2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое электроядерный двигатель

Что такое электроядерный двигатель

Ядерный двигатель для космолёта.

В России собрали первый в мире ядерный космический двигатель

Почему-то незамеченной прошла сенсационная новость от 4 июля в мировых и наших СМИ на фоне событий в американском Фергюсоне и на Украине.

Попробую восполнить этот пробел и выложу статью полностью по принципу как есть. О таком событии надо знать всем и я горжусь нашими учёными и страной.

Ядерный двигатель для космолёта.

На ОАО «Машиностроительный завод» в подмосковной Электростали собран первый в мире тепловыделяющий элемент (ТВЭЛ) штатной конструкции для создаваемой в России космической ядерной электродвигательной установки (ЯЭДУ).

Об этом сообщает пресс-служба Госкорпорации «Росатом». Главным конструктором реакторной установки является ОАО «НИКИЭТ».

Работы ведутся в рамках реализации проекта «Создание транспортно-энергетического модуля на основе ЯЭДУ мегаваттного класса». По словам директора и генерального конструктора ОАО «НИКИЭТ» Юрия Драгунова, согласно плану ЯЭДУ должна быть готова в 2018 году

«В части реакторной установки, в части объема работ Госкорпорации «Росатом» все идет по плану, в соответствии с дорожной картой», — сказал Драгунов.

Не имеющий аналогов в мире российский ЯЭДУ планируется использовать для дальних космических полетов и длительной работы на орбите. В частности, создание ядерного двигателя позволит резко сократить время полета на Марс и уменьшить в четыре раза массу стартового комплекса для марсианской экспедиции.

Проект ЯЭДУ утвердила в 2009 году Комиссия по модернизации и технологическому развитию экономики России при президенте России. Эскизное проектирование было завершено к 2012 году

Это скачок в будущее.

Мечта Сергея Королева, Вернера фон Брауна и их предшественников — получить мощную энергетику для космических полетов и длительной работы на орбите — в скором времени может осуществиться.

Этот двигатель позволит нам высадиться первыми на Марс, и вернуться назад.

Это скачок уже в 22 век, отрыв от всех остальных. Сегодня Россия пытается доминировать в космической отрасли , строятся новые космодромы и ракеты. Надеюсь, нам удастся вернуть величие некогда былой советской космонавтики»

По словам главы Роскосмоса Владимира Поповкина, опытный образец ядерной энергодвигательной установки мегаваттного класса, предназначенной для межпланетных миссий, появится в России в 2017 году. А уже через год в Сосновом Бору под Петербургом могут начаться стендовые испытания ядерного реактора для этих целей.

Напомним короткую предысторию вопроса (о более длинной — речь в конце). Два года назад, в июне 2010-го, вышло распоряжение президента России Дмитрия Медведева в поддержку проекта космического транспортно-энергетического модуля (ТЭМ) на основе ядерной энергетической установки мегаваттного класса.

Для реализации задуманного в период с 2010 по 2018 год было обещано 17 млрд рублей. Из этих средств 7,245 млрд рублей предназначались госкорпорации «Росатом» на создание самого реактора. Другие 3,955 млрд — ФГУП «Центр Келдыша» на создание ядерной — энергодвигательной установки. Еще 5,8 млрд рублей — для РКК «Энергия», где в те же сроки предстоит сформировать рабочий облик всего транспортно-энергетического модуля.

По заявлениям первых лиц «Росатома» и космической отрасли, проект развивается успешно. А как оценивают текущее положение дел его непосредственные участники? Тем более сейчас, когда только и разговоров — про неудачи и сбои, преследующие Роскосмос?

За ответом на этот вопрос корреспондент «РГ» отправился в «Центр Келдыша» и встретился с генеральным директором академиком РАН Анатолием Коротеевым.

В его лице функции формального и неформального лидера «проекта ТЭМ» органичным образом совпали: академик Коротеев является научным руководителем этого направления, и он же возглавляет межведомственную рабочую группу.

В одной упряжке

Анатолий Сазонович, давайте для начала уточним, кто и за что конкретно отвечает в этом амбициозном проекте?

Анатолий Коротеев: Головная организация, отвечающая за разработку собственно ядерного реактора, — Научно-исследовательский и конструкторский институт энергетических технологий (НИКИЭТ), входящий в систему «Росатома». «Центр Келдыша», которым я руковожу, назначен головным по ядерной энергодвигательной установке. А за транспортный модуль отвечает Ракетно-космическая корпорация «Энергия».

Как я понимаю, это три «коренника». А кого еще привлекли или собираетесь привлечь?

Анатолий Коротеев: В основе — кооперация предприятий «Росатома», которые должны делать реактор, и Роскосмоса, где изготовят турбокомпрессоры, генераторы и сами двигатели. Надо иметь в виду, что мы ведь не в чистом поле начали этот проект. В нем использован задел, созданный в предыдущие годы.

Например, по реактору в кооперации в НИКИЭТ состоят и предлагают свои наработки Подольский научно-исследовательский технологический институт, Курчатовский центр, Обнинский физико-энергетический институт. По замкнутому контуру многое сделали «Центр Келдыша», КБ химического машиностроения и воронежское КБ химической автоматики. По генератору подключаем Институт электромеханики.

Вы возглавляете межведомственную рабочую группу. Как часто и для каких целей она собирается?

Анатолий Коротеев: Собираемся по мере необходимости, один-два раза в месяц, бывает и чаще. Возникающие друг к другу вопросы стараемся не накапливать.

В июле на рабочей группе обсуждали плюсы и минусы различных вариантов конструкции холодильников-излучателей для отвода тепла от реакторной установки в условиях невесомости и безвоздушного пространства. В августе совещание состоялось в Сосновом Бору под Петербургом, где решено проводить натурные испытания такого реактора.

По замкнутой схеме

Не секрет, что работы по созданию ядерных ракетных двигателей были начаты в США и в СССР еще в 60-х годах прошлого века. Как далеко они продвинулись? И с какими проблемами пришлось столкнуться на этом пути?

Анатолий Коротеев: Действительно, работы по использованию ядерной энергии в космосе были начаты и активно велись у нас и в США в 1960-70-е годы.

Первоначально была поставлена задача создать ракетные двигатели, которые вместо химической энергии сгорания горючего и окислителя использовали бы нагрев водорода до температуры около 3000 градусов. Но оказалось, что такой прямой путь все-таки неэффективен. Мы на короткое время получаем большие тяги, но при этом выбрасываем струю, которая в случае нештатной работы реактора может оказаться радиоактивно зараженной.

Определенный опыт был накоплен, но ни нам, ни американцам не удалось тогда создать надежных двигателей. Они работали, но мало, потому что нагреть водород до 3000 градусов в ядерном реакторе — серьезная задача. А кроме того, возникали проблемы экологического свойства во время наземных испытаний таких двигателей, поскольку радиоактивные струи выбрасывались в атмосферу. Уже не секрет, что подобные работы проводились на специально подготовленном для ядерных испытаний Семипалатинском полигоне, который остался в Казахстане.

То есть критичными оказались два параметра — запредельная температура и выбросы радиации?

Анатолий Коротеев: В общем, да. В силу этих и некоторых других причин работы у нас и в США были прекращены или приостановлены — оценивать можно по-разному. И возобновить их таким, я бы сказал, лобовым образом, чтобы сделать ядерный двигатель со всеми уже названными недостатками, нам показалось неразумным. Мы предложили совершенно иной подход. От старого он отличается тем же, чем отличается гибридный автомобиль от обычного. В обычном авто двигатель крутит колеса, а в гибридных — от двигателя вырабатывается электроэнергия, и уже это электричество крутит колеса. То есть создается некая промежуточная электростанция.

Вот и мы предложили схему, в которой космический реактор не нагревает струю, выбрасываемую из него, а вырабатывает электричество. Горячий газ от реактора крутит турбину, турбина крутит электрогенератор и компрессор, который обеспечивает циркуляцию рабочего тела по замкнутому контуру. Генератор же вырабатывает электричество для плазменного двигателя с удельной тягой в 20 раз выше, чем у химических аналогов.

Мудреная схема. По существу, это мини-АЭС в космосе. И в чем ее преимущества перед прямоточным ядерным двигателем?

Читать еще:  Шумно работает двигатель когда холодный

Анатолий Коротеев: Главное — выходящая из нового двигателя струя не будет радиоактивной, поскольку через реактор проходит совершенно другое рабочее тело, которое содержится в замкнутом контуре.

Кроме того, нам не надо при этой схеме нагревать до запредельных значений водород: в реакторе циркулирует инертное рабочее тело, которое нагревается до 1500 градусов. Мы серьезно упрощаем себе задачу. И в итоге поднимем удельную тягу не в два раза, а в 20 раз по сравнению с химическими двигателями.

Немаловажно и другое: отпадает потребность в сложных натурных испытаниях, для которых нужна инфраструктура бывшего Семипалатинского полигона, в частности, та стендовая база, что осталась в городе Курчатове.

В нашем случае все необходимые испытания можно провести на территории России, не втягиваясь в длинные международные переговоры об использовании ядерной энергии за пределами своего государства.

За место на орбите

Чтобы проект осуществился в заявленный срок, требуются ли сейчас какие-то дополнительные меры организационного или финансового характера со стороны Роскосмоса и правительства РФ?

Анатолий Коротеев: На весь проект по 2018 год включительно обещано 17 млрд рублей. Декларированная сумма меньше чем хотелось бы, но, думаю, на ближайшие годы этого достаточно.

Ведутся ли сейчас подобные работы в других странах?

Анатолий Коротеев: У меня была встреча с заместителем руководителя НАСА, мы обсуждали вопросы, связанные с возвращением к работам по ядерной энергии в космосе, и он заявил, что американцы проявляют к этому большой интерес.

Вполне возможно, что и Китай может ответить активными действиями со своей стороны, поэтому работать надо быстро. И не только ради того, чтобы опередить кого-то на полшага.

Работать надо быстро в первую очередь для того, чтобы в формирующейся международной кооперации, а де-факто она формируется, мы выглядели достойно.

Я не исключаю, что уже в ближайшей перспективе может быть инициирована международная программа по ядерной космической энергоустановке

наподобие реализуемой сейчас программы по управляемому термоядерному синтезу.

Взгляд со стороны

Комплимент от Кроули и НАСА

Член специальной комиссии НАСА по пилотируемым полетам Эдвард Кроули (Edward Crawley, он же президент — основатель Сколковского института науки и технологий) считает, что главным технологическим вкладом России в международную экспедицию к Марсу могут быть ядерные двигатели, а также методы адаптации и сохранения здоровья космонавтов. По его мнению, ни одна страна не может в одиночку осуществить пилотируемый полет к Марсу. В этом проекте, по словам Кроули, должны соединиться интеллектуальные, технологические и финансовые возможности США, России, стран Евросоюза и, возможно, Китая. В частности, может быть востребован российский опыт в сфере разработки ядерных двигателей. «У России, — дал понять Кроули, — есть очень большой опыт как в разработке ракетных двигателей, так и в ядерных технологиях».

Транспортно-энергетический модуль на основе ЯЭДУ мегаваттного класса может обеспечить увеличенный в 30 раз (по сравнению с достигнутым) уровень энергообеспечения космических аппаратов и десятикратную (на единицу веса) экономию топлива маршевой двигательной установки. А технические решения, заложенные в концепцию ТЭМ, позволяют решать весь спектр космических задач XXI века, включая: доставку грузов на геостационарную орбиту; очистку околоземных орбит от неработающих спутников; защиту Земли от астероидной опасности; создание систем энергоснабжения Земли из космоса; программы исследования Луны; исследовательские миссии к дальним планетам.

— Это ж охренеть получается! Две сверхдержавы за полвека противостояния не смогли ядреное двигло к ракете прикрутить, а тут Роскосмос — хрясь, и за три года выдает на-гора супер-пупер дорогу к звездам. Короче, бронирую билет на первый рейс к Альфе Шеридана.

Svargaman, опубликовано в 2012 году.

Атом на орбите: к истории вопроса

Идея использовать ядерные двигатели на космических аппаратах в принципе не нова и уходит корнями в начало 1960-х. Уже тогда академики Мстислав Келдыш, Сергей Королев и Игорь Курчатов — первые лица советской космической программы и советского Атомного проекта — выдвигали такие задачи. Аналогичные разработки с прицелом на создание новых вооружений велись и в США. Но в космос ракетные ядерные двигатели так и не вышли. Хотя известно, что Советский Союз вывел с 1970 по 1988 год на различные орбиты 32 космических аппарата с термоэлектрической ядерной энергоустановкой (принцип ее работы основан на превращении энергии распада атома в электрическую энергию). Такие установки имели сравнительно небольшую мощность и ограниченный во времени срок службы, после чего сходили с орбиты, создавая головную боль, — куда упадут радиоактивные обломки? — для наземных служб слежения.

В конце 1980-х была заключена договоренность не запускать больше спутники с такими энергоустановками. Но сейчас, надеются в Роскосмосе и «Росатоме», в связи с возможной подготовкой международной экспедиции к Луне и Марсу, прежние запреты могут быть пересмотрены. Президент РКК «Энергия» Виталий Лопота при этом замечает, что эксплуатироваться корабли и транспортные модули с такими реакторами должны лишь на орбитах, «с которых не упадут». Он убежден, что уже в ближайшее десятилетие технически реально создать термоэмиссионные энергоустановки мощностью от 150 киловатт до мегаватта. Этого достаточно для орбитальных спутников. А для межпланетных миссий потребуется реакторная энергоустановка мощностью от одного до 6 мегаватт.

Ядерная электродвигательная установка

Ядерная электродвигательная установка (ЯЭДУ) — двигательная установка космического аппарата, включающая в себя комплекс бортовых систем космического аппарата (КА), таких как: электрический ракетный двигатель (ЭРД), система электропитания, обеспечиваемого ядерным реактором, система хранения и подачи рабочего тела (СХиП), система автоматического управления (САУ).

Начало работ над ядерными двигателями приходится на 1960-е гг. [1] [2] Ряд предприятий советской отрасли, в частности центр Келдыша, КБХА, Институт Доллежаля, принимали участие в этих работах, в результате был накоплен колоссальный опыт не только по работе с ядерными двигателями, но и по термоэмиссионным и термоэлектрическим энергоустановкам, а также по материалам и топливу [1] [3] [4] .

В советское время c 1968 по 1988 гг. была выпущена серия спутников «Космос» с ядерными реакторами. Несколько аварий спутников этой серии вызвали большой резонанс [5] .

Установки первого поколения от установки начала начала XXI в. отличались невысокой мощностью [4] : установки типа «Бук», производимые в 1970-е гг. НПО «Красная звезда», имели мощность 5 киловатт, в то время как установка начала XXI в. имеет мощность в 200 раз выше — 1 мегаватт [4] .

Отличие установок первого поколения от установок XXI века заключается в том, что реактор установки мегаваттного класса вырабатывает тепловую энергию, которая преобразуется в электрическую и далее расходуется на работу двигателя и другого оборудования, а её энергоблок работает по замкнутому циклу без выброса радиоактивных веществ [1] [4] . В реакторах первого поколения реактор был нужен для разогрева рабочего тела и создания реактивной тяги [4] . [1]

Одним из примеров ионного двигателя высокой мощности является разработанный исследовательским центром Келдыша двигатель ИД-500 [6] . Его параметры: мощность 32-35 кВт, тяга 375—750 мН, удельный импульс 70000 м/с, коэффициент полезного действия 0,75 [6] . ИД-500 имеет электроды ионно-оптической системы, выполненные из титана с диаметром перфорированной отверстиями зоны 500 мм, катод газоразрядной камеры, который обеспечивает ток разряда в диапазоне 20-70 А и катод-нейтрализатор, способный обеспечить нейтрализацию ионного пучка в диапазоне токов 2-9 А [6] . На следующем этапе разработки двигатель будет оснащен электродами из углерод-углеродного композиционного материала и катодом с поджигающим электродом, выполненным из графита [6] .

ЯЭДУ иногда путают с ядерным ракетным двигателем, что не совсем корректно, так как ядерный реактор в ЯЭДУ используется только для выработки электроэнергии [7] . Она, в свою очередь, используется для запуска и питания электрического ракетного двигателя (ЭРД), а также обеспечивает электропитание бортовых систем космического аппарата [7] [8] .

Читать еще:  Газель двигатель 406 инжектор нет давления масла

ЯЭДУ состоит из трех основных устройств: реакторной установки с рабочим телом и вспомогательными устройствами (теплообменник-рекуператор и турбогенератор-компрессор), электроракетной двигательной установки, холодильника-излучателя [1] [6] [9] [10] .

Принцип действия ионного двигателя следующий. В газоразрядной камере с помощью анодов и катодного блока, расположенных в магнитном поле, создается разреженная плазма. Из неё эмиссионным электродом «вытягиваются» ионы рабочего тела, ксенона или другого вещества и ускоряются в промежутке между ним и ускоряющим электродом [6] [7] .

Достоинствами ЯЭДУ являются возможность 10-летней эксплуатации, большой межремонтный интервал и продолжительное время работы на одном включении [6] С физической точки зрения ЯЭДУ это компактный газоохлаждаемый реактор на быстрых нейтронах. [6] [7] .

В 2009 году проект ЯЭДУ мегаваттного класса утвердила Комиссия по модернизации и технологическому развитию экономики России при президенте России. [11] Главным предприятием конструктором считается «НИКИЭТ», во главе с директором — генеральным конструктором Юрием Драгуновым. [7] Проект направлен на то что бы вывести Россию на лидирующие позиции в создании энергетических комплексов космического назначения, способных решать широкий спектр задач в космосе, таких как исследование Луны и дальних планет с созданием на них автоматических баз. [12] Особенность проекта 2009—2018 заключается в использовании специального теплоносителя — гелий-ксеноновой смеси. [4] А так же то что рабочие органы системы и защиты реакторной установки выполнены из труб изготовленных из молибденового сплава. [13] [14]

Ядерный ракетный двигатель

Я́дерный раке́тный дви́гатель (ЯРД) — разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги.

Традиционный ЯРД в целом представляет собой конструкцию из нагревательной камеры с ядерным реактором как источником тепла, системы подачи рабочего тела и сопла. Рабочее тело (как правило — водород) подаётся из бака в активную зону реактора, где, проходя через нагретые реакцией ядерного распада каналы, разогревается до высоких температур и затем выбрасывается через сопло, создавая реактивную тягу. Существуют различные конструкции ЯРД: твердофазный, жидкофазный и газофазный — соответствующие агрегатному состоянию ядерного топлива в активной зоне реактора — твёрдое, расплав или высокотемпературный газ (либо даже плазма).

В СССР развёрнутое постановление правительства по проблеме создания ЯРД было подписано в 1958 году. Этим документом руководство работами в целом было возложено на академиков М. В. Келдыша, И. В. Курчатова и С. П. Королёва [2] [3] . К работам были подключены десятки исследовательских, проектных, конструкторских, строительных и монтажных организаций. ЯРД активно разрабатывались КБХА в Воронеже и испытывались в СССР (см. РД-0410) и США (см. NERVA) с середины 1950-х годов. Исследования продолжаются и в 21-м веке [4] .

Содержание

  • 1 Твердофазный ядерный ракетный двигатель
  • 2 Жидкофазные и коллоидные ядерный ракетный двигатель
  • 3 Газофазный ядерный ракетный двигатель
  • 4 Ядерный импульсный двигатель
  • 5 Другие разработки
  • 6 Ядерная электродвигательная установка
  • 7 Перспективы
  • 8 См. также
  • 9 Примечания
  • 10 Литература
  • 11 Ссылки

Твердофазный ядерный ракетный двигатель [ | ]

В твердофазных ЯРД (ТфЯРД) делящееся вещество, как и в обычных ядерных реакторах, размещено в сборках-стержнях (ТВЭЛах) сложной формы с развитой поверхностью, что позволяет эффективно нагревать газообразное рабочее тело (обычно — водород, реже — аммиак), одновременно являющееся теплоносителем, охлаждающим элементы конструкции и сами сборки. Температура нагрева ограничена температурой плавления элементов конструкции (не более 3000 К). Удельный импульс твердофазного ЯРД, по современным оценкам, составит 850—900 с, что более чем вдвое превышает показатели наиболее совершенных химических ракетных двигателей [5] . Наземные демонстраторы технологий ТфЯРД в ХХ веке были созданы и успешно испытаны на стендах (программа NERVA в США, РД-0410 в СССР).

Жидкофазные и коллоидные ядерный ракетный двигатель [ | ]

Работы по жидкофазным и коллоидным ЯРД не получили большого развития, так как эти ЯРД по своей эффективности сравнительно мало превосходят твердофазные, а по технической сложности сравнимы с газофазными (проблемы организации запуска, регулирования и выключения для жидкофазных и коллоидных ЯРД являются столь же сложными).

Газофазный ядерный ракетный двигатель [ | ]

Газофазный ядерный реактивный двигатель (ГЯРД) — концептуальный тип реактивного двигателя, в котором реактивная сила создаётся за счёт выброса теплоносителя (рабочего тела) из ядерного реактора, топливо в котором находится в газообразной форме или в виде плазмы. Считается, что в подобных двигателях удельный импульс составит 30—50 тыс. м/с. Перенос тепла от топлива к теплоносителю достигается в основном за счёт излучения, большей частью в ультрафиолетовой области спектра (при температурах топлива около 25 000 °C).

Ядерный импульсный двигатель [ | ]

Атомные заряды мощностью примерно в килотонну на этапе взлёта должны взрываться со скоростью один заряд в секунду. Ударная волна — расширяющееся плазменное облако — должна была приниматься «толкателем» — мощным металлическим диском с теплозащитным покрытием и потом, отразившись от него, создать реактивную тягу. Импульс, принятый плитой толкателя, через элементы конструкции должен передаваться кораблю. Затем, когда высота и скорость вырастут, частоту взрывов можно будет уменьшить. При взлёте корабль должен лететь строго вертикально, чтобы минимизировать площадь радиоактивного загрязнения атмосферы.

В США космические разработки с использованием импульсных ядерных ракетных двигателей осуществлялись с 1958 по 1965 год в рамках проекта «Орион» компанией «Дженерал Атомикс» по заказу ВВС США.

По проекту «Орион» проводились не только расчёты, но и натурные испытания. Лётные испытания моделей летательного аппарата с импульсным приводом (для взрывов использовалась обычная химическая взрывчатка). Были получены положительные результаты о принципиальной возможности управляемого полёта аппарата с импульсным двигателем. Также для исследования прочности тяговой плиты проведены испытания на атолле Эниветок. Во время ядерных испытаний на этом атолле покрытые графитом стальные сферы были размещены в 9 м от эпицентра взрыва. Сферы после взрыва найдены неповреждёнными, тонкий слой графита испарился (аблировал) с их поверхностей.

Программа развития проекта «Орион» была рассчитана на 12 лет, расчётная стоимость — 24 миллиарда долларов, что было сопоставимо с запланированными расходами на лунную программу «Аполлон» («Apollo»). Интересно, что разработчики проводили предварительные расчёты постройки на базе этой технологии корабля поколений с массой до 40 млн тонн и экипажем до 20 000 человек [6] . Согласно их расчётам один из уменьшенных вариантов такого ядерно-импульсного звездолёта (массой 100 тыс. т) мог бы достичь Альфы Центавра за 130 лет, разогнавшись до скорости 10 000 км/с. [7] [8] Однако приоритеты изменились, и в 1965 году проект был закрыт.

В СССР аналогичный проект разрабатывался в 1950—70-х годах [9] . Устройство содержало дополнительные химические реактивные двигатели, выводящие его на 30—40 км от поверхности Земли; затем предполагалось включать основной ядерно-импульсный двигатель. Основной проблемой была прочность экрана-толкателя, который не выдерживал огромных тепловых нагрузок от близких ядерных взрывов. Вместе с тем были предложены несколько технических решений, позволяющих разработать конструкцию плиты-толкателя с достаточным ресурсом. Проект не был завершён. Реальных испытаний импульсного ЯРД с подрывом ядерных устройств не проводилось.

Другие разработки [ | ]

В 1960-х годах США были на пути к Луне. Менее известным является тот факт, что в Зоне 25 (рядом со знаменитой Зоной 51) на полигоне Невады учёные работали над одним амбициозным проектом — полётом на Марс на ядерных двигателях. Проект был назван NERVA. Работая на полную мощность, ядерный двигатель должен был нагреваться до температуры в 2000 °C. В январе 1965 года были произведены испытания ядерного ракетного двигателя под овым названием «КИВИ» (KIWI).

В ноябре 2017 года Китайская корпорация аэрокосмической науки и техники (China Aerospace Science and Technology Corporation, CASC) опубликовала дорожную карту развития космической программы КНР на период 2017—2045 годы. Она предусматривает, в частности, создание многоразового корабля, работающего на ядерном ракетном двигателе [10] .

Читать еще:  Что такое картография двигателя

В феврале 2018 года появились сообщения о том, что НАСА возобновляет научно-исследовательские работы по ядерному ракетному двигателю [11] [12] [13] .

Ядерная электродвигательная установка [ | ]

Ядерная электродвигательная установка (ЯЭДУ) используется для выработки электроэнергии, которая, в свою очередь, используется для работы электрического ракетного двигателя.

Подобная программа в США (проект NERVA) была свёрнута в 1971 году, но в 2020 году американцы вновь вернулись к данной теме, заказав разработку ядерного теплового двигателя (Nuclear Thermal Propulsion, NTP) компании Gryphon Technologies, для военных космических рейдеров на атомных двигателях для патрулирования окололунного и околоземного пространства [14] , также с 2015 года идут работы по проекту Kilopower.

С 2010 года в России начались работы над проектом ядерной электродвигательной установки мегаваттного класса для космических транспортных систем (космический буксир «Нуклон»). На 2021 год ведётся отработка макета; к 2025 году планируется создать опытные образцы данной ядерной энергоустановки; заявлена плановая дата лётных испытаний космического тягача с ЯЭДУ — 2030 год.

В 2021 году Космическое агентство Великобритании заключило соглашение с компанией Rolls-Royce, в рамках которого планируется создать ядерный силовой двигатель для космических аппаратов дальнего действия [15] .

Перспективы [ | ]

По оценкам А. В. Багрова, М. А. Смирнова и С. А. Смирнова, ядерный ракетный двигатель может добраться до Плутона за 2 месяца [16] [17] и вернуться обратно за 4 месяца с затратой 75 тонн топлива, до Альфы Центавра за 12 лет, а до Эпсилона Эридана за 24,8 года [18] .

Ядерный ракетный двигатель

Человечество веками мечтало о покорении космического пространства и полетах к звездам. Однако до недавних пор не было создано двигателей для космических аппаратов и самих ракет-носителей, которые донесли бы человека до ближайших звёзд не за десятки тысяч лет, а хотя бы в течение его жизни.

• В настоящее время проект космического корабля с ядерной энергоустановкой мегаваттного класса, который сможет осуществить планы покорения звезд, разработан Государственным научным центром ФГУП «Центр Келдыша», который возглавляет академик Анатолий Коротеев.

• Сергей Павлович Королев, один из основоположников отечественной космонавтики, давно мечтал о мощной силовой атомной установке для ракет. Не дремали и ученые на западе, в частности, в США. Ими в 1950—1960 годах был разработан «Орион» — проект пилотируемого реактивно-импульсного космического корабля «взрыволёт» для исследования межпланетного и межзвёздного пространства. Впервые идею «Ориона» предложили Станислав Улам и Корнелиус Эверетт в Лос-Аламосе в 1955 году.

Их концепция заключалась в следующем: взрывы водородных бомб, выбрасываемых из корабля, вызывали испарение дисков, выбрасываемых вслед за бомбами. Расширяющаяся плазма толкала корабль. По проекту «Орион» проводились не только расчёты, но и натурные испытания. Это были летные испытания моделей, движимых химическими взрывчатыми веществами. Модели называли «put-puts», или «hot rods». Несколько моделей было разрушено, но один 100-метровый полет в ноябре 1959 года был успешен и показал, что импульсный полет может быть устойчивым.

• Первоначально «Орион» предполагалось запускать с Земли, с атомного полигона Джекесс-Флетс, расположенного в Неваде. Аппарат должен был иметь форму пули для преодоления атмосферы Земли. Корабль устанавливался на 8 стартовых башнях высотой 75 метров для того, чтобы не быть повреждённым от ядерного взрыва у поверхности.

При запуске каждую секунду должен был производиться один взрыв мощностью 0,1 кт (для сравнения: мощность бомб, сброшенных на Хиросиму и Нагасаки, была равной 20 кт, то есть в 200 раз мощнее). После выхода из атмосферы каждые десять секунд должна была взрываться одна 20 килотонная бомба. Цена запуска 1 килограмма полезной нагрузки должна была быть 150 долларов. Основной целью проекта было создание корабля для исследования Солнечной системы.

Проект «Орион» был закрыт в 1965 году. Дальнейшим развитием идей, заложенных в основу «Ориона», можно считать межзвёздный зонд «Дедал». Это был один из первых детальных технических проектов по созданию возможного непилотируемого межзвездного космического аппарата. Он проводился с 1973 по 1977 годы группой из одиннадцати ученых и инженеров Британского межпланетного общества.

• Проект «Дедал» предусматривал строительство на орбите Юпитера мощного двухступенчатого беспилотного корабля с термоядерными двигателями. По расчетам, корабль проекта «Дедал» должен был за 50 лет долететь до звезды Барнарда (одна из ближайших звезд), не тормозясь пройти мимо неё по пролётной траектории, собрать сведения о звезде и планетах и затем по радиоканалу передать результаты исследований на Землю. Реальной заслугой проекта «Дедал» явилось то, что он сломал стереотипное представление о звездолетах как о чем-то далеком и сверхфантастическом.

• Мечты Королева о ядерном ракетном двигателе (ЯРД) начали осуществляться лишь за два года до запуска первого человека в космос. Именно тогда произошла определяющая во всех отношениях встреча «трех К», трех выдающихся ученых: Курчатова Игоря, «отца» нашей атомной бомбы, Келдыша Мстислава, главного теоретика космонавтики и математики и Королева Сергея, главного конструктора ракет. Именно на этой встрече и было принято решение о создании атомного ракетного двигателя. И он был создан в короткое время.

Испытания реактора проводили в 1978—1981 годах на атомном полигоне в Семипалатинске, а самого двигателя — на стенде в Подмосковье, в Загорске. Всего было проведено более 250 испытаний двигателей, в результате которых был создан самый настоящий и работоспособный двигатель, отвечавший всем предъявленным требованиям. Но наступила перестройка и проект отложили до лучших дней.

• Мощный импульс для создания ЯРД получили ученые в наши дни благодаря президенту России Дмитрию Медведеву, который заявил в одном из своих выступлений, что «космос является одним из приоритетов России». «Сворачивать здесь мы никуда не будем», – сказал он. Также президент отметил, что необходимо «продолжить работу над новым проектом исследовательского центра имени М.В.Келдыша по созданию космического транспортно-энергетического модуля на основе ядерной энергодвигательной установки».

• Генеральный директор этого центра академик Коротеев в свою очередь подтвердил обозревателю «Оружия России» Валерию Елисаветскому информацию о том, что «эскизный проект космического корабля с ядерной энергоустановкой мегаваттного класса будет завершен к концу 2012 года. А проектирование ядерного реактора для него планируется закончить уже в этом году».

На основе ядерной энергодвигательной установки будет создан транспортно-энергетический модуль (ТЭМ). В его состав войдет газоохлаждаемый атомный ректор с турбомашинным преобразованием тепловой энергии в электрическую и высокоэффективные электроракетные двигатели.

• По словам академика Коротеева, ТЭМ — это качественно новое космическое средство. Он сможет обеспечить длительные экспедиции в дальний космос, рост экономичности транспортных операций в 20 раз, рост электрической мощности в космосе более чем в 10 раз, эффективную межорбитальную транспортировку.

• Также ТЭМ сможет осуществить эффективную реализацию экспедицию на другие небесные тела, например, Луну или Марс, с созданием напланетных станций, т.е. осуществление экспедиций пребывания, а не посещения, промышленное производство в космосе, создание эффективных систем очистки космоса от мусора, борьбу с астероидной опасностью.

• Конечно, проект интересный, и хотя на его осуществление планируется выделить около 500 млн. рублей, весь вопрос в том, что дойдут ли эти деньги до наших ученых и инженеров. Даже тот же Коротеев говорил о том, что в 2010 году им было выделено всего 70 млн. руб., причем из них из них 40 млн. были перечислены РКК «Энергия» на реализацию ее программы. Посмотрим, что будет дальше, время покажет.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты