Что такое переходные процессы в асинхронных двигателях
Электростанции
- Главная
- карта сайта
- статьи
Навигация
- Меню сайта
- Организация эксплуатации
- Электрические схемы
- Турбогенераторы
- Трансформаторы и автотрансформаторы
- Распределительные устройства
- Электродвигатели
- Автоматика
- Тепловая изоляция
- Регулирование энергоблоков
- Тяговые подстанции
- Выпрямители и зарядные устройства
- Проектирование электрических сетей и систем
- Электрооборудование электротермических установок
Меню раздела
Влияние индуктивности силовых цепей двигателей на характер переходных процессов
Переходные процессы электромеханических систем являются процессами, в ходе которых изменяется энергетическое состояние всей электромеханической системы и ее элементов. Так, изменение скорости ротора электрической машины от 4ГЯ корни уравнений будут разными, вещественными, отрицательными. Такое соотношение постоянных времени имеет место при включении в якорную цепь двигателя дополнительных сопротивлений, например в случае реостатного пуска двигателей на искусственных характеристиках. Тогда процесс носит апериодический характер в виде суммы двух экспонент. Чем больше активные сопротивления якорной цепи, тем больше Тч и тем ближе действительный характер переходного процесса к рассчитанному методами, указанными в § 5.2, т. е. в этих случаях индуктивностью якорной цепи двигателя можно пренебречь.
В случае Гм >еп. При этом изменит знак ток якоря, вызывая замедление двигателя, т. е. избыток кинетической энергии, уменьшаясь, передается в якорную цепь двигателя в виде электромагнитной энергии. Обмен энергиями между электромагнитной и механической инерционностями двигателя, т. е. колебательность тока якоря и скорости двигателя, продолжается до полного рассеяния энергии свободных токов в активных сопротивлениях якорной цепи в виде тепловой энергии.
Колебательный характер переходных процессов в приводах ЭТУ является нежелательным явлением, так как колебания, например, электродов в печах переплава и дуговых при работе регуляторов мощности вызывают колебания потребляемых печами активной и реактивной мощностей, отрицательно сказываясь на питающих печи сетях. Поэтому при построении регуляторов мощности электродных печей предусматриваются специальные мероприятия, обеспечивающие коррекцию переходных процессов в соответствии с предъявляемыми к ним требованиями.
При исследовании влияния индуктивностей многофазных обмоток машин переменного тока на характер переходных процессов исходят из того положения, что в двигателе вращающиеся магнитные поля (см. рис. 2.3) создаются принужденными составляющими фазных токов. Результирующим действием свободных токов фазных обмоток является неподвижное в зазоре двигателя магнитное поле. Налагаясь на вращающуюся с синхронной скоростью принужденную составляющую, неподвижная свободная составляющая поля периодически ослабляет или усиливает поле в зазоре машины, вызывая колебания момента и скорости двигателя в процессе разбега двигателя. Приведенные на рис. 5.10,в графики пуска асинхронного двигателя построены с использованием статической механической характеристики двигателя. Колебания момента и скорости, вызванные свободными составляющими токов в фазах двигателя, будут происходить в соответствии с рис. 5.18, на котором приведены графики со(/) и M(t) пуска асинхронного короткозамкнутого двигателя, полученные экспериментально. Применение асинхронных короткозамкнутых двигателей в ответственных приводах требует учета колебательности момента при пуске. Мерой борьбы с колебаниями момента в таких приводах может быть применение асинхронных двигателей с фазным ротором при включении в их роторную цепь добавочных резисторов, что приводит к быстрому затуханию свободных составляющих фазных токов, или специальных устройств питания асинхронных короткозамкнутых двигателей, позволяющих плавно изменять напряжение питания двигателя в процессе пуска. Этим обусловлены малые значения свободных токов в фазах двигателя, и их влияние на процесс пуска двигателей незначительно. Методы расчета переходных электромеханических процессов в электродвигателях с учетом электромагнитной инерции силовых цепей двигателей.
Большая Энциклопедия Нефти и Газа
Переходный процесс — синхронная машина
Переходные процессы синхронных машин часто исследуются на основе принципа наложения. [1]
Переходный процесс синхронной машины всегда сопровождается изменением скорости вращения ротора. [3]
Многочисленные переходные процессы синхронных машин могут исследоваться при помощи преобразования по Лапласу. В этом случае представляется целесообразным ввести понятие операторной индуктивности статора, которая в специальной литературе часто называется операторным полным сопротивлением. Этой величиной определяется зависимость между потокосцеплением и током статора, причем, однако, учитываются и параметры роторной цепи. [4]
Переходным процессам синхронной машины посвящена значительная часть книги. Этот, обычно трудный для понимания вопрос изложен исключительно просто и в то же время строго. Автор обращает внимание на физическую сторону процессов, не увлекаясь излишними математическими построениями. [5]
Исследованию переходных процессов синхронной машины посвящено весьма большое количество работ, опубликованных как у нас в Союзе, так и за рубежом. Объясняется это, с одной стороны, сложностью этих процессов, а потому трудностью и многообразием исследования, а с другой — тем, что синхронная машина играет важную роль в современной энергетике. [6]
Исследование переходных процессов синхронных машин имеет неоспоримо большее народнохозяйственное значение, чем решение тех же проблем в асинхронных машинах. Тем не менее принятое построение книги представляется вполне обоснованным, если иметь в виду, что подавляющее большинство приводных двигателей в промышленности составляют асинхронные машины, и если учесть возможность строго научного рассмотрения переходных процессов в единой концепции для обоих видов машин, что в мировой специальной литературе применяется, пожалуй, впервые. [7]
Полный анализ переходного процесса синхронной машины в общем случае производится путем решения системы дифференциальных уравнений машины, включающей уравнения напряжения и моментов. Однако в ряде случаев при исследовании переходного процесса может быть поставлена ограниченная задача, когда требуется определение не всех переменных, характеризующих режим машины, а только некоторых из них. В этих случаях, как правило, для нахождения искомой переменной1 может быть использован ряд допущений, упрощающих поставленную задачу и вместе с тем не оказывающих существенного влияния на точность решения. [8]
При исследовании переходных процессов синхронной машины удобно иметь дело не с углом у, определяющим положение ротора относительно статора, а с угловой скоростью вращения ротора. [9]
При аналитических исследованиях переходных процессов синхронной машины применяются такие методы, как преобразование координат, введение комплексных величин для мгновенных значений переменных, схемы замещения для различных режимов машины, метод малых колебаний, методика, использующая теорему постоянства потокосцеплений контуров синхронной машины. Разработаны графоаналитические способы представления переходных процессов. Большую помощь при аналитических исследованиях оказывают математические машины, получившие за последнее время сильное развитие. Сочетание этого метода с аналитическим способом исследования открывает новые возможности при решении сложных проблем. [10]
Поэтому при исследовании пусковых и нестационарных переходных процессов синхронных машин обычно многоконтурные успокоительные обмотки заменяются двумя эквивалентными обмотками по осям d и q, ширина которых равна полюсному делению. [11]
Следует отметить, что переходные процессы синхронных машин протекают весьма быстро, в течение нескольких секунд и даже долей секунды. Поэтому целенаправленные и согласованные действия эксплуатационного персонала энергетических систем в начальный и вместе с тем решающий период возникновения аварии невозможны. В связи с этим необходимо применять многочисленные и разнообразные средства автоматического управления и регулирования, чтобы воздействовать на возникшие переходные процессы в нужных направлениях. [12]
По указанным причинам изучение переходных процессов синхронных машин имеет весьма большое практическое значение, так как позволяет правильно понимать эти процессы, предвидеть характер возможных аварий, принимать меры к предотвращению или ограничению действия аварий и быстрейшему устранению их последствий. [13]
В этих случаях уравнения переходных процессов синхронной машины могут быть решены операционным методом путем составления по обычным правилам системы соответствующих изображающих уравнений. [14]
В настоящее время теория переходных процессов синхронной машины разработана достаточно глубоко и использует целый ряд методов исследования. Для начинающего изучать эту теорию наибольший интерес представляют ее основы — дифференциальные уравнения машины Парка-Горева и те идеи и методы, которые с помощью исходных уравнений позволяют получить приближенные решения ряда важных задач. [15]
Асинхронные и синхронные двигатели
Содержание
- Асинхронные и синхронные двигатели
- Асинхронные и синхронные двигатели: устройство
- В чем ключевое отличие синхронного двигателя от асинхронного
Чтобы производственные механизмы работали с максимальной эффективностью, необходимо правильно подобрать электрический двигатель, который будет применяться в качестве привода. В этой статье мы рассмотрим, чем отличаются асинхронные и синхронные двигатели с точки зрения конструктивных особенностей, функциональности и экономичности.
Асинхронные и синхронные двигатели: устройство
Электрические двигатели представляют собой агрегаты для преобразования электроэнергии в энергию механическую. Основу конструкции двигателя (как синхронного, так и асинхронного типа) составляют следующие элементы:
- неподвижный (статор);
- вращающийся (ротор).
Статоры электродвигателей обеих категорий имеют схожий принцип устройства. В специальные пазы (осевые прорези) уложены токонесущие проводки из меди или алюминия. Функцией статора является создание вращающегося магнитного поля. Ротор (с обмоткой возбуждения) закреплен на валу двигателя и вращается под воздействием возникающей электродвижущей силы.
В чем ключевое отличие синхронного двигателя от асинхронного
Главное отличие синхронного от асинхронного двигателя заключается в устройстве ротора.
Роторы синхронных двигателей представляют собой постоянные или электрические магниты. Постоянное магнитное поле, создаваемое ими, взаимодействует с вращающимся магнитным полем статора.
В случае с асинхронным двигателем (который также называют индукционным) в пазы ротора вставляются короткозамкнутые металлические пластины. Кроме короткозамкнутой разновидности, применяются также фазные роторы, снабженные контактными кольцами, которые после разбега замыкаются накоротко.
В результате соотношение частоты оборотов двигателя, находящегося под нагрузкой, с частотой вращения, которая присуща магнитному полю статора, для разных типов двигателя следующее:
- равное для агрегатов синхронного типа;
- неравное для асинхронных двигателей (наблюдается постоянное отставание от скорости вращения магнитного поля статора, равное величине скольжения).
На основе понимания того, чем отличается асинхронный двигатель от синхронного, можно сформулировать главные преимущества и недостатки этих двигателей.
Сравнение разных типов двигателей
Двигатели синхронной разновидности сложнее в использовании, поскольку они:
- в отличие от асинхронных моделей нуждаются в дополнительном источнике постоянного тока;
- подвержены более быстрому износу деталей (по причине использования контактных колец со щетками);
- требуют применения вспомогательных механизмов для запуска (индукционный двигатель имеет собственный пусковой момент).
Для асинхронных моделей характерны:
- простота конструкции;
- надежность в эксплуатации.
При этом синхронные двигатели обладают более широкими возможностями с точки зрения коэффициента мощности, а также менее чувствительны к перепадам напряжения, но стоимость таких агрегатов выше, что делает их использование менее выгодным.
Способы запуска трехфазных асинхронных двигателей
Доброго времени суток, уважаемые читатели блога nasos-pump.ru
В рубрике «Общее» рассмотрим способы запуска трехфазных асинхронных двигателей с коротко замкнутым ротором. В настоящее время используются различные способы запуска асинхронных двигателей. При запуске двигателя должны удовлетворяться основные требования. Запуск должен происходить без применения сложных пусковых устройств. Пусковой момент должен быть достаточно большим, а пусковые токи как можно меньше. Современные электродвигатели являются энерго-эффективными двигателями и имеют более высокие пусковые токи, что заставляет уделять большее внимание их способам запуска. При подаче на двигатель напряжения питания возникает скачок тока, который называют пусковым током.
Пусковой ток обычно превышает номинальный в 5 – 7 раз, но действие его кратковременное. После того как двигатель вышел на номинальные обороты, ток падает до минимального. В соответствии с местными нормами и правилами, для снижения пусковых токов, и используются разные способы запуска асинхронных двигателей с коротко замкнутым ротором. Вместе с этим необходимо уделять внимание и стабилизации напряжения сетевого питания. Говоря о способах запуска, которые уменьшают пусковой ток, следует отметить, что период запуска не должен быть слишком долгим. Слишком продолжительные периоды запуска могут вызвать перегрев обмоток.
Прямой запуск
Самый простой и наиболее часто применяемый способ запуска асинхронных двигателей – это прямой пуск. Прямой пуск означает, что электродвигатель запускается прямым подключением к сетевому напряжению питания. Прямой пуск применяется при стабильном питании двигателя, жестко связанного с приводом, например насоса. На (Рис.1) приведена схема прямого пуска асинхронного двигателя.
Подключение двигателя в электрическую сеть происходит при помощи контактора (пускателя). Реле перегрузки необходимо для защиты двигателя в процессе эксплуатации от перегрузки по току. Двигатели малой и средней мощности обычно проектируют так, чтобы при прямом подключении обмоток статора к сетевому питанию пусковые токи, возникающие при запуске, не создавали чрезмерных электродинамических усилий и превышений температуры на двигатель, с точки зрения механической и термической прочности. Переходной процесс в момент запуска характеризуется очень быстрым затуханием свободного тока, что позволяет пренебречь этим током и учитывать только установившееся значение тока переходного процесса. На графике (Рис. 1) приведена характеристика пускового тока при прямом запуске асинхронного двигателя с коротко замкнутым ротором.
Прямой запуск от сети питания является самым простым, дешёвым и наиболее часто применяемым способом запуска. При таком запуске происходит наименьшее повышение температуры в обмотках электродвигателя во время включения по сравнению со всеми остальными способами запуска. Если нет жестких ограничений по току, то такой метод запуска является наиболее предпочтительным. В разных странах действуют различные правила и нормы по ограничению максимального пускового тока. В таких случаях, необходимо использовать другие способы запуска.
Для небольших электродвигателей пусковой момент будет составлять от 150% до 300% от номинального момента, а пусковой ток будет составлять от 300% до 700% от номинального значения или даже выше.
Запуск «звезда – треугольник»
Запуск переключением «звезда – треугольник» используется для трёхфазных индукционных электродвигателей и применяется для снижения пускового тока. Следует отметить, что запуск переключением «звезда – треугольник» возможен только в тех двигателей, у которых выведены начала и концы всех трех обмоток. Пульт для запуска «звезда – треугольник» состоит и следующих комплектующих, трех контакторов (пускателей), реле перегрузки по току и реле времени, управляющего переключением пускателей. Чтобы можно было использовать этот способ запуска, обмотки статора электродвигателя, соединенные по схеме «треугольник», должны быть рассчитаны на работу в номинальном режиме. Обычно электродвигатели рассчитаны на напряжение 400 В при соединении по схеме «треугольник» (∆) или на 690 В при соединении по схеме «звезда» (Y). Такая унифицированная схема соединения может быть также использована для пуска электродвигателя при более низком напряжении. Схема запуска переключением «звезда – треугольник» показана на (Рис. 2)
Пуск звезда треугольник
В момент пуска электропитание к обмоткам статора подключено по схеме «звезда» (Y) Замкнуты контакторы К1 и К3. По истечении определённого периода времени, зависящего от мощности двигателя и времени разгона, происходит переключение на режим запуска «треугольник» (∆). При этом контакты пускателя K3 размыкаются, а контакты пускателя K2 замыкаются. Управляет переключением контактов пускателей K3 и K2 реле времени. На реле выставляется время, в течение которого происходит разгон двигателя. В режиме запуска «звезда – треугольник» напряжение, подаваемое на фазы обмотки статора, уменьшается в корень из трех раз, что приводит к уменьшению фазных токов тоже в корень из трех раз, а линейных токов в 3 раза. Соединение по схеме «звезда – треугольник» дает более низкий пусковой ток, составляющий всего одну треть тока при прямом запуске. Запуск «звезда – треугольник» особенно хорошо подходят для инерционных систем, когда происходит «подхватывание» нагрузки после того, как произошел разгон двигателя.
Запуск «звезда – треугольник» также понижает и пусковой момент, приблизительно на треть. Данный метод можно использовать только для индукционных электродвигателей, которые имеют подключение к напряжению питания по схеме «треугольник». Если переключение «звезда – треугольник» происходит при недостаточном разгоне, то это может вызвать сверхток, который достигает почти такого же значения, что и ток при «прямом» запуске. За время переключения из режима «звезда» в «треугольник» двигатель очень быстро теряет скорость вращения, для ее восстановления необходим мощный импульс тока. Скачок тока может стать ещё больше, так как на время переключения двигатель остается без сетевого напряжения.
Запуск через автотрансформатор
Данный способ запуска осуществляется при помощи автотрансформатора, последовательно соединённого с электродвигателем во время запуска. Автотрансформатор понижает подаваемое на электродвигатель напряжение (приблизительно на 50–80% от номинального напряжения), чтобы произвести запуск при более низком напряжении. В зависимости от заданных параметров напряжение снижается в один или два этапа. Понижение напряжения, подаваемого на электродвигатель одновременно, приведёт к уменьшению пускового тока и вращающего пускового момента. Если в определённый момент времени к электродвигателю не подаётся питание, он не потеряет скорость вращения, как в случае с запуском «звезда – треугольник». Время переключения от пониженного напряжения к полному напряжению можно корректировать. На (Рис. 3) приведена характеристика пускового тока при запуске асинхронного двигателя с коротко замкнутым ротором при помощи автотрансформатора.
Пуск через автотрансформатор тока
Помимо уменьшения пускового момента, способ запуска через автотрансформатор имеет и недостаток. Как только электродвигатель начинает работать, он переключается на сетевое напряжение, что вызывает скачок тока. Вращающий момент зависит от напряжения подаваемого на двигатель. Значение пускового момента пропорциональны квадрату напряжения.
Плавный пуск
В устройстве «плавный пуск» используются те же IGBT транзисторы, что и в частотных преобразователях. Данные транзисторы через цепи управления, понижают начальное напряжение, поступающее на электродвигатель, что приводит к уменьшению пускового момента в электродвигателе. В процессе запуска «плавный пуск» постепенно повышает напряжение электродвигателя, что позволяет электродвигателю разогнаться до номинальной скорости вращения, не образуя большого момента и пиков тока. На (Рис. 4) приведена характеристика пускового тока при запуске асинхронного двигателя с коротко замкнутым ротором с помощью устройства «плавный пуск». Плавный запуск может использоваться также для управления торможением электродвигателя. Устройство «плавный пуск» дешевле преобразователя частоты. Использование устройства «плавного пуска» для асинхронных двигателей значительно увеличивают срок службы электродвигателя, а с ним и насоса находящегося на валу этого двигателя.
Диаграмма для плавного пуска двигателя
У «плавного пуска» существуют те же проблемы, что и у частотных преобразователей: они создают наводки (помехи) в систему электроснабжения. Данный способ также обеспечивает подачу пониженного напряжения к электродвигателю во время запуска. При плавном запуске электродвигатель включается при пониженном напряжении, которое затем увеличивается до напряжения сетевого питания. Напряжение в плавном пускателе уменьшается за счет фазового сдвига. Данный способ пуска не вызывает образования скачков тока. Время запуска и пусковой ток можно задавать.
Запуск при помощи частотного преобразователя
Частотные преобразователи предназначены не только для запуска, но и управления электродвигателем. Инвертор позволяет снизить пусковой ток, так как электродвигатель имеет жесткую зависимость между током и вращающим моментом. На (Рис. 5) приведена характеристика пускового тока при запуске асинхронного двигателя с помощью частотного преобразователя.
Пуск двигателя с преобразователем частоты
Преобразователи частоты остаются все еще дорогими устройствами, и также как и плавный пуск, создают дополнительные помехи в сеть электропитания.
Заключение
Задача любого из способов запуска электродвигателя заключается в том, чтобы согласовать характеристики вращающего момента электродвигателя с характеристиками механической нагрузки, при этом необходимо, чтобы пиковые токи не превышали допустимых значений. Существуют различные способы запуска асинхронных двигателей, каждый их которых имеет свои плюсы и минусы. И в заключении приведена небольшая таблица, где в краткой форме указаны преимущества и недостатки наиболее распространённых способов запуска асинхронных электродвигателей.
Способы запуска
Преимущества
Недостатки
Запуск «звезда – треугольник»
Запуск через автотрансформатор
Запуск при помощи частотного преобразователя