0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое динамическое торможение асинхронного двигателя применение

Что такое динамическое торможение асинхронного двигателя применение

9zip.ru Инструкции Динамическое торможение асинхронных двигателей

Снижение потерь в переходных режимах возможно за счет уменьшения запаса кинетической энергии системы электродвигатель — рабочая машина и выбора рационального метода торможения. Часть кинетической энергии системы приходится на долю ротора двигателя. Поэтому для подобных приводов должны применяться двигатели специальных конструктивных типов, обладающие малыми моментами инерции роторов и специальными характеристиками, обеспечивающими минимальные потери и минимальное время при пуске и торможении.

По технологическим особенностям раскатки и транспортировки металла на металлургических заводах применяются три вида торможения электродвигателей для индивидуального привода роликов рольгангов: противотоком, динамическое и самоторможение или их сочетание.

Динамическое торможение предпочтительно в тех случаях, когда необходимо выдержать определенное время торможения, заданное технологическим процессом раскатки или транспортировки металла. После окончания процесса торможения двигатель не разворачивается в обратную сторону. Кроме того, что иногда не менее важно, отказ от торможения противовключением и замена его динамическим торможением позволяют повысить число пусков в час почти в 2 раза. Это объясняется меньшим нагревом обмотки статора в режиме динамического торможения.

При динамическом торможении обмотка статора двигателя отключается от сети переменного трехфазного тока и подключается к источнику постоянного тока, двигатель при этом работает в режиме генератора, преобразуя кинетическую энергию, запасенную во вращающихся частях, в электрическую энергию потерь в обмотке ротора.

При изменении постоянного тока в статоре двигателя с ненасыщенной магнитной цепью момент изменяется в квадратичной зависимости от тока. В насыщенной машине те же изменения тока вызывают меньшие изменения момента.

В реальных условиях магнитная цепь двигателя при работе в режиме динамического торможения с малыми скольжениями насыщена, а при больших скольжениях не насыщена, поэтому изменение постоянного тока вызывает сильные изменения момента в области больших скольжений и относительно небольшие изменения в области малых скольжений.

С ростом тока возбуждения несколько увеличивается в связи с увеличением насыщения магнитной цени двигателя и уменьшением индуктивного сопротивления намагничивания.

Таким образом, расчет механических характеристик асинхронных двигателей описанным методом сводится к следующему.

Задаемся током возбуждения и по указанным выше формулам проводим расчет механической характеристики. Если она окажется неудовлетворительной, то задаемся новым значением тока возбуждения и производим расчет снова. Такой метод расчета весьма трудоемок и не дает наглядного представления об изменении характеристик при изменении тока возбуждения.

В основу другого метода расчета механических характеристик положены известные соотношения, описывающие работу асинхронного двигателя в режиме динамического торможения.

Магнитный поток двигателя при динамическом торможении сильно зависит от частоты вращения, вследствие этого расчет механических характеристик без учета насыщения может привести к недопустимым ошибкам.

Расчет характеристик динамического торможения часто производится без учета переходных процессов, связанных с быстрым изменением скольжения двигателей. В дальнейшем механические характеристики динамического торможения, рассчитанные или снятые опытным путем по точкам при закончившихся переходных процессах, будем называть статическими (или стационарными) характеристиками динамического торможения.

В работах ряда авторов разработаны аналитические методы исследования переходных процессов машин переменного тока и, в частности, методы расчета процессов пуска асинхронных двигателей. Однако до сих пор не учтены особенности конструкции и эксплуатации трехфазных асинхронных двигателей с короткозамкнутым ротором, предназначенных для индивидуального привода роликов рольгангов.

Известно, что в некоторых случаях электромеханические и электромагнитные постоянные времени соизмеримы. Так как ускорение ротора оказывает воздействие на изменение во времени токов и потокосцеплений, то уравнения Кирхгофа, электромагнитного момента и движения ротора должны исследоваться совместно.

Электромеханические характеристики асинхронных двигателей, определенные с учетом переходных электромагнитных процессов, отличаются от характеристик, снятых опытным путем или рассчитанных по точкам при закончившихся переходных электромагнитных процессах. Характеристики, определенные с учетом переходных электромагнитных процессов, будем называть динамическими (действительными) характеристиками динамического торможения в отличие от статических характеристик динамического торможения.

При очень быстром изменении частоты вращения ротора графики изменения тока и вращающего момента, соответствующие стационарным режимам работы, становятся недействительными не только из-за электромагнитных переходных процессов, но также из-за быстрого изменения частоты вращения ротора. При быстро протекающем пуске асинхронных двигателей вращающие моменты могут оказаться значительно меньше моментов, определенных в стационарном режиме. Особенно сильное снижение наблюдается у максимального момента. Поэтому анализ динамических характеристик асинхронных двигателей при пуске и торможении с большими ускорениями ротора следует производить с помощью дифференциальных уравнений, описывающих одновременно электромагнитные и механические переходные процессы.

В стационарном режиме каждому скольжению соответствуют строго определенные значения и фазы токов статора и ротора и вполне определенный вращающий момент. Из-за наличия в цепях роторного и статорного токов индуктивностей эти стационарные токи и вращающий момент не могут мгновенно установиться, если происходит чрезвычайно быстрое изменение скольжения, какое происходит, например, у двигателей при пуске, торможении противотоком или при динамическом торможении.

Поэтому и возникают упомянутые выше различия между динамическими и статическими характеристиками.

Одним из важных свойств динамических характеристик является то, что при одинаковом скольжении динамические вращающие моменты оказываются ниже, чем при стационарных режимах. В частности, во время разгона двигатель вообще не развивает максимальный момент статического режима. В то же время в конце процессов пуска и реверса асинхронный двигатель при внезапной нагрузке развивает за счет запасенной энергии большие вращающие моменты, чем в стационарном режиме. Вращающий момент передается на вал полностью лишь в том случае, если ротор удерживается в неподвижном состоянии. В противном случае часть вращающего момента расходуется на ускорение ротора, вследствие чего нагрузке передается значительно меньший момент. Этот момент определяется в первую очередь соотношением моментов инерции ротора двигателя и внешних ускоряемых масс, соединенных с валом двигателя.

Читать еще:  Что такое чипование двигателя автомобиля

Свободными пусковыми токами создаются в основном знакопеременные (колебательные) вращающие моменты, которые накладываются на кривые динамических вращающих моментов. Благодаря этим колебательным моментам возможно кратковременное увеличение вращающего момента до весьма высоких значений. Поэтому знание колебательных моментов важно прежде всего для расчета валов, муфт и редукторов. Однако на изменение частоты вращения и на время пуска эти моменты почти не оказывают влияния, так как их среднее значение равно нулю. В результате их воздействия на ротор асинхронного двигателя осциллограмма изменения частоты вращения имеет характерную ступенчатую форму, которая заметна только в начале пуска. Эти переходные процессы не влияют на уменьшение вращающего момента во время пуска.

Хочешь почитать ещё про инструкции? Вот что наиболее популярно на этой неделе:
Советы по доработкам усилителя Амфитон
Простой генератор звуковой частоты
Самодельная акустическая система

Механические характеристики асинхронного двигателя в тормозных режимах

4.4.1. Режим рекуперативного торможения

Данный режим возникает при превышении частоты вращения ротора относительно синхронной частоты вращения магнитного поля статора ( ). В этих условиях электромагнитный момент двигателя становится отрицательным, а вырабатываемая энергия отдаётся в сеть. Практически этот режим можно получить уменьшив синхронную частоту вращения в работающем двигателе. Из формулы для частоты вращения ВМП ( ) видно, что сделать это можно двумя способами: либо изменением числа пар полюсов в обмотке статора в сторону увеличения , либо уменьшением частоты питающего напряжение . Этот режим применяют для уменьшения частоты вращения перед полной остановкой двигателя в лифтах, либо в тех случаях, когда двигатель работает на активный момент (например, в подъемно-транспортных машинах). Схема включения и механические характеристики двигателя в режиме рекуперативного торможения представлены на рис. 4.8, а, б соответственно.

4.4.2. Режим торможения противовключением

Режим получается, когда активный статический момент больше, чем пусковой либо при изменении чередования фаз на обратное, при этом частота вращения магнитного поля изменяет направление вращения на притивоположное. Данный режим позволяет получать большие моменты, благодаря чему время торможения существенно уменьшается. Если при переключении чередования фаз двигатель включить при скорости близкой к нулю, то двигатель перейдет в двигательный режим работы другого направления вращения. При таком способе торможения в двигателе возникают большие токи, поэтому данный режим применяется для двигателей с ФР и введением дополнительного сопротивления в цепь ротора для ограничения максимального тока двигателя.

аб
Рис. 4.8. Схема включения АД (а) и механические характеристики (б) при рекуперативном торможении
аб
Рис. 4.9. Схема включения АД (а) и механические характеристики (б) при торможении противовключением

В асинхронном двигателе с ФР момент и ток двигателя можно регулировать введением в цепь ротора дополнительного сопротивления. При этом изменяется жесткость механических характеристик в режиме торможения. При торможении вся энергия выделяется на сопротивлении ротора и дополнительном сопротивлении, поэтому этот режим является неэкономичным.

Схема включения и механические характеристики для этого режима представлены на рис. 4.9, а, б соответственно.

аб
Рис. 4.10. Схема включения АД (а) и механические характеристики (б) при динамическом торможении

4.4.3. Динамическое торможение

Этот вид торможения наступает в трехфазном АД при отключении его от сети переменного тока и подключении его к источнику постоянного тока. При этом постоянный ток создаст неподвижное магнитное поле статора. В этих условиях в роторе, вращающемся по инерцией, наводится ЭДС, возникает ток в обмотке ротора, взаимодействие которого с магнитным полем приводит к созданию тормозного момента на валу двигателя. В процессе динамического торможения механическая энергия вращающихся масс электропривода преобразуется в электрическую энергию, которая расходуется на нагрев обмотки ротора и дополнительных резисторов, включенных в цепь ротора. При скорости близкой к нулю, ЭДС становится равной нулю, ток прекращается, и тормозной момент пропадает.

Данный режим применяют для точной остановки двигателя. Постоянный ток преодолевает лишь активное сопротивление обмотки статора, поэтому напряжение постоянного тока, подводимое к обмотке статора при динамическом торможении, должно быть ниже напряжения переменного тока, соответствующего работе двигателя, так, чтобы ток в обмотке статора не превышал номинального значения. Схема включения и механические характеристики динамического торможения показаны на рис. 4.10, а, б.

Что такое динамическое торможение асинхронного двигателя применение

Схемы торможения менее распространены, чем схемы пуска. Действительно, если двигатель не включен, то и тормозить его незачем. Но и без специального торможения двигатель, отключенный от сети, затормозится силами трения. Кроме того, существуют механические, гидравлические и другие тормоза, которые мы здесь не рассматриваем.

Мы остановимся только на схемах электрического торможения. Они очень просты, не требуют изготовления тормозных барабанов и дисков, как в механических тормозах.

Быстро затормозить электродвигатель можно, используя схему реверсивного магнитного пускателя. Конечно, для этого ее нужно несколько переделать. Принцип торможения поясняется рис. 14.9. На рис. 14.9, а электрическая машина работает в двигательном режиме. Магнитное поле вращается с угловой скоростью , а ротор двигателя — с несколько меньшей скоростью в ту же сторону. Поменяем местами два провода, подключающих статор к сети (рис. 14.9, б). Магнитное поле изменит направление вращения. Но массивный ротор будет по инерции вращаться в ту же сторону. Раньше магнитное поле вращало ротор, теперь оно будет его интенсивно тормозить. Если не предпринять каких-либо действий, произойдет реверс двигателя, его ротор начнет вращаться в другую сторону. Поэтому необходимо тщательно следить за скоростью ротора, и в тот момент, когда торможение закончится и скорость будет близка к нулю, машину следует отключить от сети.

Читать еще:  Что такое dnb двигатель

Такой метод торможения называют противовключением, или противотоком.

Для его осуществления нужны два контактора — рабочий и тормозной. Силовая часть схемы представлена на рис. 14.10, а. С ротором двигателя связано специальное реле SR — реле контроля скорости.

Рис. 14.9. Торможение противовключением: а — машина работает в двиг гатёльном режиме; б — магнитное поле реверсируется и тормозит ротор

Его контакты замыкаются, когда ротор двигателя разгоняется примерно до 100 об/мин.

Цепи управления (рис. 14.10, б) напоминают реверсивный магнитный пускатель. Первый контактор КМ1 используют для работы, второй КМ2 — для торможения. В цепь катушки второго контактора включены замыкающие контакты реле контроля скорости SR и размыкающие контакты контактора К М2.

На рис. 14.10, б изображена схема в исходном положении, рассмотрим теперь этапы ее работы.

1. Нажмем кнопку Пуск (рис. 14.10, в). Контактор КМ1 сработает, поставит себя на самопитание и подключит статор двигателя к сети. Одновременно с этим его вспомогательные контакты разомкнут цепь катушки контактора КМ2. Двигатель начнет разгоняться. В процессе разгона контакты реле контроля скорости замкнутся, но тормозной контактор не работает, так как цепь его катушки остается разомкнутой. Таким образом, схема подготовлена для последующего торможения.

2. Нажмем кнопку Стоп (рис. 14.10,г). Цепь катушки контактора КМ1 разомкнется. Двигатель отключится от сети. Одновременно с этим замкнутся вспомогательные контакты КМ1 в цепи катушки контактора КМ2. Поскольку ротор двигателя по инерции продолжает вращаться и контакты SR замкнуты, цепь катушки КМ2 также замкнута. Контактор КМ2 сработает и возникнет интенсивное торможение.

3. Двигатель затормозился примерно до 100 об/мин, контакты SR разомкнулись (рис. 14.10, д). Это приведет к отключению тормозного контактора КМ2. Дальнейшая остановка двигателя производится силами трения, а схема управления возвращается в исходное положение.

Рис. 14.10. Схема торможения противовключением: а — силовая схема; б — схема управления; в — пусковая кнопка нажата и отпущена, схема подготовлена к торможению; г — нажата кнопка Стоп, включен контактор торможения КМ2; д — после окончания торможения схема возвращается в исходное положение

Мы разобрали схему торможения нереверсивного электродвигателя, но противовключение возможно и для двигателя, который в процессе работы изменяет направление вращения. В этом случае схема управления несколько усложняется, но используются все равно только два контактора.

Рис. 14.11. Динамическое торможение: а — машина работает двигателем; б — неподвижное магнитное поле тормозит ротор

Если двигатель вращается Вперед, то функции тормозного контактора выполняет контактор Назад.

При реверсе назначение контакторов изменяется.

Торможение противовключением широко используется на практике. Однако у этого метода торможения есть существенные недостатки. Во-первых, при торможении в цепи статора протекает очень большой ток и выделяется большое количество тепла. Общая энергия, идущая на нагрев двигателя, примерно в 6 раз больше запаса кинетической энергии вращающихся масс. Во-вторых для торможения необходимо специальное электромеханическое реле, которое нужно пристроить к двигателю, а сделать это не всегда возможно.

Всех этих недостатков нет у динамического метода торможения. Принцип динамического торможения поясняется рис. 14.11. Слева показан двигательный режим асинхронного двигателя (рис. 14.11, а).

Для того чтобы затормозить двигатель, его статор отключают от сети переменного тока и включают на постоянное напряжение (рис. 14.11, б). Магнитное поле перестает вращаться, становится неподвижным. Однако массивный ротор двигателя по инерции продолжает вращение. Проводники ротора пересекают магнитные силовые линии неподвижного поля, в них наводится ЭДС, возникает электрический ток. В свою очередь этот ток взаимодействует с магнитным полем и сила электромеханического взаимодействия создает тормозной момент. Ротор двигателя интенсивно затормаживается.

Составим теперь схему для динамического торможения асинхронного двигателя. Прежде всего сообразим, что величина постоянного напряжения, на которое мы хотим переключить обмотку статора двигателя, должна быть значительно меньше напряжения сети. В двигательном режиме по обмотке статора протекает ток, равный

Фазное напряжение мы разделили на полное сопротивление одной фазы. Постоянный ток — это ток нулевой частоты Индуктивное сопротивление на постоянном токе равно нулю, а полное сопротивление фазы — только активному сопротивлению. Оно много меньше, чем сопротивление фазы на переменном токе. Поэтому, если мы не хотим испортить обмотку двигателя, напряжение постоянного тока необходимо значительно снизить.

Рис. 14.12. Схема динамического торможения: а — силовая схема; б — схема управления

Обычно для двигателей не слишком большой мощности это напряжение составляет 30—40 В. Таким образом, в схеме торможения должны участвовать два аппарата: трансформатор для понижения напряжения и выпрямитель. Кроме того, необходимы пусковой и тормозной контакторы. Теперь мы можем составить силовую часть схемы (рис. 14.12,а). Действие ее хорошо понятно из самого рисунка.

Читать еще:  Lexus rx350 двигатель характеристики

Цепь управления изображена на рис. 14.12, б. Поясним ее работу. Если нажать кнопку SB2 Пуск, сработает контактор КМ1, двигатель подключится к сети переменного тока. Одновременно с этим произойдет блокировка цепи тормозного контактора КМ2, исключающая его случайное срабатывание.

Для торможения двигателя необходимо нажать кнопку SB1 Стоп. Кнопка Стоп двухэлементная, она коммутирует сразу две цепи. Цепь катушки контактора КМ1 разрывается, и этот контактор отключается.

Одновременно с этим замыкается цепь контактора КМ2. Контактор ставит себя на самопитание и подключает статор двигателя на постоянное напряжение. Начинается процесс торможения. Параллельно к контактору КМ2 подключена катушка реле времени КТ, его размыкающие контакты отключают тормозной контактор, когда выдержка времени заканчивается. Эта выдержка времени (уставка реле) выбирается так, чтобы к тому времени торможение полностью закончилось.

Иногда реле времени пристраивают к тормозному контактору.

Существуют также схемы, в которых реле времени нет совсем. В этом случае тормозной контактор остается включенным до следующего пуска, а ротор двигателя все время оказывается заторможенным. Электромагнитная фиксация ротора бывает необходимой во многих производственных машинах и механизмах. В такой схеме нужно исключить контакты КМ2 из цепи катушки контактора КМ1, иначе его нельзя будет включить после первого же торможения.

Торможение двигателей постоянного тока

Виды электрического торможения. Электрические двигатели, как правило, используют не только для вращения механизмов, но и для их торможения. Электрическое торможение позволяет быстро остановить механизм или уменьшить его частоту вращения без применения механических тормозов.

Различают три вида электрического торможения двигателей постоянного тока: 1) рекуперативное торможение — генераторное торможение с отдачей электрической энергии в сеть; 2) динамическое или реостатное торможение — генераторное торможение с гашением выработанной энергии в реостате, подключенном к обмотке якоря; 3) электромагнитное торможение — торможение противовключением.

Во всех указанных режимах электромагнитный момент М воздействует на якорь в направлении, противоположном и, т. е. является тормозным.

Рекуперативное торможение. Двигатель с параллельным в озбуждением переходит в режим рекуперативного торможения при увеличении его частоты вращения и выше п0 = U/ceФ. В этом случае ЭДС машины становится больше напряжения сети и ток согласно (8.80) изменяет свое направление, т. е. двигатель переходит в генераторный режим. В этом режиме машина создает тормозной момент, а выработанная электрическая энергия отдается в сеть и может быть полезно использована.

В машине с параллельным возбуждением (рис. 8.71, а) механические характеристики генераторного режима являются продолжением механических характеристик двигательного режима в область отрицательных моментов.

Рис. 8.71. Схема и механические характеристики машины постоянного тока в двигательном и генераторном режимах.

Динамическое торможение. При этом виде торможения двигателя с параллельным возбуждением обмотку якоря отключают от сети и присоединяют к ней реостат Rдо6 (рис. 8.72, а) При этом машина работает как генератор, создает тормозной момент, но выработанная электрическая энергия бесполезно гасится в реостате. Регулирование тока Ia = Е/(ΣRa + Rдоб), т. е. тормозного момента М, осуществляют путем изменения сопротивления Rдоб, подключенного к обмотке якоря.

Рис. 8.72. Схема и механические характеристики двигателя с параллельным возбуждением в режиме динамического торможения.

Электромагнитное торможение. В этом режиме изменяют направление электромагнитного момента М, сохраняя неизменным направление тока из сети, т. е. момент делают тормозным. Последнее осуществляют так же, как и при изменении направления вращения двигателя — путем переключения проводов, подводящих ток к обмотке якоря (рис. 8.76, а) или к обмотке возбуждения. Чтобы ограничить значение тока в этом режиме, в цепь обмотки якоря вводят добавочное сопротивление Rдоб. Регулирование тока Ia = (U + Е)/(ΣRa + Rдоб), т. е. тормозного момента М, осуществляют путем изменения сопротивления Rдоб или ЭДС Е (тока возбуждения Iв). Механические характеристики в этом режиме для двигателей с параллельным и последовательным возбуждением показаны на рис. 8.76, б и в.

Рис.8.76. схема и механические характеристики двигателей в режиме электромагнитного торможения.

21.Универсальные коллекторные двигатели — это электродвигатели малой мощности последовательного возбуждения с секционированной обмоткой возбуждения, благодаря чему они могут работать как на постоянном, так и на переменном стандартных напряжениях примерно с одинаковыми свойствами и характеристиками. Такие электродвигатели используют для привода маломощных быстроходных устройств и многих бытовых приборов. Они допускают простое, широкое и плавное регулирование скорости.

По своему устройству эти двигатели отличаются от двигателей постоянного тока общего применения конструкцией статора, магнитную систему которого собирают из топких изолированных друг от друга листов электротехнической стали с выступающими полюсами, на которых размещают по две секции обмотки возбуждения. Эти секции соединяют последовательно с якорем и располагают по обе стороны от его выводов, что снижает радиопомехи от ценообразования на коллекторе под щетками, которое при питании двигателя от сети переменного напряжения особенно усиливается из-за существенного ухудшения условий коммутации.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector