0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое комбинированный двигатель

Энциклопедия техники — комбинированный двигатель

Комбинированный двигатель

Можно выделить две основные группы К. д.:

1) двигатели комбинированных циклов, сочетающие циклы различных исходных двигателей в пределах тракта с обменом энергией между составляющими циклы процессами;

2) двигатели, в которых используются общие элементы для реализации различных циклов в разных условиях (режимах полёта и режимах работы).

К первой группе относятся: турбопрямоточный двигатель эжекционного типа с передачей части энергии продуктов сгорания воздуху, поступающему в прямоточный контур; турбовинтовой двигатель (ТВД), в котором часть свободной энергии цикла расходуется на привод винта; турбореактивный двухконтурный двигатель (ТРДД), в котором часть свободной энергии цикла расходуется на сжатие воздуха, поступающего в вентиляторный контур; ракетно-турбинный двигатель (РТД), в котором часть энергии продуктов сгорания передаётся воздуху, сжимаемому компрессором, и др. Рабочий цикл всех К. д. можно разделить на два подцикла: генераторный, служащий для вырабатывания энергии, передаваемой рабочему телу, участвующему в основном цикле, и основной, в котором подведённая энергия превращается в работу двигателя или (и) движителя. В общем случае энергия генераторного цикла может быть передана основному циклу в любой форме (в виде механической работы, теплоты). Термодинамическая эффективность К. д. первой группы определяется увеличенной по сравнению с двигателями исходных типов разностью температур источника энергии и холодильника в обоих циклах и увеличением суммарной степени повышения давления в цикле. Поэтому, например, в РТД, благодаря повышению давления в генераторном цикле и росту термического коэффициента полезного действия η по сравнению с соответствующими значениями тех же величин в турбореактивном двигателе, можно уменьшить габаритные размеры и массу, а благодаря увеличению полётного коэффициента полезного действия по сравнению с коэффициентом полезного действия ракетного двигателя — повысить полный коэффициент полезного действия (см. Коэффициент полезного действия реактивного двигателя). По способам передачи энергии от генераторного цикла основному различают: К. д. с отбором механической работы, но без отбора теплоты, то есть без смешения рабочих тел, участвующих в циклах, и без теплопередачи от генераторного цикла основному (турбореактивный двухконтурный двигатель, турбореактивный двухконтурный двигатель с форсажом во II контуре, РТД вентиляторного типа, РТД с раздельными газогенераторным и основным контурами и т. д.); К. д. с отбором теплоты, но без отбора механической энергии от генераторного цикла к основному, то есть двигатели замкнутых схем с теплообменом между генераторным и основным циклами (атомный ТРД, двигатель внешнего сгорания с регенерацией теплоты и др.); К. д. с отбором механической работы и тепловой энергии от генераторного цикла для основного, то есть со смешением рабочих тел, участвующих в циклах, либо К. д. без смешения потоков, но с передачей механической работы и теплоты от генераторного цикла основному через турбокомпрессор и теплообменник или в процессе смешения (турбореактивный двухконтурный двигатель с форсажной камерой со смешением потоков, РТД со смешением потоков, РТД «пароводородной» схемы с приводом турбины от газифицированного и подогретого водорода, водородные РТД с ожижением части воздуха за компрессором, ракетно-прямоточные двигатели различных типов и т. д.). Оптимальное значение передаваемой энергии от генераторного цикла основному и способ её передачи (в виде теплоты или механической работы) для достижения максимальной экономичности этих типов К. д. в общем случае зависят от значения свободной энергии генераторного цикла, режима полёта и коэффициента полезного действия элементов.

Ко второй группе К. д. можно отнести обычные турбопрямоточные двигатели, в которых затурбинная камера сгорания на турбокомпрессорном режиме играет роль форсажной камеры с дожиганием топлива в цикле турбореактивного двигателя с форсажной камерой или турбореактивного двухконтурного двигателя с форсажной камерой, а на прямоточном режиме служит камерой сгорания бескомпрессорного прямоточного воздушно-реактивного двигателя (прямоточный воздушно-реактивный двигатель). К этой группе также относятся так называемые интегральные прямоточные воздушно-реактивные двигатели, в которых камера сгорания в одном диапазоне режимов полёта работает как камера сгорания ракетного двигателя твёрдого топлива, а в другом (после выгорания твёрдого топлива) — как камера сгорания прямоточного воздушно-реактивного двигателя. Основные особенности параметров и характеристик К. д. этой группы обусловлены особенностями рабочего процесса двигателей исходных циклов в соответствующих условиях полёта, а также условиями перехода с одного режима на другой. Преимущества К. д. этой группы — возможность уменьшения габаритных размеров и массы по сравнению с соответствующими параметрами смешанной двигательной установки, состоящей из устанавливаемых на летательном аппарате двигателей двух типов, реализующих исходные циклы. Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия

Читать еще:  Шумно работает двигатель киа пиканто

Архив WinRAR_1 / 2 — Двигатели / 26 — области применения ДВС. Классификация ДВС

Типы автомобильных двигателей

Среди двигателей, применяющихся в настоящее время, а также перспективных для использования на автомобильном транспорте, следует отметить следующие типы:

1. Двигатели внутреннего сгорания, которые подразделяют на поршневые и роторно-поршневые.

2. Газотурбинные двигатели (ГТД).

3. Двигатели внешнего сгорания (паровые, двигатели Стирлинга).

4. Электрические двигатели.

5. Криогенные двигатели.

6. Инерционные двигатели.

Двигатели внутреннего сгорания (ДВС) в настоящее время являются наиболее распространенными автомобильными двигателями. В этих двигателях топливо сгорает непосредственно внутри рабочего органа — цилиндра (в поршневых двигателях) или в полости, образованной ротором и корпусом (в роторных двигателях). Основным преимуществом ДВС является непосредственное воздействие продуктов сгорания топлива на поршень. Это дает возможность добиться сравнительно высоких значений термического коэффициента полезного действия (ТКПД).

Высокая (по сравнению с другими типами тепловых двигателей) экономичность ДВС, возможность построения их в большом диапазоне мощностей, достаточно быстрый пуск, небольшие масса и размеры, сравнительно невысокая стоимость, большой ресурс обусловили их широчайшее распространение в различных сферах деятельности. ДВС в настоящее время являются практически единственным типом двигателей в силовых агрегатах не только автомобилей, но и тракторов, сельскохозяйственной техники, дорожных, строительных машин. Судовые, локомотивные и авиационные силовые установки малой мощности обычно также представлены двигателями внутреннего сгорания различных типов.

Области применения ДВС

Поршневые и комбинированные двигатели в зависимости от их назначения изготовляются с мощностью от нескольких сот ватт до 40000кВт. Основные области их применения:

1. Автомобильный транспорт, тракторы, сельхозмашины и др.

2. Железнодорожный транспорт, в т.ч. энергопоезда.

3. Морской и речной флот, катера.

4. Легкомоторная авиация.

5. Строительная, дорожная техника (экскаваторы, бульдозеры, скреперы, грейдеры, самоходные краны, компрессоры, передвижные электростанции и др.).

6. Стационарная электроэнергетика.

7. Привод компрессоров, насосов на трубопроводах, в бурильных установках.

8. Модели и модельные установки.

9. Военная и специальная техника.

Классификация ДВС.

Признаки классификации ДВС могут быть различными и определяются как назначением, особенностями практического применения, так и принципами построения, элементами конструкции и др. Поэтому при некоторой условности все же следует отметить следующие общепринятые принципы и признаки классификации поршневых двигателей.

1. По назначению: стационарные, переносные, транспортные (автомобильные, тракторные, судовые, авиационные и др.).

2. По роду применяемого топлива: двигатели легкого топлива, тяжелого, газообразного, многотопливные.

3. По способу осуществления зарядки цилиндров: четырехтактные и двухтактные двигатели.

4. По способу смесеобразования: двигатели с внешним и внутренним смесеобразованием.

5. По способу воспламенения смеси: двигатели с искровым зажиганием и двигатели с воспламенением от сжатия.

6. По конструктивному расположению цилиндров и схеме: рядные и звездообразные, вертикальные и горизонтальные схемы. Кроме того, рядные двигатели подразделяют на V-, W-, H-, Y- и X-образные и др. Некоторые варианты компоновки представлены на рис.1.1.

7. По способу охлаждения двигатели разделяют на двигатели с жидкостным и воздушным охлаждением.

Помимо перечисленных признаков иногда двигатели классифицируют по способам регулирования, скорости вращения, признакам цикла, наличию систем наддува и т.д.

В современных автомобилях применяются преимущественно четырехтактные поршневые двигатели с рядным, V-образным и оппозитным расположением цилиндров.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Что такое комбинированный двигатель

комбинированный впрыск, двигатели +с непосредственным впрыском топлива, комбинированный впрыск топлива, двигатель +с комбинированным впрыском, система питания +с комбинированным впрыском, комбинированный впрыск непосредственно распределенный, система распределенного впрыска топлива, распределенный +и непосредственный впрыск топлива, распределенный впрыск топлива +что +это, система непосредственного впрыска топлива, непосредственный впрыск топлива Бензиновый двигатель с непосредственным впрыском топлива имеет большие преимущества такие как экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов, но в то же время на некоторых режимах работы образует большое количество твердых частиц сажи, которая в свою очередь попадает в атмосферу. Их содержание может превышать выбросы такого же по объему дизеля.

комбинированный впрыск, двигатели +с непосредственным впрыском топлива, комбинированный впрыск топлива, двигатель +с комбинированным впрыском, система питания +с комбинированным впрыском, комбинированный впрыск непосредственно распределенный, система распределенного впрыска топлива, распределенный +и непосредственный впрыск топлива, распределенный впрыск топлива +что +это, система непосредственного впрыска топлива, непосредственный впрыск топлива Бензиновый двигатель с непосредственным впрыском топлива имеет большие преимущества такие как экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов, но в то же время на некоторых режимах работы образует большое количество твердых частиц сажи, которая в свою очередь попадает в атмосферу. Их содержание может превышать выбросы такого же по объему дизеля.

Читать еще:  Yamabisi что за двигатель

Для уменьшения выбросов в атмосферу и исполнения экологических норм ЕВРО-6 концерн VAG (Volkswagen Audi Gruppe) и чуть позже Toyota разработали комбинированную систему впрыска топлива объединяющую систему непосредственного впрыска и систему распределенного впрыска на одном двигателе. При изменении режимов работы двигателя внутреннего сгорания электронный блок управления переключает работу между системами впрыска. В результате инженерам удалось на двигателях с комбинированным впрыском увеличить мощность, крутящий момент, сократить расход топлива, уменьшить выбросы CO2 в окружающую среду и соответствовать экологическим нормам.

Сейчас комбинированная или непосредственно-распределенная система впрыска устанавливается на двигателях VAG TFSI объемом 1,8 и 2,0 литра и Toyota 6AR-FSE 2,0 литра. Система питания с комбинированным впрыском включает в себя элементы обоих систем: форсунки, топливную рампу высокого давления, форсунки, топливную рампу низкого давления, а также насос высокого давления обеспечивающий питание обеих систем.

Элементы обеих топливных систем установлены так же как на двигателях присущих им. Работа непосредственно-распределенной системы впрыска осуществляется в зависимости от нагрузки на двигатель внутреннего сгорания. При пуске, прогреве, а так же при максимальной нагрузке активна система непосредственного (прямого) впрыска топлива. И при разных режимах идет разное количество инжекции топлива например: при запуске – три впрыска на такте сжатия; на холодном двигателе – один впрыск на такте впуска; при прогреве двигателя и движении с максимальной нагрузкой – два впрыска, один на такте впуска, другой на такте сжатия. Форсунки непосредственного впрыска периодически подключаются для предотвращения их засорения. Система распределенного впрыска подключается только при частичной нагрузке и на средних мощностных характеристиках работы двигателя. В основном этот режим работы присущ размеренной городской езде с частыми остановками и стартами автомобиля.

комбинированный впрыск, двигатели +с непосредственным впрыском топлива, комбинированный впрыск топлива, двигатель +с комбинированным впрыском, система питания +с комбинированным впрыском, комбинированный впрыск непосредственно распределенный, система распределенного впрыска топлива, распределенный +и непосредственный впрыск топлива, распределенный впрыск топлива +что +это, система непосредственного впрыска топлива, непосредственный впрыск топлива Оптимизация режимов впрыска топлива в соответствии с режимами работы двигателя позволяет достичь минимального выброса сажевых частиц в атмосферу с отработавшими газами. Необходимо отметить, что при выходе из строя одной из систем впрыска двигатель продолжает работать в аварийном режиме, а автомобиль имеет возможность двигаться.

Что такое комбинированный двигатель

14.1. Двухтактные двигатели

Двухтактный двигатель чаще всего применяется в случаях, когда требуется небольшая максимальная мощность. Малоразмерный одноцилиндровый двухтактный двигатель воздушного охлаждения имеет очень простую конструкцию и небольшое количество деталей. Предельным случаем может служить двигатель с компрессорным (калильным) зажиганием для авиамоделей.

Самые большие, созданные для судов, поршневые двигатели также являются двухтактными с крейцкопфным кривошипно-шатунным механизмом. Низкую частоту вращения этих двигателей выгодно использовать для непосредственного привода корабельных винтов. У этих двухтактных двигателей легко изменяется направление вращения, и они не требуют применения для этого реверс-редуктора.

Двухтактные двигатели применяются в автомобилях гораздо реже, что вызвано более высоким удельным расходом топлива и повышенной токсичностью отработавших газов. Эти два фактора вызваны организацией процессов газообмена и смазывания двигателя. У малоразмерных двухтактных двигателей, имеющих не более четырех цилиндров, применяется кривошипно-камерная продувка. Эта схема проста, не вызывает возрастания массы двигателя и хорошо зарекомендовала себя, однако КПД ее низок и ведет к уменьшению объема свежего заряда в цилиндре. Об этом свидетельствуют сравнительные диаграммы фаз газораспределения четырехтактного а и двухтактного б двигателей, приведенные на рис. 103.


Рис. 103. Фазы газораспределения четырехтактного и двухтактного двигателей: 1 — начало впуска; 2 — конец впуска; 3 — начало выпуска; 4 — конец выпуска

У четырехтактного двигателя выпускной клапан открывается, когда поршень от ВМТ проходит 87 % длины своего полного хода. Впускной клапан закрывается, когда поршень пройдет 90 % длины полного хода от ВМТ. Этим точкам соответствует поворот коленчатого вала приблизительно на 440°. У двухтактного двигателя с симметричными фазами газораспределения режим продувки крайне невыгоден. Выпускное окно открывается перед открытием, а закрывается — уже после закрытия впускного (продувочного) окна, поэтому часть свежего заряда проникает в открытое выпускное окно. Более целесообразно, когда симметричны лишь фазы газораспределения впускного (продувочного) окна. В этом случае выпускное окно открывается после прохождения поршнем 55 % длины его полного хода от ВМТ, а впускное (продувочное) окно закрывается после прохождения 83 % полной длины хода от ВМТ. Таким образом, в четырехтактном двигателе для наполнения цилиндра свежей смесью и отвода продуктов сгорания необходимо, чтобы коленчатый вал повернулся на 440°, а в двухтактном — только на 135°. Очевидно, что у двухтактного двигателя за 1/3 периода вращения коленчатого вала невозможно достичь такого же хорошего наполнения цилиндра свежим зарядом, как у четырехтактного двигателя.

Читать еще:  Двигатель бмв м40 как работает

Недостатком кривошипно-камерной продувки является очень короткий период впуска, особенно при симметричном открытии третьего (впускного) окна нижней кромкой юбки поршня. Чтобы улучшить процесс газообмена, часто применяют золотник, приводимый коленчатым валом, или пластинчатый обратный клапан в выпускном окне. Несмотря на эти устройства, а также на то, что двухтактный двигатель имеет число тактов рабочего хода в единицу времени в 2 раза больше, чем четырехтактный двигатель, удельные мощности обоих типов двигателей весьма близки.

Главный недостаток двухтактных двигателей заключается в повышенном содержании вредных СО и СНх в отработавших газах. Выброс NОх относительно невелик, так как очистка цилиндров двухтактных двигателей от отработавших газов происходит хуже и поэтому в них достигается такой же эффект, как и при рециркуляции отработавших газов в четырехтактном двигателе. Однако низкая температура отработавших газов, сопровождающая малый выброс NОх, при использовании для дожигания СО и СНх тепловых реакторов нежелательна. Недостатки способа смазки цилиндров двухтактного двигателя уже были рассмотрены ранее.

Указанные особенности двухтактных двигателей представляют большие препятствия для их использования в автомобилях, поскольку устранения этих недостатков простыми способами пока не найдено.

Было бы несправедливым, однако, не указать на некоторые преимущества этих двигателей, особенно дизельных. Универсальность, например, двигателей типа GMC и ЯАЗ-204 является до настоящего времени практически уникальной.

В этих двигателях применяется механизм газораспределения с двумя выпускными клапанами и подачей свежего воздуха через окна в гильзе цилиндра посредством приводного нагнетателя типа «Рут». Оригинальна и конструкция топливной аппаратуры, состоящей из выполненных в одном корпусе секции топливного насоса и форсунки. Уравновешивание моментов сил инерции первого порядка возвратно-поступательно движущихся масс осуществляется противовесами на распределительном валу (у двухтактного двигателя он вращается с частотой коленчатого) и на симметрично расположенном уравновешивающем валу. Взаимозаменяемость этих двух валов и возможность поворота головки цилиндра позволяют разместить выпускной трубопровод на левой или правой стороне ряда цилиндров. Направление вращения двигателя можно изменить с помощью замены шестерен привода распределительного вала. Хорошая организация продувки дала возможность достичь в этом дизеле такого же среднего эффективного давления, как и в четырехтактном, и его удельная мощность почти в 2 раза выше мощности четырехтактного дизеля.

Применение турбонаддува и четырех клапанов в цилиндре четырехтактного дизеля снизило преимущества высокой удельной мощности двухтактных дизелей типа GMC и ЯАЗ-204. Турбонаддув двухтактных двигателей является более сложным, так как их отработавшие газы имеют низкую температуру из-за содержания холодного продувочного воздуха. Кроме того, двигатель при неработающем турбокомпрессоре пускается труднее. Тем не менее в двухтактных дизелях GMC также начали применять турбонаддув. Турбокомпрессор подает воздух в нагнетатель типа «Рут», при этом часть мощности турбокомпрессора может быть передана через него на коленчатый вал.

Существует ряд интересных конструкций двухтактных двигателей. Примером такой конструкции является экспериментальный двигатель «Орион», США (рис. 104).


Рис. 104. Комбинированный двигатель ‘Орион’

Схема этого двигателя дана на рис. 105. Двигатель состоит из поршневого генератора горячих газов и источника механической энергии, в качестве которого служит газовая турбина.


Рис. 105. Схема комбинированного двигателя ‘Орион’: 1 — центробежный нагнетатель; 2 — газовая турбина: 3 — охлаждающие ребра

Поршневая часть выполнена в виде двухтактного двигателя со встречно движущимися в цилиндре поршнями. От поршневого двигателя приводится большой центробежный нагнетатель, подающий воздух как для сгорания в цилиндры, так и для охлаждения их воздухом. Для преобразования тепловой энергии в механическую служит газовая турбина, работающая на отработавших газах, смешанных с охлаждающим воздухом. Таким образом, в двигателе «Орион» для выработки механической энергии используется как теплота отработавших газов, так и теплота, отводимая в охлаждающий воздух от ребер. Разработка этого двигателя находится в начальной стадии [16].

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector