0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое двигатель росси

Сердце боевых кораблей. Успехи и перспективы развития морского двигателестроения России

Газотурбинный двигатель М90ФР © Объединенная двигателестроительная корпорация © phototass4.cdnvideo.ru

В преддверии Международного военно-морского салона (МВМС-2021) в Санкт-Петербурге специалисты Объединенной двигателестроительной корпорации (ОДК, входит в госкорпорацию «Ростех») рассказали ТАСС о создании силовых установок для новейших российских кораблей.

Строительство двигателей для военных кораблей океанской и морской зоны является одной из ключевых технологий — любой современный военно-морской флот (ВМФ) немыслим без надежных, мощных и эффективных силовых установок. Серийное производство двигателей для корветов и фрегатов во многом определяет дальнейшие перспективы и направления модернизации ВМФ.

В период холодной войны Советский Союз делал акцент на развитие морского двигателестроения — страна производила собственные силовые установки для всех типов военных кораблей. Особое внимание данной сфере машиностроения уделяется и в России — после распада СССР было принято решение о создании российской морской базы газотурбостроения. Уже в 2006 и 2008 годах по заказу Министерства обороны РФ были успешно завершены опытно-конструкторские работы (ОКР) по созданию отечественных морских газотурбинных двигателей: в частности, были разработаны два морских газотурбинных двигателя — М75РУ мощностью 7000 л.с. и М70ФРУ мощностью 14 000 л.с.

В 2014 году был дан старт второму этапу программы по разработке и освоению изготовления морских газотурбинных двигателей (ГТД) и газотурбинных агрегатов. В частности, в конце 2017 года в ОДК были выполнены три ОКР:

  • по разработке технологии серийного изготовления двигателя мощностью 27 500 л.с. для применения в составе газотурбинных агрегатов (ГТА) водоизмещающих кораблей;
  • по разработке ГТА на базе двигателя М70ФРУ-2 для кораблей на воздушной подушке;
  • по разработке реверсивного ГТД М70ФРУ-Р для водоизмещающих кораблей.

«В рамках имеющегося научно-технического задела и результатов ОКР по базовому ГТД М70ФРУ за три года были созданы новые модификации двигателей и агрегатов, которые позволяют полностью заменить украинские силовые установки для кораблей на воздушной подушке и реверсивные двигатели, находящиеся в эксплуатации», — рассказал ТАСС заместитель генерального директора — генеральный конструктор ОДК Юрий Шмотин. «Освоение в серийном производстве ГТД мощностью 27 500 л.с. позволяет обеспечить комплектование главных энергетических установок заказчика и дает возможность создавать агрегаты для перспективных кораблей», — добавил он.

За три года были выполнены не только три сложнейшие работы, но и проведены техническое перевооружение предприятия, технологическая подготовка производства, строительство стендовой базы для испытаний морских двигателей и агрегатов. В конце 2017 года конструкторские работы и строительство сборочно-испытательного комплекса были успешно завершены.

Двигатель М70ФРУ © Объединенная двигателестроительная корпорация © phototass4.cdnvideo.ru

«На сегодня в ОДК создана линейка морских газотурбинных двигателей мощностью от 7000 до 27 500 л.с., которая в краткосрочной и среднесрочной перспективе закрывает потребности флота в газотурбинных двигателях для всех строящихся и перспективных кораблей различных классов», — сообщил заместитель генерального директора ОДК Виктор Поляков. Таким образом, ОДК обладает компетенциями в проектировании (разработке), серийном изготовлении, гарантийном, послепродажном сервисном обслуживании и ремонте ГТД морского исполнения и агрегатов на их основе.

На сегодня в ОДК создана линейка морских газотурбинных двигателей мощностью от 7000 до 27 500 л.с., которая в краткосрочной и среднесрочной перспективе закрывает потребности флота в газотурбинных двигателях для всех строящихся и перспективных кораблей различных классов, сказал Виктор Поляков. заместитель генерального директора ОДК.

В настоящее время ОДК освоила производство морских двигателей для всех надводных кораблей ВМФ РФ с газотурбинными энергетическими установками. «В частности, корпорация готова предоставить ВМФ двигатели для применения в составе десантных кораблей на воздушной подушке проектов 12061 и 12322, корветов проекта 20386, фрегатов проектов 22350/22350М и 11356, а также кораблей, находящихся в эксплуатации при их модернизации», — отметили в ОДК.

Двигатели для фрегатов

Для новейших фрегатов проекта 22350 корпорация освоила в производстве ГТД М90ФР, который применяется в составе дизель-газотурбинного агрегата М55Р. «В 2020 году ОДК осуществила поставку „Северной верфи“ двух первых агрегатов М55Р для фрегата „Адмирал Головко“. На текущий момент успешно проведены испытания третьего агрегата для фрегата „Адмирал Исаков“ и проводятся испытания четвертого агрегата для укомплектования этого корабля», — добавили в ОДК, отметив, что четвертый дизель-газотурбинный агрегат планируется к поставке после завершения стендовых испытаний в июле-августе 2021 года. Фрегаты проекта 22350 «Адмирал Головко» и «Адмирал Исаков» являются третьим и четвертым кораблями серии.

Предполагается, что М90ФР станет основой для перспективных морских двигателей. В частности, ОДК прорабатывает варианты создания двигателя мощностью 25 МВт на базе М90ФР. Шмотин рассказал, что результаты также будут являться научно-техническим заделом для разработки двигателей в мощностном диапазоне 25-35 МВт.

В корпорации подчеркнули, что корпорация может полностью поставить государственному заказчику ГТД и ГТА в необходимых объемах. «На сегодня планируемый объем поставок составляет порядка 20 ГТД М90ФР», — сообщили в ОДК.

Стоит отметить, что корабли с двигателями иностранного производства также могут быть оснащены М90ФР в ходе ремоторизации. «Однако, учитывая „возраст“ кораблей и необходимость привлечения серьезных средств для модернизации главных энергетических установок и систем управления корабля, такого решения не принималось, — рассказывают в корпорации. — Выполняется ремонт существующих газотурбинных двигателей украинского производства, который также производится на предприятиях ОДК».

Корпорация также подготовилась к послепродажному обслуживанию двигателей М90ФР — с этой целью было создано отдельное дочернее предприятие. По оценкам экспертов, двигатель М90ФР не уступает иностранным аналогам и соответствует мировым тенденциям развития морских ГТД 4-го поколения.

Ведутся работы и по созданию новейших силовых установок. В частности, на стадии реализации находится проект по разработке газотурбинного агрегата для перспективного фрегата. В качестве маршевого двигателя будет применен М70ФРУ, а форсажного — М90ФР, разработанные ОДК.

Новым корветам — новые двигатели

Для применения в составе энергетической установки перспективных корветов проекта 20386 ОДК разработала модификацию двигателя М90ФР. «Два двигателя изготовлены, успешно испытаны и готовы к передаче заказчику», — добавили в пресс-службе.

Кроме того, корпорацией создан ряд унифицированных двигателей М70ФРУ мощностью 8000-10000 МВт для кораблей различного назначения — корветов, малых ракетных кораблей, малых артиллерийских кораблей, а также кораблей с динамическим поддержанием (десантных кораблей на воздушной подушке).

Базовая модификация М70ФРУ была разработана в 2008 году (по результатам МВИ документации на изделие присвоена литера «О1»). Первоначально этот двигатель предназначался для корветов проекта 20380, однако указанные корабли тогда были укомплектованы дизельными энергетическими установками (в том числе иностранного производства), поэтому заказы на поставку серийных двигателей М70ФРУ не поступали.

В рамках государственной программы импортозамещения в период с 2014 по 2017 год ОДК созданы две модификации данного двигателя — ГТД М70ФРУ-Р с реверсивной силовой турбиной (для надводных кораблей) и ГТД М70ФРУ-2 с передним отводом мощности (для десантных кораблей на воздушной подушке). В рамках этих работ на двигателе внедрены новые, более современные системы двигателя — локальная система автоматизированного управления, система вибродиагностики, агрегаты топливной системы и прочее. В ходе разработки М70ФРУ и его модификаций были применены технологии, соответствующие актуальным мировым тенденциям, — по оценкам экспертов, данная силовая установка относится к четвертому поколению и находится на уровне зарубежных аналогов.

Газотурбинный двигатель М70ФРУ © Объединенная двигателестроительная корпорация © phototass4.cdnvideo.ru

По результатам выполненной работы подтверждена готовность серийного производства новых модификаций ГТД М70ФРУ, причем несколько опытно-поставочных двигателей М70ФРУ-2 уже изготовлены для последующего применения в составе десантных кораблей на воздушной подушке проектов 12061 «Мурена» и 12322 «Зубр». Кроме того, базовая модификация ГТД М70ФРУ с учетом указанной выше модернизации планируется к применению в составе главного газотурбинного агрегата перспективного фрегата.

Морские двигатели и диверсификация производства

На данный момент ОДК создана двухтопливная модификация двигателя М90ФР, которая может быть востребована в газодобывающей отрасли, например в составе буровых платформ.

На основе М70ФРУ также разработан морской двигатель гражданского назначения — Е70/8РД. «На базе Е70/8РД создан газотурбоэлектрогенератор СГТГ-8», — сообщил Шмотин. Как Е70/8РД, так и СГТГ-8 прошли весь необходимый комплекс испытаний и готовы к серийному производству.

ОДК готова к поставкам всех вышеупомянутых гражданских двигателей, добавили в корпорации.

Ростех последовательно реализует программы разработки современных двигателей всех типов. Создание морских газотурбинных силовых установок и агрегатов — наукоемкий высокотехнологичный процесс. Подобными компетенциями обладают всего несколько производителей в мире. Мы готовы обеспечить потребность российских судостроителей в новых силовых установках, сказал Владимир Артяков, первый заместитель генерального директора госкорпорации «Ростех».

Перспективы развития

ОДК уже формирует научно-технический задел для создания морского двигателя 5-го поколения. «В качестве задела имеются в виду результаты реализации аванпроекта по разработке морского двигателя мощностью 25 МВт с малоэмиссионной камерой сгорания морского исполнения и разработке новых высокотемпературных коррозионностойких сплавов», — проинформировал Шмотин, добавив, что корпорация также создает морскую силовую установку повышенной мощности — в частности, в рамках договора с Минпромторгом РФ реализуется аванпроект по разработке двигателя мощностью 34 000 л.с. (25 МВт). В качестве приоритетных направлений дальнейшего развития корабельных двигателей ОДК выделяет создание двигателей мощностью 25-35 и 13 МВт.

Читать еще:  Чем очистить двигатель уаз

Наряду с созданием новых морских двигателей проводится и модернизация процессов их разработки и производства. С декабря 2020 года в рамках договора с Минпромторгом РФ реализуется научно-исследовательская работа по созданию цифрового двойника морского ГТД и редуктора. «Срок окончания работ — октябрь 2023 года. В процессе реализации данного проекта ОДК должна получить действующую технологию/платформу создания цифровых двойников, которая будет применяться во всех последующих разработках новых изделий», — сообщил Шмотин.

Все большее применение при проектировании двигателей находят аддитивные технологии — первый положительный опыт их применения в сфере морских двигателей был получен в ходе создания двигателя М70ФРУ-Р.

В настоящее время ОДК применяет уже отечественные материалы, созданные при помощи аддитивных технологий и не уступающие по своим характеристикам иностранным аналогам, сказали в ОДК.

Кроме того, выполняется разработка и применение новых материалов для создания термобарьерных покрытий лопаток горячей части двигателя, позволяющих повысить температуру газа перед турбиной и тем самым повысить мощность силовой установки. «В рамках договора с Минпромторгом РФ реализуется научно-исследовательская работа, направленная на разработку новых высокотемпературных коррозионностойких сплавов», — подытожил Шмотин.

ТАСС благодарит за помощь в подготовке материала пресс-службу ОДК

Двигатели: описание, технические характеристики, какое масло лить

Описания и технические характеристики двигателей для наиболее популярных моделей автомобилей, представленных на рынке России.

  • Acura
  • Alpina
  • Audi
  • BMW
  • Brilliance
  • BYD
  • Chery
  • Chevrolet
  • Chrysler
  • Citroen
  • Daewoo
  • Dodge
  • Eagle
  • Ford
  • Geely
  • Great Wall
  • Honda
  • Hyundai
  • Infiniti
  • Isuzu
  • Jeep
  • Kia
  • Land Rover
  • Lexus
  • Lotus
  • Mazda
  • Mercedes
  • Mitsubishi
  • Nissan
  • Opel
  • Peugeot
  • Plymouth
  • Pontiac
  • Proton
  • Renault
  • Rover
  • Scion
  • Seat
  • Skoda
  • SsangYong
  • Subaru
  • Tagaz
  • Toyota
  • Volkswagen
  • ВАЗ
  • ГАЗ
  • ЗАЗ
  • УАЗ

Двигатель Opel Z22SE

Серийное производство двигателей Z22SE началось в 2000 году. Этот агрегат пришел на смену 2-литровому X20XEV и представлял собой совместную разработку General Motors, ITDC, GM Powertrain и SAAB. Над окончательной доводкой двигателя работали уже в Британии, в инжиниринговом корпусе Lotus. Читать больше проДвигатель Opel Z22SE …

Двигатель Opel Z22YH

Двигатель Opel Z22YH – это мощный мотор, способный выдерживать большие нагрузки. Был выпущен в качестве замены мотору Z22SE, который в компании посчитали устаревшим. Однако предшественника до сих пор используют, чего нельзя сказать про Z22YH. Читать больше проДвигатель Opel Z22YH …

Двигатель Opel Z16SE

Двигатель Z16SE – 84-сильный 1.6-литровый мотор, который появился с выходом Opel Astra G, работает в паре с автоматической и механической коробкой. По сравнению с предшественником в Z16SE совсем другой впускной коллектор, изменена ГБЦ, новая прокладка клапанной крышки, совсем другие поршня и полностью изменена цилиндро-поршневая группа. Читать больше проДвигатель Opel Z16SE …

Двигатель Opel Z14XEP

Двигатель Opel Z14XEP является 1.4-литровым 4-тактным атмосферным бензиновым малолитражным двигателем второго поколения семейства Ecotec Family 0, разработанным Opel (в то время дочкой GM). Двигатель выпускался с 2003 по 2010 год. Читать больше проДвигатель Opel Z14XEP …

Двигатель Opel Z12XEP

Двигатель Z12XEP является 1.2-литровым, 4-тактным атмосферным бензиновым малолитражным двигателем второго поколения семейства Ecotec Family 0, разработанным Opel (в то время дочкой GM). Двигатель выпускался с 2002 года. Читать больше проДвигатель Opel Z12XEP …

Двигатель Opel Z10XEP

Двигатель Z10XEP — 3-цилиндровый рядный мотор с водяным охлаждением разработанный компанией General Motors. Мощность двигателя составляет 60 л.с. (44 кВт) при объеме двигателя 998 куб.см (1 литр). ДВС накрыли адаптированной под 3 цилиндра 2-вальной 12-клапанной ГБЦ от Z14XEP. Читать больше проДвигатель Opel Z10XEP …

Двигатель K9K

Дизельный двигатель K9K однорядный, серии K — разработка Renault-Nissan 2001 года, имеет 4 цилиндра, 8 клапанов. Это экономичный и недорогой мотор с объемом 1.5 литра и системой впрыска dCi. Читать больше проДвигатель K9K …

Двигатель Mitsubishi 4D56

Двигатель 4D56 был разработан в 1986 году японской автомобильной компанией Mitsubishi. После чего на протяжении 10 лет японские инженеры его дорабатывали. Основной задачей для конструкторов было увеличить мощность и эксплуатационный ресурс, обеспечить нормальную ремонтопригодность. Читать больше проДвигатель Mitsubishi 4D56 …

Двигатель Mitsubishi 4B11T

Двигатель Mitsubishi 4B11T — первый двигатель для Lancer Evolution, в котором используется блок цилиндров из литого алюминия, а не чугунный блок, использовавшийся в предыдущем двигателе 4G63T. Вес двигателя был уменьшен на 12 кг по сравнению с предшественником, даже с учетом добавления цепи ГРМ вместо ремня. Читать больше проДвигатель Mitsubishi 4B11T …

Двигатель Mitsubishi 4М41

Двигатель Mitsubishi 4М41 — 4-цилиндровый рядный мотор с водяным охлаждением. Мощность двигателя составляет от 160 л.с. до 200 л.с. при объеме двигателя 3200 куб.см. Первое время мотор оснащался распределительным насосом и лишь с 2006 года Common Rail. Читать больше проДвигатель Mitsubishi 4М41 …

Двигатель Mitsubishi 4М40

Двигатель 4М40 — дизельный, рядный, 4-цилиндровый. С верхним расположением распределительного вала. Блок цилиндров 4М40 выполнен из чугуна, головка блока — из алюминиевого сплава. Предлагался в атмосферной и турбо версии, с механическим и электронным ТНВД. Читать больше проДвигатель Mitsubishi 4М40 …

Двигатель Toyota 1VD-FTV

Двигатель 1VD-FTV является первым дизелем Тойота с конфигурацией V8. Пришел на смену старой и проверенной «шестерки» 1HD-FTE. Чтобы соответствовать стандартам Евро-5, двигатель комплектуется системой рециркуляции отработавших газов (EGR) с водяным охлаждением, каталитическим нейтрализатором и сажевым фильтром. Читать больше проДвигатель Toyota 1VD-FTV …

Двигатель Toyota 1KZ

В 1993 году был создан и запущен в серийное производство двигатель 1KZ-TE. До настоящего времени считается самой удачной версией дизельного двигателя. Этот мотор компании Toyota за короткое время смог вытеснить с рынка дизельные моторы 2L-TE. Читать больше проДвигатель Toyota 1KZ …

Двигатель Toyota 1KD-FTV

Новый 3-литровый дизель 1KD-FTV очень заметно прибавил в характеристиках, вплотную приблизившись к бензиновым двигателям того же объема по мощности и значительно превосходя их по моменту. Однако надо сразу отметить, что по динамическим показателям машина с таким мотором по-прежнему им ощутимо уступает. Читать больше проДвигатель Toyota 1KD-FTV …

Двигатель Toyota 1HZ

Двигатель Toyota 1HZ был разработан в начале 90-х годов для внедорожников Land Cruiser. Это 4.2-литровый дизельный двигатель с одним распредвалом на 12 клапанов. Читать больше проДвигатель Toyota 1HZ …

Авиадвигатели мира: текущее состояние

Турбореактивный двигатель (ТРД) — одно из главных технических достижений человечества, которое можно поставить в один ряд с изобретением колеса, паруса, паровой машины, двигателя внутреннего сгорания, ракетного двигателя и атомного реактора. Именно благодаря ТРД наша планета вдруг стала маленькой и уютной. Любой человек может за считанные часы комфортно и безопасно добраться до самого отдаленного ее уголка.

И вот при всём при этом мировое авиационное двигателестроение находится в страшном кризисе. При кажущемся прогрессе оно умирает, и причина этого — в конкуренции. Волшебная рука рынка так бодро шарит в карманах производителей, что они просто рыдают навзрыд.

Глобализации так и не удалось вывести производителей авиамоторов из-под крыш национальных государств. Слишком уж это чувствительная область технологий. И даже собрать всех производителей под крышей «мирового гегемона» США не вышло. Судите сами — SNECMA французская, RR британский. Отделение авиадвигателей Pratt & Whitney фактически канадское — оно сугубо формально через «Юнайтед Текнолоджис» считается американским. Собственно американский производитель авиадвигателей из крупных остался ровно один — General Electric.

А еще есть такой производитель авиамоторов, как International Aero Engines (IAE) — это как бы СП Pratt & Whitney с японцами JAEC и немцами MTU (раньше там еще участвовали RR, но их долю выкупили PW). Они делают, например, двигатели семейства V2500 — эти моторы популярны на Арбузах линейки А320, а также на Airbus Corporate Jet. Их же ставят бразильцы на свои военные транспортники Embraer 390. Интересно, что на этом моторе Pratt & Whitney разработала только камеру сгорания и двухступенчатую с воздушным охлаждением турбину высокого давления, а всё остальное — разработка японцев и немцев, ну и инженеры Rolls-Royce поучаствовали. В общем, моторы IAE делаются в весьма заметных количествах — их выпускается в полтора раза больше, чем моторов Rolls-Royce всех типов (правда, они и подешевле, чем продукция RR).

Читать еще:  Что такое роторный двигатель плюсы и минусы

Да — американский производитель GE мощный, спору нет. Формально он считается крупнейшим в мире (с учетом участия во всяких СП). Но и у него деградация имеется.

А причина между тем довольно проста — авиадвигатели сейчас УБЫТОЧНЫ практически у всех, они продаются ниже себестоимости из-за большой конкуренции. И чем сложнее технически мотор — тем убытки больше. До сих пор GE и RR сводили концы с концами за счет сервисных контрактов (запчасти + обслуживание), но эта система некоторое время назад перестала покрывать убытки (потому что сервис оттягивают на себя производители самолетов), и теперь фирмы-двигателестроители выживают только за счет госдотаций.

Естественно, в такой ситуации никакие крупные вложения в разработку нового — невозможны.

Вот, например, двигатель GE9X, который GE выдает за «новое слово техники» — это по сути обычный GE90-115B от 777 боинга, у которого в вентиляторе вместо 22 лопаток поставлено 16, но более широких из композита. Остальные доработки там, в общем-то, косметические — чуть подняли температуру в камере сгорания, чуть поменяли форму лопастей у турбины. Ну там еще придумали закручивать смесь в камере сгорания, чтобы добиться лучшего дожигания окислов азота. Не тянет это всё на «новое слово».

Двигатели LEAP генеральские электрики вообще не осилили сами — были вынуждены звать на помощь французскую SNECMA. А ведь их конкуренты из Канады слепили свои PW1000G самостоятельно, без приглашения варягов. Это кагбэ намекает нам на то, что потенциал GE как разработчика авиамоторов — упал ниже плинтуса. По сути, GE до сих пор едут на заделах 70-х годов.

Между прочим, самое популярное в гражданской авиации семейство моторов CFM56, которых в год поставляется больше, чем всех остальных моторов вместе взятых — тоже сделано французами из Снекмы, хотя и как бы с участием GE. Вы знаете, как был сделан этот мотор? Французами взята горячая часть от мотора General Electric F101 (он применяется на бомбардировщике B1B Lancer), и на нее навешен французский вентилятор с приводом от французской турбины низкого давления. А чтобы GE не сильно возмущалась — был сделан альянс CFM International, с долями 50/50, соответственно мотор CFM56 пошел не только на европейские арбузы, но и на американские Боинги, и даже в US Air Force (там его называют General Electric F108, чтобы не позориться использованием не-американского мотора).

Кстати, с новыми «экономичными» моторами что у GE, что у PW серьезные проблемы.

У PW1000G текут сальники редуктора — и проблема, понятное дело, не в самих сальниках, а в конструкции редуктора. Проблема и с торцевыми уплотнениями. Но это плата за принципиально новую конструкцию. Хотя в общем-то «новая» она условно — это по сути турбовинтовой мотор, у которого винты заключены в кольцевой обтекатель (пропеллер заменен на импеллер).

Leap безредукторный (как наш ПД14), у него этих проблем нет — но у него проблемы с компрессором. Вообще LEAP это фактически переделанный CFM56, у которого попытались поднять эффективность за счет вентилятора бОльшего диаметра — соответственно пришлось снизить скорость его вращения, это потянуло за собой снижение скорости турбины низкого давления, ну и вот — компрессор не в состоянии на некоторых режимах наддувать камеру сгорания должным образом. И это сказывается не только на провалах тяги — но и, что важнее, на долговечности мотора.

Вот смотрите — это вот пресловутый мотор LEAP:

Видите, до какой степени у него раздута турбина низкого давления? Да-да, вот эта раковая опухоль, раздутие в конце мотора с кучей колес и лопаток? Ну и компрессор низкого давления тоже имеет большой диаметр и сложность.

Русский ПД14 сразу сделан более простым — он вряд ли достигнет показателей экономичности PW, но он сильно дешевле и сам по себе и в обслуживании, по крайней мере потенциально:

Тут русские нашли оригинальное решение, применив широкохордные лопатки на турбине низкого давления. Это позволило уменьшить число колес и диаметр этой турбины. При этом степень двухконтурности у ПД-14 почти такая же, как у LEAP-1B (8.5-8.6 против 9), при схожей компрессии (около 40). Причем LEAP-1B развивает взлетную тягу 130 кН против 137 кН у ПД-14 и 153 кН у ПД-14М. 137 кн развивает LEAP-1C — но у него диаметр вентилятора больше, чем у ПД-14, а это создает некоторые габаритные проблемы. В конце концов, у нас тоже от редукторной версии ПД-14, называемой ПД-18Р, ожидают взлетную тягу аж 178 кН ценой увеличения диаметра вентилятора.

Ну и в общем не секрет, что русские попятили конструкцию и методику расчета камеры сгорания, примененной в моторах ПД-14, у Pratt&Whitney — примерно так же, как французы попятили камеру сгорания у GE. Но зато широкохордные лопатки турбины низкого давления и блиски в компрессоре — у нас собственные.

Кстати, схожих параметров мотор CJ-1000A (Chang Jiang-1000A) разрабатывают китайцы, и в мае 2018 года уже предъявили вполне рабочий образец, которым собираются комплектовать свои самолеты Comac C919 (главного конкурента наших МС-21). Причем у китайцев есть и альтернатива со сходными параметрами — мотор Shenyang WS-20, созданный на базе горячей части от мотора WS-10 (китайский аналог АЛ-31Ф, сделанный с использованием конструкции гражданского CFM56) примерно таким же образом, каким в своё время французы сделали CFM56 на базе горячей части мотора GE от B1B.

Это кагбэ намекает всем имеющим мозг, что уровень технологий современного авиационного моторостроения — совсем не запредельный.

Возвращаясь же обратно к «мировым грандам», хочу заметить, что новые моторы у GE и PW сами по себе работают, но вот заявленные расходы на ремонты и близко не показывают. И это — серьезная проблема для их производителей. С одной стороны, более 85% экономии топлива Boeing 737 MAX приходится на эти самые новые двигатели — а с другой стороны, у авиакомпаний и авиастроителей есть достаточно широкий выбор альтернативных моторов, отсюда конкуренция и снижение цен на моторы и на запчасти к ним. Хуже того — авиастроители уже дошли до того, что заставляют производителей авиадвигателей платить за разработку самолетов в обмен на обещание поставить туда их моторы, а не моторы конкурентов. Откуда уж тут взяться прибылям… Не секрет, что RR теряет на каждом проданном моторе Trent около 1,6 млн фунтов. Немногим меньше теряет и GE на своих больших моторах.

Французская промышленная группа Safran включает подразделение «Авиационные и космические двигатели», которое основную часть своей выручки и прибыли получает сегодня от продаж двигателей семейства CFM56 в рамках партнерского проекта CFM International (CFMI), организованного совместно с американской компанией General Electric более сорока лет назад , в 1974 г. (в 2008 г. соглашение было продлено обеими компаниями на период до 2040 г.).

Основной двигателестроительный актив французской группы для коммерческих самолетов – компания Snecma. С конца 70-х гг. выпущено уже свыше 26 тыс. двигателей CFM56, которые сегодня эксплуатируются под крылом более 11 тыс. авиалайнеров Boeing 737 и Airbus A320, включая их многочисленные, в т.ч. военные, варианты. Наработка двигателей превысила уже 630 млн часов, а рекорд «жизнедеятельности», принадлежащий двигателю семейства CFM56, составляет более 50 тыс. часов без съема с крыла.

Собственно, поэтому как бы российский мотор PowerJet SaM146 наше НПО Сатурн делало с этими же французами на основе этого же CFM56. Для французов SaM146 является промежуточным этапом на пути от CFM56 к LEAP — это как бы упрощенный CFM56, на котором внедрен ряд технологий, затем используемых в LEAP (в частности, французы наконец переделали камеру сгорания и горячую турбину, изменив их древнюю американскую схему GE на якобы свою собственную, более модную). Да-да, речь про пресловутую камеру сгорания Twin-Annular, Pre-Mixing Swirler — камера сгорания одинарная, но с двойным закрученным потоком и двумя зонами горения, которую GE придумали для большого мотора GEnx (чтобы конкурировать с RR), а французы попятили у них идею и адаптировали к размерности CFM56.

CFM56 это объективно лучший мотор в мире, но это — технологии тех самых 70-х годов. Попытки двинуться дальше вылились в создание LEAP и PW1000G — но пока что эти моторы не радуют ресурсом, а главное — на самом деле ничего революционного в них нет. Как я уже сказал — LEAP это просто модернизированный CFM56 с вентилятором увеличенного диаметра, а PW1000G — попытка использовать турбовинтовой мотор там, где раньше использовали турбореактивные (то есть поднять у турбовинтового мотора скорость потока и снизить шумность).

Читать еще:  Бмв троит двигатель n52

Ничего нового не изобрели и в Rolls-Royce. В феврале 2014 г. исполнительный вицепрезидент компании по стратегии и перспективным технологиям Саймон Карлайл объявил о том, что ведется разработка двух новых моделей семейства Trent, которые планируется передать в эксплуатацию в 2020 г. и 2025 г. и которые будут иметь на 10% лучшую топливную экономичность в сравнении с двигателями Trent XWB для A350 XWB. Они получили рабочие наименования Advance и UltraFan. Первый двигатель конструктивно совместит трехвальную конструкцию Trent с более крупным компрессором высокого давления и уменьшенным компрессором промежуточного давления, будет отличаться вентилятором с композитно-титановыми лопастями вентилятора и композитным корпусом, что позволит снизить массу двигателя. Степень двухконтурности данной модели составит 11. Второй же, со степенью двухконтурности 15, будет использовать редукторную схему.

Испытания первой модели планировалось начать уже в 2015 г., второй – ближе к концу десятилетия. Насколько я знаю — не начали до сих пор. А ведь Rolls-Royce занимает долю порядка 54% на рынке двигателей для широкофюзеляжных авиалайнеров.

Видите, какая складывается ситуация? Даже Россия, которая во времена СССР всегда уступала Западу в технологиях турбореактивных двигателей (да-да, уступала, и сильно — даже в военных моторах), сейчас смогла догнать мировой уровень не только в военных, но и в гражданских моторах. И это при том, что большая часть советского моторостроения осталась вна Украине, где и сдохла.

Причина этого — в том, что Запад после 70-х сильно стагнировал в технологиях. Нет там никаких прорывов ни в материалах, ни в конструкциях.

Вот это, например — труба эжектора двигателя LEAP, создающего разрежение в полости подшипника передней опоры. Как и положено в современных двигателях, где-то в конструкции должен быть большой косяк. На PW1100 решили сг@внить покрытие лопаток, а вот тут поржали с расхода масла через эту дырку. Самолёты только недавно пришли, а внутри уже закоксовано по уши, и ещё оттуда подкапывает на стоянке. То есть, как и у PW, сальники нихрена не держат.

— Командиру экипажа из салона: у вас масло подтекает!
— Командир — салону: я в курсе, дозаправимся позже!
И сюардессы такие — шнырь-шнырь по салону с канистрами масла.

А вот вам еще новый самолёт. Облезает резина на лопатках статора вентилятора двигателя PW1100:

И это у них считается нормальным. Нормальным также считается съём нового двигателя по стружке в масле. В общем — авиаторы смело идут путем немецких двигателей-миллионников, выродившихся в экодеформированное короткопоршневое термоперегруженное г@вно.

Если кто не в курсе — стружка в масле означает начавшееся разрушение шестерёнок, подшипников или ещё каких-то металлических элементов двигателя. Когда такое повторяется на нескольких подряд новых двигателях, это значит, что при их изготовлении или проектировании были допущены грубые ошибки.

Вот как раз в продолжение темы эффективности капитализма и денег, как критерия оценки таковой. Зато финансовый отчет наверняка был хороший, когда это всё делалось. Сэкономили на разработке, испытаниях и доводке. Денег-то нету, продают моторы себе в убыток.

Детонационный двигатель России

Совсем недавно, российским учёным удалось создать впервые в мире полноразмерный жидкостный реактивный двигатель, работающий на принципе детонационного сгорания топлива. Наша страна наконец-то за многие постперестроечные годы установила мировой приоритет в освоении новейшей техники.

Чем же так хорош новый двигатель? В реактивном двигателе применяется энергия, выделяемая при сжигании смеси при постоянном давлении и неизменным пламенном фронте. Газовая смесь из топлива и окислителя при горении резко повышает температуру и столб пламени, вырывающийся из сопла, создаёт реактивную тягу.

При детонационном горении продукты реакции не успевают разрушиться, потому что этот процесс в 100 раз быстрее дефларгации и давлении при этом стремительно увеличивается, а объём остаётся неизменным. Выделение такого большого количества энергии действительно может разрушить двигатель автомобиля, поэтому такой процесс часто ассоциируется со взрывом.

В действительности вместо постоянного фронтального пламени в зоне сгорания, образуется детонационная волна, несущаяся со сверхзвуковой скоростью. В такой волне сжатия детонируют топливо и окислитель, этот процесс, с точки зрения термодинамики повышает КПД двигателя на порядок, благодаря компактности зоны сгорания. Поэтому специалисты так рьяно и приступили к разработке этой идеи.

В обычном ЖРД, по сути, являющейся большой горелкой, главное не камера сгорания и сопло, а топливный турбонасосный агрегат (ТНА), создающий такое давление, чтобы топливо проникло в камеру. К примеру, в российском ЖРД РД-170 для ракет-носителей «Энергия» давление в камере сгорания 250 атм и насосу, подающему окислитель в зону сгорания приходиться создавать давление в 600 атм.

В детонационном двигателе давление создаётся самой детонацией, представляющую бегущую волну сжатия в смеси топлива, в которой давление без всякого ТНА уже в 20 раз больше и турбонасосные агрегаты являются лишними. Чтобы было понятно, у американского «Шаттла» давление в камере сгорания 200 атм, а детонационному двигателю в таких условиях надо всего лишь 10 атм для подачи смеси – это как велосипедный насос и Саяно-Шушенская ГЭС.

Двигатель на основе детонации в таком случае не только более простой и дешёвый на целый порядок, но гораздо мощнее и экономичнее, чем обычный ЖРД.

На пути внедрения проекта детонационного двигателя встала проблема совладения с волной детонации. Это явление непросто взрывная волна, которая имеет скорость звука, а детонационная, распространяющаяся со скоростью 2500 м/сек, в ней нет стабилизации фронта пламени, за каждую пульсацию обновляется смесь и волна вновь запускается.

Ранее русские и французские инженеры разрабатывали и строили реактивные пульсирующие двигатели, но не на принципе детонации, а на основе пульсации обычного горения. Характеристики таких ПуВРД были низкими и когда двигателестроители разработали насосы, турбины и компрессоры, наступил век реактивных двигателей и ЖРД, а пульсирующие остались на обочине прогресса. Светлые головы науки пытались объединить детонационное горение с ПуВРД, но частота пульсаций обычного фронта горения составляет не более 250 в секунду, а фронт детонации обладает скоростью до 2500 м/сек и частота его пульсаций достигает несколько тысяч в секунду. Казалось невозможным воплотить на практике такую скорость обновления смеси и при этом инициировать детонацию.

В СЩА удалось построить такой детонационный пульсирующий двигатель и испытать его в воздухе, правда, проработал он всего 10 секунд, но приоритет остался за американскими конструкторами. Но уже в 60-х годах прошлого века советскому учёному Б.В. Войцеховскому и практически в то же время и американцу из университета в Мичигане Дж. Николсу пришла идея закольцевать в камере сгорания волну детонации.

Такой ротационный двигатель состоял из кольцевой камеры сгорания с форсунками, размещёнными по её радиусу для подачи топлива. Волна детонации бегает как белка в колесе по окружности, топливная смесь сжимается и выгорает, выталкивая продукты сгорания через сопло. В спиновом двигателе получаем частоту вращения волны в несколько тысяч в секунду, работа его подобна рабочему процессу в ЖРД, только более эффективно, благодаря детонации смеси топлива.

В СССР и США, а позже в России ведутся работы по созданию ротационного детонационного двигателя с незатухающей волной, пониманию процессов, происходящих внутри, для чего была создана целая наука физико-химическая кинетика. Для расчёта условий незатухающей волны нужны были мощные ЭВМ, которые создали лишь в последнее время.

В России над проектом такого спинового двигателя работают многие НИИ и КБ, среди которых двигателестроительная компания космической промышленности НПО «Энергомаш». На помощь в разработке такого двигателя пришёл Фонд перспективных исследований, ведь финансирование от Министерства обороны добиться невозможно – им подавай только гарантированный результат.

Тем не мене на испытаниях в Химках на «Энергомаше» был зафиксирован установившийся режим непрерывной спиновой детонации – 8 тысяч оборотов в секунду на смеси «кислород – керосин». При этом детонационные волны уравновешивали волны вибрации, а теплозащитные покрытия выдержали высокие температуры.

Но не стоит обольщаться, ведь это лишь двигатель-демонстратор, проработавший весьма непродолжительное время и о характеристиках его ещё пока ничего не сказано. Но основное в том, что доказана возможность создания детонационного горения и создан полноразмерный двигатель именно в России, что останется в истории навсегда.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector