет. Затраты на вывод из эксплуатации были особенно недооценены. Эти неопределенности привели к тому, что атомные станции были исключены из приватизации в то время. [11]

В октябре 2016 года было объявлено, что супер-шарнирные управляющие стержни будут установлены в Хантерстоне Б и Хинкли-Пойнте Б из-за опасений относительно стабильности графитовых сердечников реактора. Управление по ядерному регулированию (ONR) выразило озабоченность по поводу количества трещин в шпоночных канавках, которые блокируют графитовые кирпичи в ядре. Необычное событие, такое как землетрясение, может дестабилизировать графит, так что обычные стержни управления, закрывающие реактор, не могут быть вставлены. Суперсочелененные управляющие стержни должны вставляться даже в дестабилизированное ядро. [14]

Читать еще:  Электронный измеритель оборотов двигателя

LiveInternetLiveInternet

  • Регистрация
  • Вход

Рубрики

  • Коды двигателей Ауди и Фольксваген от ААА до 9А (14)
  • Двигатели Ауди по модели автомобиля (4)
  • Коды двигателей Volkswagen (2)

Поиск по дневнику

Подписка по e-mail

Статистика

Коды двигателей Ауди Фольксваген AG AGA AGB AGE AGF AGG AGH AGK AGL AGN AGR AGU AGX AGZ AHB AHC AHD AHF AHH AHK AHL AHS AHU AHZ AJ AJA AJG AJK AJL AJM

Коды двигателей Ауди Фольксваген

Код двигателяМощность, KWМощность, л.с.ОбъемВыпускМоделиСистемы впрыска
AG0320441,608/70-07/76TYP 181
AGA1211652,404/97Audi A6
04/97Audi A6 quattro
08/97Audi A4 quattro
AGB1952652,708/97Audi A4 quattro
AGE1321802,801/97PASSAT«CN.»,»GUS»
04/98Audi A6
04/98Audi A6 quattro
AGF1031404,310/94L 80
AGG085115207/95GOLF
07/95PASSAT
AGH2102854,207/95Audi A8 quattro
AGK0921252,805/96LT
AGL1051432,305/96LT
AGN0921251,809/96AUDI A3
AGR0660901,909/96AUDI A3
AGU1101501,812/96AUDI A3
AGX0550752,507/96LTSDI-DIESEL
AGZ1101502,310/96PASSAT
AHB0420561,707/96CADDY KOMBI-, KASTENW.SDI-DIESEL,
«F..»
AHC2503404,207/96AUDI A8 QUATTRO
AHD0751022,505/96LT
AHF0811101,901/97AUDI A3TDI
AHH0660901,904/97audi a4diesel
AHK2353204,206/96AUDI S6 PLUS QUATTRO
AHL0741001,610/96PASSAT, audi a4
AHS0550751,603/96POLO«J..»
AHU0660901,908/96PASSATTDI-DIESEL
07/96AUDI CABRIO.TDI-DIESEL
07/96AUDI A6TDI-DIESEL
07/96SHARANTDI-DIESEL
07/96GOLF CABRIO.TDI-DIESEL
07/96GOLF, VENTOTDI-DIESEL
07/96GOLF SYNCROTDI-DIESEL
08/96AUDI A4TDI-DIESEL
12/96CADDY KOMBI-, KASTENW.TDI
AHZ2202994,207/96AUDI A8 QUATTRO
AJ0370501,608/74-12/80TYP 1«J..»
AJA0550752,404/97TRANSPORTERDIESEL
AJG1201632,404/97Audi A6, Audi A6 quattro
08/97Audi A4 quattro
AJK1692302,703/98Audi A6
03/98Audi A6 quattro
AJL1321801,808/97Audi A4 quattro
11/97Audi A6
11/97Audi A6 quattro
AJM0851151,908/97Audi A4 quattrotdi-diesel
01/98Audi A6tdi-diesel

Взаимозаменяемость двигателей Ауди Фольксваген Совместимость

двигатель agr характеристики:

Сапаров

Сапаров — тюркская фамилия, образованная от мужского личного имени Сапар. Оно произошло от арабского мужского имени Сафар, что в переводе с арабского означае.

Институт исконных языков Финляндии

Институт исконных языков Финляндии — исследовательский центр при Министерстве образования и культуры Финляндии, занимающийся вопросами изучения и кодификации.

Министерство ирригации Сирии

Министерство ирригации Сирии несет ответственность за составление водной политики государства. Оно было создано в 1982 году в качестве замены Министерству пл.

Таль-Мармутье

Таль-Мармутье — коммуна на северо-востоке Франции в регионе Гранд-Эст, департамент Нижний Рейн, округ Саверн, кантон Саверн. До марта 2015 года коммуна админ.

Биопсия

Биопсия — метод исследования, при котором проводится прижизненный забор клеток или тканей из организма с диагностической или исследовательской целью. Биопсия.

Фильтр с конечной импульсной характеристикой

Фильтр с конечной импульсной характеристикой или FIR-фильтр — один из видов линейных цифровых фильтров, характерной особенностью которого является ограниченн.

LyN engine

Движок является последователем движка Jade этой же компании; при разработке движка уделялось внимание эффективной работе как со старым, так и с современным о.

SCX engine

SCX engine — игровой движок, разработанный для внутреннего использования компанией Ubisoft. Первой игрой на его базе стал стелс-экшен Tom Clancys Splinter Ce.

HPL Engine

HPL Engine — игровой движок, разработанный компанией Frictional Games специально для использования в собственных проектах. Характерной частью движка является.

Infernal Engine

Infernal Engine — игровой движок, разработанный и поддерживаемый американской компанией Terminal Reality. Первой игрой на базе данной технологии стал экшн Bl.

IW Engine

IW Engine — игровой движок, разработанный американской компанией Infinity Ward для использования в собственных разработках; также используется издательской к.

RE Engine

RE Engine — игровой движок, созданный для «всех игр Capcom следующего поколения». Используется компанией Capcom для своих внутренних проектов. Первой игрой н.

Little Devil Inside

М-107 (двигатель)

М-107 — советский авиационный поршневой двигатель конструкции В. Я. Климова. Являлся дальнейшим развитием двигателя М-105 с форсированием по оборотам. Разраб.

Разнос двигателя

Разнос двигателя — нештатный режим работы электродвигателя или дизеля, а также в некоторых случаях газотурбинного двигателя, при котором происходит неуправля.

Сикандар Адил-шах

Родился в 1668 году. Сын и преемник Али Адил-шаха II? — 1672, султана Биджапура 1656 — 1672. В ноябре 1672 года после смерти своего отца Али Адил-шаха Сиканд.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector