0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое дармовой двигатель

Турбонагнетатель. Устройство и принцип работы

Турбонагнетатель. Устройство и принцип работы

Что такое турбонагнетатель или турбокомпрессор? Фактически это компрессор, призванный нагнетать воздух, но его привод осуществляется не от коленчатого вала через ременную передачу, а используя энергию потока отработавших газов.

В данной статье рассмотрим устройство и принцип работы турбонагнетателей.

Принцип работы турбонагнетателя

Работа турбонагнетателя предельно проста. Выхлопные газы, проходя в турбину, приводят во вращение ротор. Колесо центробежного компрессора жестко закреплено на оси ротора и вращается с той же скоростью.

Чем большей энергией обладают выхлопные газы, тем быстрее вращаются колеса турбины и, соответственно, компрессоры. Чем больше воздуха подается в цилиндры, тем больше топлива может сгореть, тем выше мощность. При этом частота вращения турбокомпрессора может быть очень и очень высокой – 150 тыс. об/мин.

Большинство турбонагнетателей имеют механизм изменения геометрии турбины. Дополнительное кольцо с управляемыми направляющими лопатками позволяет поддерживать поток выхлопных газов не только постоянным, но и управлять им. Так, на низких оборотах, когда поток невелик, поперечное сечение турбины уменьшается, что увеличивает скорость газов, поступающих на колесо, повышая ее мощность. На высоких же оборотах лопасти полностью открывают вход газам, увеличивая пропускную способность турбины.

Такое гибкое управление позволяет не только расширить диапазон эффективной работы турбонагнетателя, но и существенно снизить потребление топлива и вредные выбросы. Турбонагнетатель с изменяемой геометрией турбины обеспечивает эффективную работу не только на высоких, но и на низких оборотах двигателя.

Плюсы и минусы турбонагнетателей

Преимущество в том, что, в отличие от механических нагнетателей, приводимых от коленчатого вала и отнимающих мощность непосредственно у двигателя, турбонагнетатели используют фактически дармовую энергию, которая в обычном двигателе попросту выбрасывается из выхлопной трубы. Это делает турбонагнетатели более эффективными, нежели механические.

Одновременно турбонаддув позволяет получить высокие мощности – свыше 300 л. с. с одного литра объема. Двигатель с турбонагнетателем имеет мощность на 40% выше, чем без него. Как ни странно, но турбированные двигатели более экономичны. Низкое КПД двигателя внутреннего сгорание обусловливается потерями на трение и низкой тепловой эффективностью. С увеличением размеров мотора эти потери резко увеличиваются. Небольшие турбированные моторы в этой связи более предпочтительны.

Турбонагнетатели несовершенны и обладают рядом проблемных мест. Самое заметное – эффект «турбоямы». Отсутствие механической связи между компрессором и двигателем приводит к несоответствию между требуемой мощностью, задаваемой водителем педалью ‘газа’ и производительностью компрессора.

Недостатком турбокомпрессоров считается невысокая эффективность работы на малых оборотах двигателя. Но и эта проблема находит свои решения. Турбины с переменной геометрией, установка двух и более турбин, работающих параллельно (системы bi-turbo), позволяют повысить отдачу системы.

Турбокомпрессоры имеют те же недостатки, что и центробежные нагнетатели. Для эффективной работы они должны вращаться с очень высокой скоростью. Плюс высокий нагрев (порядка 1000 °С), сложности в смазке, отводе тепла. Повышенные температуры сказываются не только на смазке деталей турбонагнетателя, но и на нагнетаемом воздухе: его охлаждение оказывается острым вопросом. Для эффективного охлаждения интеркулер рассчитывается и подбирается с особой тщательностью.

Как и в любом нагнетательном устройстве, в турбонагнетателе необходим клапан, спускающий излишнее давление. С турбиной еще сложнее. Здесь нужно не только следить за давлением наддува, но и перепускать выхлопные газы, чтобы снизить избыток давления в выпускном коллекторе, и исключить чрезмерно высокую скорость вращения ротора на высоких оборотах двигателя.

Нужно сказать, что после работы на повышенных оборотах турбина должна «отдохнуть» на холостых оборотах. Поработав так несколько минут, турбина остывает, и ее можно остановить. Устройство, именуемое турботаймером, позволяет при выключении зажигания глушить двигатель через время, которое можно запрограммировать, либо оно определяется автоматически, исходя из температуры мотора. В отсутствие такого прибора водитель должен обеспечить «режим остывания» самостоятельно.

Механические нагнетатели или турбонагнетатели?

Сравнивая нагнетатели с механическим приводом и турбоприводом, надо отметить один факт. Массовое производство позволяет автомобильной промышленности существенно снижать себестоимость моторов с турбонагнетателями. Использование же в тюнинге сопряжено с немалыми трудностями, прежде всего в установке.

Аналогичные центробежные механические нагнетатели более удобны и просты в установке и в эксплуатации. Однако достоинства турбонагнетателей приводят к тому, что их чаще используют при тюнинге двигателя. Существуют готовые комплекты для различных авто.

В заключение следует сказать: турбонагнетатели несомненно интересны, не зря большинство спортивных машин оснащаются турбинами. Высокий КПД и прочие положительные факторы делают их привлекательными как для обычных автомобилей, так и для тюнинга.

Почти вечный двигатель

Для математика выражение «почти вечный» не представляет ничего заманчивого. Движение может быть либо вечным, либо невечным; «почти вечное» значит, в сущности, невечное.

Но для практической жизни это не так. Многие, вероятно, были бы вполне удовлетворены, если бы получили в свое распоряжение не совсем вечный двигатель, а «почти вечный», способный двигаться хотя бы, например, тысячу лет. Жизнь человека коротка, и тысячелетие для нас то же, что вечность. Люди практической складки, наверное, сочли бы, что проблема вечного двигателя решена и что больше не над чем ломать голову.

Таких людей можно обрадовать сообщением, что 1000‑летний двигатель уже изобретен; каждый может при известной затрате средств иметь у себя подобие такого вечного двигателя. Патент на это изобретение никем не взят, и секрета он не представляет. Устройство прибора, придуманного проф. Стреттом в 1903 году и обычно называемого «радиевыми часами», весьма несложно (см. рис. 100).

Рисунок 100. Радиевые часы с «почти вечным» заводом на 1600 лет.

Читать еще:  Двигатель вибрирует на определенных оборотах

Внутри стеклянной банки, из которой выкачан воздух, подвешена на кварцевой нити В (не проводящей электричества) небольшая стеклянная трубочка А, заключающая в себе несколько тысячных долей грамма радиевой соли. К концу трубочки подвешены, как в электроскопе, два золотых листочка. Радий, как известно, испускает лучи трех родов: лучи альфа, бета и гамма. В данном случае основную роль играют легко проходящие через стекло бета‑лучи, которые состоят из потока отрицательно заряженных частиц (электронов). Разбрасываемые радием во все стороны частицы уносят с собой отрицательный заряд, а потому сама трубка с радием постепенно заряжается положительно. Этот положительный заряд переходит на золотые листочки и заставляет их раздвигаться.

Раздвинувшись, листочки прикасаются к стенкам банки, теряют здесь свой заряд (в соответствующих местах стенок приклеены полоски фольги, по которым электричество уходит) и вновь смыкаются. Вскоре накопляется новый заряд, листочки вновь расходятся, опять отдают заряд стенкам и смыкаются, чтобы вновь наэлектризоваться. Каждые две‑три минуты совершается одно колебание золотых листочков, с регулярностью часового маятника, — отсюда и название «радиевые часы». Так продлится целые годы, десятилетия, столетия, пока будет продолжаться испускание радием его лучей.

Читатель видит, конечно, что перед ним отнюдь не «вечный», а только даровой двигатель.

Долго ли радий испускает свои лучи? Установлено, что уже через 1600 лет способность радия испускать лучи ослабнет вдвое. Поэтому радиевые часы будут идти безостановочно не менее тысячи лет, постепенно уменьшая лишь частоту своих колебаний, вследствие ослабления электрического заряда. Если бы в эпоху начала Руси устроены были такие радиевые часы, они действовали бы еще в наше время!

Можно ли использовать этот даровой двигатель для каких‑нибудь практических целей? К сожалению, нет. Мощность этого двигателя, т. е. количество работы, совершаемой им в секунду, так ничтожна, что никакой механизм не может приводиться им в действие. Чтобы достичь сколько‑нибудь осязательных результатов, необходимо располагать гораздо большим запасом радия. Если вспомним, что радий — чрезвычайно редкий и дорогой элемент, то согласимся, что даровой двигатель подобного рода оказался бы чересчур разорительным.

Почти вечный двигатель

Для математика выражение «почти вечный» не представляет ничего заманчивого. Движение может быть либо вечным, либо невечным; «почти вечное» значит, в сущности, невечное.

Но для практической жизни это не так. Многие, вероятно, были бы вполне удовлетворены, если бы получили в свое распоряжение не совсем вечный двигатель, а «почти вечный», способный двигаться хотя бы, например, тысячу лет. Жизнь человека коротка, и тысячелетие для нас то же, что вечность. Люди практической складки, наверное, сочли бы, что проблема вечного двигателя решена и что больше не над чем ломать голову.

Таких людей можно обрадовать сообщением, что 1000‑летний двигатель уже изобретен; каждый может при известной затрате средств иметь у себя подобие такого вечного двигателя. Патент на это изобретение никем не взят, и секрета он не представляет. Устройство прибора, придуманного проф. Стреттом в 1903 году и обычно называемого «радиевыми часами», весьма несложно (см. рис. 100).

Рисунок 100. Радиевые часы с «почти вечным» заводом на 1600 лет.

Внутри стеклянной банки, из которой выкачан воздух, подвешена на кварцевой нити B (не проводящей электричества) небольшая стеклянная трубочка A, заключающая в себе несколько тысячных долей грамма радиевой соли. К концу трубочки подвешены, как в электроскопе, два золотых листочка. Радий, как известно, испускает лучи трех родов: лучи альфа, бета и гамма. В данном случае основную роль играют легко проходящие через стекло бета‑лучи, которые состоят из потока отрицательно заряженных частиц (электронов). Разбрасываемые радием во все стороны частицы уносят с собой отрицательный заряд, а потому сама трубка с радием постепенно заряжается положительно. Этот положительный заряд переходит на золотые листочки и заставляет их раздвигаться.

Раздвинувшись, листочки прикасаются к стенкам банки, теряют здесь свой заряд (в соответствующих местах стенок приклеены полоски фольги, по которым электричество уходит) и вновь смыкаются. Вскоре накопляется новый заряд, листочки вновь расходятся, опять отдают заряд стенкам и смыкаются, чтобы вновь наэлектризоваться. Каждые две‑три минуты совершается одно колебание золотых листочков, с регулярностью часового маятника, – отсюда и название «радиевые часы». Так продлится целые годы, десятилетия, столетия, пока будет продолжаться испускание радием его лучей.

Читатель видит, конечно, что перед ним отнюдь не «вечный», а только даровой двигатель.

Долго ли радий испускает свои лучи? Установлено, что уже через 1600 лет способность радия испускать лучи ослабнет вдвое. Поэтому радиевые часы будут идти безостановочно не менее тысячи лет, постепенно уменьшая лишь частоту своих колебаний, вследствие ослабления электрического заряда. Если бы в эпоху начала Руси устроены были такие радиевые часы, они действовали бы еще в наше время!

Можно ли использовать этот даровой двигатель для каких‑нибудь практических целей? К сожалению, нет. Мощность этого двигателя, т. е. количество работы, совершаемой им в секунду, так ничтожна, что никакой механизм не может приводиться им в действие. Чтобы достичь сколько‑нибудь осязательных результатов, необходимо располагать гораздо большим запасом радия. Если вспомним, что радий – чрезвычайно редкий и дорогой элемент, то согласимся, что даровой двигатель подобного рода оказался бы чересчур разорительным.

Птицы на проводах

Все знают, как опасно для человека прикосновение к электрическим проводам трамвая или высоковольтной сети, когда они под напряжением. Такое прикосновение смертельно для человека и для крупных животных. Известно много случаев, когда лошадь или корову убивает током, если их задевает оборвавшийся провод.

Читать еще:  Что такое кантракный двигатель

Чем же объяснить то, что птицы спокойно и совершенно безнаказанно усаживаются на провода? Подобные картинки можно часто наблюдать в городах (рис. 101).

Чтобы понять причину подобных противоречий, примем во внимание следующее: тело сидящей на проводе птицы представляет собой как бы ответвление цепи, сопротивление которого по сравнению с другой ветвью (короткого участка между ногами птицы) огромно. Поэтому сила тока в этой ветви (в теле птицы) ничтожна и безвредна. Но если бы птица, сидя на проводе, коснулась столба крылом, хвостом или клювом – вообще каким‑нибудь образом соединилась с землей, – она была бы мгновенно убита током, который устремился бы через ее тело в землю. Это нередко и наблюдается.

Птицы имеют повадку, усевшись на кронштейн высоковольтной передачи, чистить клюв о токонесущий провод. Так как кронштейн не изолирован от земли, то прикосновение заземленной птицы к проводу, находящемуся под током, неизбежно кончается гибелью. Насколько подобные случаи многочисленны, видно хотя бы из того, что, например, в Германии в свое время принимали особые меры, чтобы оградить птиц от гибели. С этой целью на кронштейнах линий высоковольтной передачи устанавливали изолированные насесты, на которых птица могла бы не только сидеть, но и безнаказанно чистить о провод свой клюв (рис. 102). В других случаях опасные места делают с помощью особых приспособлений недоступными для прикосновения птиц.

Рисунок 101. Птицы безнаказанно садятся на электрические провода. Почему?

Рисунок 102. Изолированный насест для птиц на кронштейне высоковольтной передачи.

При том широком развитии, которое получает в СССР растущая сеть высоковольтных передач, нам следует в интересах лесоводства и земледелия позаботиться об ограждении пернатого населения от истребления электрическим током.

При свете молнии

Случалось ли вам во время грозы наблюдать картину оживленной городской улицы при кратких вспышках молнии? Вы, конечно, заметили при этом одну странную особенность: улица, только что полная движения, кажется в такие мгновения словно застывшей. Лошади останавливаются в напряженных позах, держа ноги в воздухе; экипажи также неподвижны: отчетливо видна каждая спица колеса…

Причина кажущейся неподвижности заключается в ничтожной продолжительности молнии. Молния, как и всякая электрическая искра, длится чрезвычайно малый промежуток времени – настолько малый, что его даже нельзя измерить обычными средствами. При помощи косвенных приемов удалось, однако, установить, что молния длится иногда лишь тысячные доли секунды[57]. За столь короткие промежутки времени мало что успевает переместиться заметным для глаза образом. Неудивительно поэтому, что улица, полная разнообразных движений, представляется при свете молнии совершенно неподвижной: ведь мы замечаем на ней только то, что длится тысячные доли секунды! Каждая спица в колесах быстро движущегося экипажа успевает переместиться лишь на ничтожную долю миллиметра; для глаза это все равно, что полная неподвижность.

Сколько стоит молния?

В ту отдаленную эпоху, когда молнии приписывали «богам», подобный вопрос звучал бы кощунственно. Но в наши дни, когда электрическая энергия превратилась в товар, который измеряют и оценивают, как и всякий другой, вопрос о том, какова стоимость молнии, вовсе но должен казаться бессмысленным. Задача состоит в том, чтобы учесть электрическую энергию, потребную для грозового разряда, и оценить ее хотя бы по таксе электрического освещения.

Вот расчет. Потенциал грозового разряда равен примерно 50 миллионам вольт. Максимальная сила тока оценивается при этом в 200 тысяч ампер (ее определяют, заметим кстати, по степени намагничивания стального стержня тем током, который пробегает в его обмотке при ударе молнии в громоотвод). Мощность в ваттах получим перемножением числа вольт на число ампер; при этом, однако, надо учесть то, что, пока длится разряд, потенциал падает до нуля; поэтому при вычислении мощности разряда надо взять средний потенциал, иначе говоря – половину начального напряжения. Имеем:

мощность разряда = (50 000 000 × 200 000) / 2,

т. о. 5 000 000 000 000 ватт, или 5 миллиардов киловатт.

Получив столь внушительный ряд нулей, естественно ожидаешь, что и денежная стоимость молнии выражается огромной цифрой. Однако, чтобы получить энергию в киловатт‑часах (ту, которая фигурирует в счетах за электрическое освещение), необходимо учесть время. Отдача столь значительной мощности длится около тысячной доли секунды. За это время израсходуется 5 000 000 / (3600 × 1000)

1400 киловатт‑часов. Один киловатт‑час по тарифу обходится потребителю электрического тока в 4 копейки. Отсюда нетрудно вычислить денежную стоимость молнии;

1400 × 4 = 5600 коп. = 56 рублей.

Результат поразительный: молния, энергия которой раз в сто больше энергии выстрела тяжелого артиллерийского орудия, должна была бы стоить, по тарифу электростанции, всего лишь 56 рублей!

Интересно, насколько современная электротехника приблизилась к возможности воспроизвести молнию. В лабораториях достигнуто напряжение до 10 миллионов вольт и получена искра длиною в 15 м. Дистанция не чрезмерно значительная…

Что такое ГТД на автомобиль и двигатель

Начнем с того, что в профессиональных кругах можно часто услышать такое выражение, как ГТД на двигатель или кузов, а также автомобиль с ГТД. Сразу отметим, что в этом случае нужно точно понимать, о чем идет речь. Другими словами, необходимо знать, что такое ГТД двигатель и что представляет собой ГТД на двигатель, кузов или автомобиль. Давайте разбираться более подробно.

ГТД на двигатель: что нужно знать

Итак, понятие ГТД фигурирует достаточно часто, при этом не все знают, что это такое. Начнем с того, что ГТД означает Грузовая Таможенная Декларация. Если иначе, это документ, который подается в соответствующие органы и содержит необходимые сведения о товаре, который перемещается через границу. Также указываются сведения о лице, которое перемещает данный товар.

Читать еще:  Ваз 2114 греется двигатель на холостых причины

Благодаря такой декларации работники таможни могут контролировать оборот ввозимых и вывозимых товаров. При этом двигатель также является товаром, а ГТД на двигатель оформляется в том случае, если производится импорт или экспорт ДВС.

Также важно понимать, что ГТД на двигатель нужно в дальнейшем предоставить в органы Госавтоинспекции в рамках оформления замены двигателя на автомобиле (свап мотора или замена на аналогичный контрактный двигатель).

Также нужно учитывать, что кроме ГТД к двигателю должны при продаже прилагаться и другие сопроводительные документы (договор купли-продажи мотора, копии документов о том, что продавец зарегистрирован в качестве ИП и т.д.) Только наличие всех документов позволит зарегистрировать новый мотор.

В декларации (ГТД) на ДВС указывается номер двигателя, который нужен при регистрации агрегата, также подтверждается легальность ввоза такого двигателя. Сопроводительные документы, соответственно, укажут на законность сделки.

На деле это автомобиль, который разобран, кузов может быть распилен на две части, что позволяет завозить машину не в качестве авто, а в виде запчастей. После пересечения границы ТС снова собирают, кузов могут заварить и затем продать такой транспорт целиком. Еще одним вариантом становится продажа по отдельности кузова, двигателя и т.д.

В норме, даже если машина завозилась по запчастям, на кузов и двигатель должна быть оформлена ГТД. Если таких документов нет, в дальнейшем возникнут серьезные проблемы при попытке провести законную регистрацию ДВС или кузова. Данную особенность нужно обязательно учитывать, а при покупке автомобиля б/у нужно проверять, чтобы номер двигателя совпадал с ПТС и т.д.

ГТД в качестве силового агрегата на автомобиль

Разобравшись с понятием ГТД в роли таможенного документа, теперь давайте посмотрим, что такое ГТД в качестве двигателя автомобиля. Сразу отметим, в этом случае ГТД буквально означает газотурбинный двигатель.

Среди различных типов двигателей автомобиля и агрегатов на другой технике, как правило, фигурирует поршневой мотор (дизель, бензин) или его модификации (например, роторно-поршневой двигатель Ванкеля). Сегодня такие агрегаты наиболее распространены и встречаются повсеместно. При этом многие забывают о газотурбинных двигателях (ГТД), особенно если речь заходит об автомобилях.

Результатом совместных усилий известного производителя Боинг и компании Kenworth стал грузовой тягач, который получил газотурбинный агрегат мощностью чуть более 170 л.с. Двигатель получился компактным и легким, при этом без особых усилий разгонял тяжелую машину. Однако в дальнейшем работы над проектом были свернуты.

Далее в 60-х появился Big Red Ford, который получил газовую турбину на 600 л.с. Затем был выпущен автобус с аналогичным мотором и еще ряд прототипов. Не так давно (в 2010 г.) немцы из Porsche представили концепт автомобиля с газовой турбиной. Согласно заявлениям производителя, разгон до «сотни» занимает всего 3.4 сек.

Как работает газотурбинный двигатель

Если не сильно вдаваться в подробности, ГТД состоит из большой камеры сгорания, куда нагнетается воздух под давлением. Давление воздуха создает компрессор. В указанную камеру сгорания также реализована подача горючего газа или жидкого топлива.

Далее топливо и воздух сгорают, происходит нагрев и высвобождается энергия, которая вращает турбину. От турбины часть энергии отдается компрессору для сжатия и подачи воздуха, а другая часть может отдаваться на электрогенератор, винт или же превращаться в реактивную струю.

Если сравнить ГТД и привычный поршневой ДВС, газотурбинные двигатели имеют ряд определенных преимуществ. Прежде всего, следует отметить плавную работу такого двигателя, его простую конструкцию, небольшой вес и размеры. При этом агрегат выдает большую мощность.

Затрагивая вопрос газовых турбин, еще стоит отметить то, что этот двигатель не нуждается в жидкостной системе охлаждения, также нет привычной системы зажигания, которая должна постоянно подавать искру для воспламенения топливно-воздушного заряда. При этом газотурбинные двигатели могут работать на дешевом горючем и т.д.

Что касается дальнейших перспектив, пока такой двигатель нельзя назвать массовым в автоиндустрии, однако попытки установить его на грузовой или легковой автомобиль все же предпринимаются. Энтузиасты даже устанавливали агрегаты данного типа на мотоциклы.

Другими словами, электромобили пока еще не способны заставить человечество полностью отказаться от ДВС, при этом сам двигатель внутреннего сгорания также не станет намного более производительным и экологичным, чем он есть сейчас. Получается, с учетом этих особенностей у ГТД также есть шансы в дальнейшем занять свою нишу в автомобилестроении рядом с водородными двигателями, агрегатами, которые работают на альтернативных источниках энергии и т.п.

Основные преимущества и недостатки капитального ремонта двигателя по сравнению с установкой контрактного мотора. На каком варианте лучше остановиться.

Номер двигателя в ПТС не совпадает, проблемы при постановке авто на учет. Как правильно делать и регистрировать замену мотора и номера ДВС. Полезные советы.

Контрактный бензиновый или дизельный двигатель: преимущества и недостатки по сравнению с капитальным ремонтом имеющегося двигателя. Как снизить риски.

Что означает понятие «свап двигателя». Для чего делается свап мотора, что нужно знать перед началом таких доработок, преимущества и недостатки свапа ДВС.

Как заменить двигатель автомобиля на более мощный мотор: своп двигателя и что нужно знать о такой замене. Регистрация нового двигателя после замены, нюансы.

Увеличение мощности атмосферного и турбированного двигателя. Глубокий или поверхностный тюнинг ДВС. Модификация впускной и выпускной системы. Прошивка ЭБУ.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector