0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое ракетные реактивные двигатели

«Самый мощный в мире»: какими характеристиками будет обладать новый российский ракетный двигатель РД-171МВ

НПО «Энергомаш» приступило к производству опытных образцов жидкостных ракетных двигателей РД-171МВ, которые в компании называют «самыми мощными в мире». Соответствующая информация размещена на сайте госзакупок.

В опубликованном на портале техническом задании указывается, что «Энергомаш» производит закупку сортового проката литейных сталей и сплавов «для комплектации РД-171МВ в рамках опытно-конструкторской работы «Феникс». На закупку планируется потратить около 19,5 млн рублей.

«Фениксом» называют опытно-конструкторские работы, цель которых — разработка нового семейства российской ракеты-носителя среднего класса для замены ракет «Зенит».

«Прорывной проект»

Разработка РД-171МВ началась в 2017 году. Проект предусматривает создание двигателя для первой ступени проектируемой РКК «Энергия» ракеты-носителя среднего класса «Союз-5» (также известна как «Иртыш»). Помимо этого, он будет устанавливаться на сверхтяжёлой ракете «Енисей».

«РД-171МВ — самый мощный из жидкостных двигателей. Он оснащён четырьмя камерами сгорания и работает на паре кислород-керосин», — рассказал в беседе с RT научный руководитель Института космической политики Иван Моисеев.

В качестве основы для создания нового двигателя был взят советский РД-171М, который, в свою очередь, был модификацией двигателя РД-170, признанного самым мощным в истории. Его мощность составляла 230 тыс. лошадиных сил.

«Принципиальное отличие этой модели от предыдущей в том, что она сможет выводить тяжёлую нагрузку на достаточно высокие орбиты с большей мощностью. Важно отметить, что сверхмощные двигатели позволяют выводить грузы весом 20—30 тонн на орбиты», — заявил военный эксперт Михаил Тимошенко в разговоре RT.

Как отмечают в компании «Энергомаш», при создании РД-171МВ используются технологические и конструктивные решения, отработанные при эксплуатации двигателей РД-180 и РД-191.

«Мы внедряем в новую разработку в первую очередь систему регулирования, которая хорошо себя показала на двигателе РД-191, — полностью российской сборки, изготавливается у нас — и проводим дополнительные мероприятия по защите от возгорания внутренних полостей двигателя», — заявил главный конструктор НПО «Энергомаш» Пётр Лёвочкин.

Масса РД-171МВ составляет 10,3 тонны, тяга — более 800 тонн. Мощность аппарата при этом оценивается в 246 тыс. лошадиных сил, что является мировым рекордом и выводит двигатель на первое место в мире по данному показателю.

«Двигатель РД-171МВ действительно будет самым мощным в мире, — заявил генеральный директор НПО «Энергомаш» Игорь Арбузов. — Создание подобного рода конструкций — это локомотив не только конструкторской мысли, но ещё и технологический локомотив».

При работе двигателя тепловая мощность, выделяемая камерой сгорания, составляет 27 млн киловатт, что можно сравнить с мощностью крупной гидроэлектростанции. Ещё одно любопытное сравнение, о котором конструкторы рассказали общественности: турбонаддувочный агрегат двигателя развивает мощность в 180 тыс. киловатт — столько же, сколько и три атомные силовые установки крупнейших ледоколов, вместе взятые.

Для реализации проекта по созданию РД-171МВ «Энергомаш» провёл модернизацию своих производственных мощностей. Руководство предприятия отмечает, что РД-171МВ станет первым его двигателем, при создании которого в качестве подлинников конструкторской документации используются компьютерные 3D-модели, а не привычные бумажные чертежи. Это позволило сократить сроки разработки, оптимизировать процесс изготовления и снизить издержки.

«Для ускорения новых разработок мы вводим трёхмерное моделирование. Для снижения стоимости и повышения конкурентоспособности наших двигателей мы внедряем самые современные технологии, композитные материалы, новое оборудование, идёт техническое перевооружение предприятия», — рассказал Лёвочкин.

В феврале 2019 года о сборке первого образца двигателя сообщил глава «Роскосмоса» Дмитрий Рогозин. Тогда он отметил, что по мощности этому двигателю нет равных. На вторую половину декабря 2019 года запланированы огневые испытания РД-171МВ. Предполагается, что первый аппарат будет поставлен заказчику в 2021 году.

Первый двигатель РД-171МВ для новейшей ракеты среднего класса Союз-5 «Иртыш» собран на подмосковном «НПО Энергомаш» и готовится к огневым испытаниям. По мощности ему нет равных в мире pic.twitter.com/YN5KrBn0iy

Военный историк Юрий Кнутов отметил, что данный тип двигателя является более экологически чистым, чем предыдущие модели, потому что он работает на паре кислород-керосин.

«Важно отметить, что эти двигатели более экологичные, потому что там используется в качестве окислителя кислород и топливо не такое ядовитое, как гептил, которое используется в старых ракетах. Переход на новые технологии — это реальный прорыв. На мой взгляд, он позитивно скажется на развитии всей космонавтики», — заявил Кнутов в интервью RT.

По его словам, создание РД-171МВ можно назвать прорывным для российской космической отрасли.

«Этот проект можно назвать прорывным, поскольку до этого у нас была одна сверхтяжёлая ракета «Энергия», которая создавалась всем Советским Союзом. Часть её технологий осталась в бывших советских республиках, поэтому многие элементы новой сверхтяжёлой ракеты приходится создавать заново», — сказал эксперт.

Кнутов также подчеркнул, что обладание таким двигателем позволит России сохранить лидирующие позиции в двигателестроении.

«Сегодня самые полноценные двигатели делает только Россия, на втором месте идут США, а все остальные страны сильно отстают», — заявил он.

«Ни у одной страны нет подобных разработок»

По мнению академика Российской академии космонавтики Александра Железнякова, новый двигатель, как и его предшественник РД-171М, будет успешно конкурировать с зарубежными аналогами.

«Он успешно конкурирует уже более 30 лет и дальше будет конкурировать, потому что на данный момент продолжает оставаться самым мощным жидкостным ракетным двигателем в мире. Кроме того, ни у одной страны нет подобных разработок», — рассказал эксперт в интервью RT.

По его словам, продвижение этого двигателя на международном рынке связано с вопросами геополитики.

«Кроме Китая, вряд ли кто-то заинтересуется, поскольку это зависит от геополитической обстановки», — пояснил он.

Схожую точку зрения выразил и военный эксперт Михаил Тимошенко.

«Этот двигатель сможет конкурировать с иностранными разработками. США вряд ли будут заинтересованы в его покупке, потому что у них есть двигатель для тяжёлых ракет. Но интерес могут проявить Евросоюз и Китай, если, конечно, они захотят выводить на орбиту что-то тяжёлое», — сказал он RT.

В свою очередь, Моисеев заявил, что двигатель вряд ли пойдёт на экспорт, поскольку такие аппараты создаются под конкретные ракеты. Пока за рубежом нет ракет, совместимых с РД-171МВ.

«Для его покупки предполагаемый покупатель должен иметь соответствующую ракету. Им заинтересуются тогда, когда кто-то начнёт разрабатывать ракету, под которую он подойдёт, но пока таких ракет не разрабатывают и в планах ни у кого нет», — сказал эксперт.

Новый «Союз»

Активная фаза разработки ракеты среднего класса «Союз-5» началась в 2016 году. Планируется, что её будут использовать как для пилотируемых миссий, так и для коммерческих пусков. Старты будут осуществляться с космодромов Байконур и Восточный.

Для этих целей на Байконуре проводятся работы по модернизации стартового комплекса в рамках российско-казахстанского проекта «Байтерек».

«Союз-5» — ракета среднего класса, которую создали на замену ракете-носителю «Зенит». Производство «Зенита» прекратили в связи с ухудшением российско-украинских отношений», — пояснил Моисеев.

На второй ступени «Союза-5» будут использоваться два двигателя РД-0124МС — модернизированные двигатели от третьей ступени ракеты «Союз-2.1Б».

В 2018 году были завершены эскизные работы, после чего «Роскосмос» заключил госконтракт с РКК «Энергия» на сумму 61,2 млрд рублей на создание и испытание ракеты «Союз-5».

В рамках лётных испытаний, запланированных на 2022—2025 годы, с космодрома Байконур будут выполнены четыре запуска «Союза-5». Согласно планам, в 2023 году будет осуществлён пуск с новым российским пилотируемым кораблём «Федерация». Аппарат будет работать в беспилотном режиме. Годом позже должен быть произведён и пилотируемый запуск.

Производиться «Союз-5» будет в РКЦ «Прогресс».

История ракет и ракетных двигателей

Diletant. media и «Ростех» вспоминают людей, которые заставили ракеты летать.

«Ракета сама собой не полетит» — эту фразу приписывают многим известным ученым. И Сергею Королеву, и Вернеру фон Брауну, и Константину Циолковскому. Считается, что идею полета ракеты сформулировал чуть ли ни сам Архимед, но даже он не представлял себе как заставить ее полететь.


Константин Циолковский

К настоящему времени существует много разновидностей ракетных двигателей. Химические, ядерные, электрические, даже плазменные. Впрочем, ракеты появились задолго до того, как человек изобрел первый двигатель. Слова «ядерный синтез» или «химическая реакция» едва ли говорили что-то жителям Древнего Китая. А ведь ракеты появились именно там. Точную дату назвать сложно, но, предположительно, произошло это в годы правления династии Хань (III-II вв. до н. э.). К тем временам относятся и первые упоминания о порохе. Ракета, которая поднималась вверх благодаря силе, возникшей при взрыве пороха, использовалась в те времена исключительно в мирных целях — для фейерверков. Ракеты эти, что характерно, имели собственный запас горючего, в данном случае, пороха.

Следующий шаг был сделан только в 1556 году немецким изобретателем Конрадом Хаасом, который был специалистом по огнестрельному оружию в армии Фердинанда I — Императора Священной Римской Империи. Хаас считается создателем первой боевой ракеты. Хотя, строго говоря, изобретатель не создал ее, а лишь заложил теоретические основы. Именно Хаасу принадлежала идея многоступенчатой ракеты.


Многоступенчатая ракета в представлении Конрада Хааса

Ученый подробным образом описал механизм создания летательного аппарата из двух ракет, которые разделялись бы в полете. «Такой аппарат, — уверял он, — мог бы развивать огромную скорость». Идеи Хааса вскоре развил польский генерал Казимир Семенович.


Титульный лист книги, в которой Казимир Семенович описал ракеты

В 1650 году он предложил проект создания трехступенчатой ракеты. В жизнь, впрочем, эта идея воплощена так и не была. То есть, конечно, была, но только в ХХ веке, через несколько столетий после смерти Семеновича.

Ракеты в армии

Военные, разумеется, никогда не упустят возможность принять на вооружение новый вид разрушительного оружия. В XIX веке у них появилась возможность применить в бою ракету. В 1805 году британский офицер Уильям Конгрив продемонстрировал в Королевском Арсенале созданные им пороховые ракеты небывалой по тем временам мощности. Существует предположение, что большинство идей Конгрив «украл» у ирландского националиста Роберта Эммета, применившего некое подобие ракеты во время восстания 1803 года. Спорить на эту тему можно вечно, но тем не менее ракета, которую взяли на вооружение британские войска, называется ракетой Конгрива, а не ракетой Эммета.


Запуск Ракеты Конгрива, 1890

Оружие многократно применялось во время Наполеоновских войн. В России пионером ракетостроения считается генерал-лейтенант Александр Засядко.


Александр Засядко

Он не только усовершенствовал ракету Конгрива, но и задумался над тем, что энергию этого разрушительного оружия можно было бы использовать и в мирных целях. Засядко, например, первым высказал идею, что с помощью ракеты можно было бы совершить полет в космос. Инженер даже точно подсчитал, сколько пороха понадобиться, чтобы ракета достигла Луны.

Читать еще:  Чем заклеить подушку двигателя

На ракете — в космос

Идеи Засядко легли в основу многих работ Константина Циолковского. Этот знаменитый ученый и изобретатель теоретически обосновал возможность полета в космос при помощи ракетных технологий. Правда, в качестве топлива он предлагал использовать не порох, а смесь жидкого кислорода с жидким водородом. Аналогичные идеи высказывал младший современник Циолковского Герман Оберт.


Герман Оберт

Он также разрабатывал идею межпланетных перелетов. Оберт прекрасно понимал сложность задачи, но его работы вовсе не носили фантастический характер. Ученый, в частности, предложил идею ракетного двигателя. Он даже проводил экспериментальные испытания подобных устройств. В 1928 году Оберт познакомился с молодым студентом Вернером фон Брауном. Этому юному физику из Берлина в скором времени предстояло совершить прорыв в ракетостроении и воплотить в жизнь многие идеи Оберта. Но об этом позже, ибо за два года до встречи двух этих ученых была запущена первая в истории ракета на жидком топливе.

Эра ракетостроения

Произошло это знаменательное событие 16 марта 1926 года. А главным героем стал американский физик и инженер Роберт Годдард. Еще в 1914 году он запатентовал многоступенчатую ракету. Вскоре ему удалось воплотить в жизнь идею, предложенную Хаасом почти за четыреста лет до этого. В качестве топлива Годдард предлагал использовать бензин и оксид азота. После серии неудачных запусков, он добился успеха. 16 марта 1926 года на ферме своей тетушки Годдард запустил в небо ракету размером с человеческую руку. За две с небольшим секунды она взлетела в воздух на 12 метров. Любопытно, что позднее на основе трудов Годдарда будет создана Базука.


Роберт Годдард и его ракета

Открытия Годдарда, Оберта и Циолковского имели большой резонанс. В США, Германии и Советском Союзе стали стихийно возникать общества любителей ракетостроения. В СССР уже в 1933 году был создан Реактивный институт. В том же году появился и принципиально новый тип оружия — реактивные снаряды. Установка для их запуска вошла в историю под именем «Катюша».


Залп «Катюш»

В Германии развитием идей Оберта занимался уже знакомый нам Вернер фон Браун. Он создавал ракеты для германской армии и не оставил этого занятия после прихода к власти нацистов. Более того, Браун получил от них баснословное финансирование и неограниченные возможности для работы.


Вернер фон Браун с моделью «Фау-2» в руках

При создании новых ракет использовался рабский труд. Известно, что Браун пытался протестовать против этого, но получил в ответ угрозу, что сам может оказаться на месте подневольных работников. Так была создана баллистическая ракета, появление которой предсказал еще Циолковский. Первые испытания прошли в 1942 году. В 1944-м баллистическая ракета дальнего действия «Фау-2» была принята на вооружение Вермахтом. С ее помощью обстреливали, в основном, территорию Великобритании (до Лондона с территории Германии ракета долетала за 6 минут). «Фау-2» несла страшные разрушения и вселяла страх в сердца людей. Ее жертвами стали как минимум 2700 мирных жителей Туманного Альбиона. В британской прессе «Фау-2» именовали «крылатым ужасом».

После войны

Американские и советские военные с 1944 года вели «охоту» за Брауном. Обе страны были заинтересованы в его идеях и разработках. Ключевую роль в решении этого вопроса сыграл сам ученый. Еще весной 1945 он собрал свою команду на совет, на котором решался вопрос о том, кому по окончании войны лучше сдаться в плен. Ученые пришли к выводу, что сдаваться лучше американцам. Сам Браун оказался в плену почти случайно. Его брат Магнус, увидев американского военного, подбежал к нему и сказал: «Меня зовут Магнус фон Браун, мой брат изобрел «Фау-2», мы хотим сдаться».

В США Вернер фон Браун продолжил работу над ракетами. Теперь однако он трудился в основном для мирных целей. Именно он дал колоссальный толчок к развитию американской космической отросли, сконструировав для США первые ракеты-носители (разумеется, создавал Браун и боевые баллистические ракеты). Его команда в феврале 1958 запустила в космос первый американский искусственный спутник Земли. Советский Союз опередил США с запуском спутника почти на полгода. 4 октября 1957 года на орбиту Земли был выведен первый искусственный спутник. При его запуске была использована советская ракета Р-7, созданная Сергеем Королевым.


Сергей Королев

Р-7 стала первой в мире межконтинентальной баллистической ракетой, а также первой ракетой, использованной для космического полета.

Ракетные двигатели в России

В 1912 году в Москве был открыт завод по производству авиационных двигателей. Предприятие входило во французское общество «Гном». Здесь создавались, в том числе, и моторы для самолетов Российской Империи в годы Первой мировой. Завод успешно пережил Революцию, получил новое название «Икар» и продолжил работу уже при советской власти.

Авиационные двигатели создавались тут и в 1930-е, и в 1940-е, военные, годы. Моторы, которые производились на «Икаре», ставились на передовые советские самолеты. А уже в 1950-е предприятие стало выпускать турборакетные двигатели, в том числе и для космической отрасли. Сейчас завод принадлежит ОАО «Кузнецов», которое получило свое название в честь выдающегося советского авиаконструктора Николая Дмитриевича Кузнецова. Предприятие входит в структуру госкорпорации «Ростех».


Современное состояние

«Ростех» продолжает выпуск ракетных двигателей, в том числе и для ракетной отрасли. В последние годы объемы производства растут. В прошлом году появилась информация о том, что заказов на производство двигателей «Кузнецов» получил аж на 20 лет вперед. Двигатели создаются не только для космической отрасли, но также для авиации, энергетики и грузовых железнодорожных перевозок.

В 2012-м «Ростехом» были проведены испытания лунного двигателя. Специалистам удалось возродить технологии, которые создавались для советской лунной программы. Сама программа, как мы знаем, в итоге была свернута. Но забытые, вроде бы, наработки теперь обрели новую жизнь. Ожидается, что лунный двигатель получит широкое применение в российской космической программе.

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

Энциклопедия «Техника». — М.: Росмэн . 2006 .

Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .

Смотреть что такое РЕАКТИВНЫЙ ДВИГАТЕЛЬ в других словарях:

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего . смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

РЕАКТИВНЫЙ ДВИГАТЕЛЬ, двигатель, создающий необходимую для движения силу тяги путём преобразования исхоДной энергии в кинетическую энергию реактивной. смотреть

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

В реактивном двигателе сила тяги, необходимая для движения, создается путем преобразования исходной энергии в кинетическую энергию рабочего тела. В результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде отдачи (струи). Отдача перемещает в пространстве двигатель и конструктивно связанный с ним аппарат. Перемещение происходит в направлении, противоположном истечению струи. В кинетическую энергию реактивной струи могут преобразовываться различные виды энергии: химическая, ядерная, электрическая, солнечная. Реактивный двигатель обеспечивает собственное движение без участия промежуточных механизмов. Для создания реактивной тяги необходимы источник исходной энергии, которая преобразуется в кинетическую энергию реактивной струи, рабочее тело, выбрасываемое из двигателя в виде реактивной струи, и сам реактивный двигатель, преобразующий первый вид энергии во второй. Основной частью реактивного двигателя является камера сгорания, в которой создается рабочее тело. Все реактивные двигатели делятся на два основных класса, в зависимости от того, используется в их работе окружающая среда или нет. Первый класс – воздушно?реактивные двигатели (ВРД). Все они тепловые, в которых рабочее тело образуется при реакции окисления горючего вещества кислородом окружающего воздуха. Основную массу рабочего тела составляет атмосферный воздух. В ракетном двигателе все компоненты рабочего тела находятся на борту оснащенного им аппарата. Существуют также комбинированные двигатели, сочетающие в себе оба вышеназванные типа. Впервые реактивное движение было использовано в шаре Герона – прототипе паровой турбины. Реактивные двигатели на твердом топливе появились в Китае в X в. н. э. Такие ракеты применялись на Востоке, а затем в Европе для фейерверков, сигнализации, а затем как боевые. Важным этапом в развитии идеи реактивного движения была идея применения ракеты в качестве двигателя для летательного аппарата. Ее впервые сформулировал русский революционер?народоволец Н. И. Кибальчич, который в марте 1881 г., незадолго до казни, предложил схему летательного аппарата (ракетоплана) с использованием реактивной тяги от взрывных пороховых газов. H. Е. Жуковский в работах «О реакции вытекающей и втекающей жидкости» (1880?е годы) и «К теории судов, приводимых в движение силой реакции вытекающей воды» (1908 г.) впервые разработал основные вопросы теории реактивного двигателя. Интересные работы по исследованию полета ракеты принадлежат также известному русскому ученому И. В. Мещерскому, в частности в области общей теории движения тел переменной массы. В 1903 г. К. Э. Циолковский в своей работе «Исследование мировых пространств реактивными приборами» дал теоретическое обоснование полета ракеты, а также принципиальную схему ракетного двигателя, предвосхищавшую многие принципиальные и конструктивные особенности современных жидкостно?ракетных двигателей (ЖРД). Так, Циолковский предусматривал применение для реактивного двигателя жидкого топлива и подачу его в двигатель специальными насосами. Управление полетом ракеты он предлагал осуществить посредством газовых рулей – специальных пластинок, помещаемых в струе вылетающих из сопла газов. Особенность жидкостно?реактивного двигателя в том, что в отличие от других реактивных двигателей он несет с собой вместе с топливом весь запас окислителя, а не забирает необходимый для сжигания горючего воздух, содержащий кислород, из атмосферы. Это единственный двигатель, который может быть применен для сверхвысотного полета вне земной атмосферы. Первую в мире ракету с жидкостным ракетным двигателем создал и запустил 16 марта 1926 г. американец Р. Годдард. Она весила около 5 килограммов, а ее длина достигала 3 м. Топливом в ракете Годдарда служили бензин и жидкий кислород. Полет этой ракеты продолжался 2,5 секунды, за которые она пролетела 56 м. Систематические экспериментальные работы над этими двигателями начались в 30?х годах XX века. Первые советские ЖРД были разработаны и созданы в 1930–1931 гг. в ленинградской Газодинамической лаборатории (ГДЛ) под руководством будущего академика В. П. Глушко. Эта серия называлась ОРМ – опытный ракетный мотор. Глушко применил некоторые новинки, например охлаждение двигателя одним из компонентов топлива. Параллельно разработка ракетных двигателей велась в Москве Группой изучения реактивного движения (ГИРД). Ее идейным вдохновителем был Ф. А. Цандер, а организатором – молодой С. П. Королев. Целью Королева была постройка нового ракетного аппарата – ракетоплана. В 1933 г. Ф. А. Цандер построил и успешно испытал ракетный двигатель ОР?1, работавший на бензине и сжатом воздухе, а в 1932–1933 гг. – двигатель ОР?2, на бензине и жидком кислороде. Этот двигатель был спроектирован для установки на планере, который должен был совершить полет в качестве ракетоплана. В 1933 г. в ГИРДе создана и испытана первая советская ракета на жидком топливе. Развивая начатые работы, советские инженеры в последующем продолжали работать над созданием жидкостных реактивных двигателей. Всего с 1932 по 1941 г. в СССР было разработано 118 конструкций жидкостных реактивных двигателей. В Германии в 1931 г. состоялись испытания ракет И. Винклера, Риделя и др. Первый полет на самолете?ракетоплане с жидкостно?реактивным двигателем был совершен в Советском Союзе в феврале 1940 г. В качестве силовой установки самолета был применен ЖРД. В 1941 г. под руководством советского конструктора В. Ф. Болховитинова был построен первый реактивный самолет – истребитель с жидкостно?ракетным двигателем. Его испытания были проведены в мае 1942 г. летчиком Г. Я. Бахчиваджи. В это же время состоялся первый полет немецкого истребителя с таким двигателем. В 1943 г. в США провели испытания первого американского реактивного самолета, на котором был установлен жидкостно?реактивный двигатель. В Германии в 1944 г. были построены несколько истребителей с этими двигателями конструкции Мессершмитта и в том же году применены в боевой обстановке на Западном фронте. Кроме того, ЖРД применялись на немецких ракетах Фау?2, созданных под руководством В. фон Брауна. В 1950?е годы жидкостно?ракетные двигатели устанавливались на баллистических ракетах, а затем на искусственных спутниках Земли, Солнца, Луны и Марса, автоматических межпланетных станциях. ЖРД состоит из камеры сгорания с соплом, турбонасосного агрегата, газогенератора или парогазогенератора, системы автоматики, органов регулирования, системы зажигания и вспомогательных агрегатов (теплообменники, смесители, приводы). Идея воздушно?реактивных двигателей не раз выдвигалась в разных странах. Наиболее важными и оригинальными работами в этом отношении являются исследования, проведенные в 1908–1913 гг. французским ученым Р. Лореном, который, в частности, в 1911 г. предложил ряд схем прямоточных воздушно?реактивных двигателей. Эти двигатели используют в качестве окислителя атмосферный воздух, а сжатие воздуха в камере сгорания обеспечивается за счет динамического напора воздуха. В мае 1939 г. в СССР впервые состоялось испытание ракеты с прямоточным воздушно?реактивным двигателем конструкции П. А. Меркулова. Это была двухступенчатая ракета (первая ступень – пороховая ракета) с взлетным весом 7,07 кг, причем вес топлива для второй ступени прямоточного воздушно?реактивного двигателя составлял лишь 2 кг. При испытании ракета достигла высоты 2 км. В 1939–1940 гг. впервые в мире в Советском Союзе проводились летние испытания воздушно?реактивных двигателей, установленных в качестве дополнительных двигателей на самолете конструкции Н. П. Поликарпова. В 1942 г. в Германии испытывались прямоточные воздушно?реактивные двигатели конструкции Э. Зенгера. Воздушно?реактивный двигатель состоит из диффузора, в котором за счет кинетической энергии набегающего потока воздуха происходит сжатие воздуха. В камеру сгорания через форсунку впрыскивается топливо и происходит воспламенение смеси. Реактивная струя выходит через сопло. Процесс работы ВРД непрерывен, поэтому в них отсутствует стартовая тяга. В связи с этим при скоростях полета меньше половины скорости звука воздушно?реактивные двигатели не применяются. Наиболее эффективно применение ВРД на сверхзвуковых скоростях и больших высотах. Взлет самолета с воздушно?реактивным двигателем происходит при помощи ракетных двигателей на твердом или жидком топливе. Большее развитие получила другая группа воздушно?реактивных двигателей – турбокомпрессорные двигатели. Они подразделяются на турбореактивные, в которых тяга создается струей газов, вытекающих из реактивного сопла, и турбовинтовые, в которых основная тяга создается воздушным винтом. В 1909 г. проект турбореактивного двигателя был разработан инженером Н. Герасимовым. В 1914 г. лейтенант русского морского флота М. Н. Никольской сконструировал и построил модель турбовинтового авиационного двигателя. Рабочим телом для приведения в действие трехступенчатой турбины служили газообразные продукты сгорания смеси скипидара и азотной кислоты. Турбина работала не только на воздушный винт: отходящие газообразные продукты сгорания, направленные в хвостовое (реактивное) сопло, создавали реактивную тягу дополнительно к силе тяги винта. В 1924 г. В. И. Базаров разработал конструкцию авиационного турбокомпрессорного реактивного двигателя, состоявшую из трех элементов: камеры сгорания, газовой турбины, компрессора. Поток сжатого воздуха здесь впервые делился на две ветви: меньшая часть шла в камеру сгорания (к горелке), а большая подмешивалась к рабочим газам для понижения их температуры перед турбиной. Тем самым обеспечивалась сохранность лопаток турбины. Мощность многоступенчатой турбины расходовалась на привод центробежного компрессора самого двигателя и отчасти на вращение воздушного винта. Дополнительно к винту тяга создавалась за счет реакции струи газов, пропускаемых через хвостовое сопло. В 1939 г. на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Его испытаниям помешала война. В 1941 г. в Англии был впервые осуществлен полет на экспериментальном самолете?истребителе, оснащенном турбореактивным двигателем конструкции Ф. Уиттла. На нем был установлен двигатель с газовой турбиной, которая приводила в действие центробежный компрессор, подающий воздух в камеру сгорания. Продукты сгорания использовались для создания реактивной тяги. В турбореактивном двигателе воздух, поступающий при полете, сжимается сначала в воздухозаборнике, а затем в турбокомпрессоре. Сжатый воздух подается в камеру сгорания, куда впрыскивается жидкое топливо (чаще всего – авиационный керосин). Частичное расширение газов, образовавшихся при сгорании, происходит в турбине, вращающей компрессор, а окончательное – в реактивном сопле. Между турбиной и реактивным двигателем может быть установлена форсажная камера, предназначенная для дополнительного сгорания топлива. Сейчас турбореактивными двигателями оснащено большинство военных и гражданских самолетов, а также некоторые вертолеты. В турбовинтовом двигателе основная тяга создается воздушным винтом, а дополнительная (около 10 %) – струей газов, вытекающих из реактивного сопла. Принцип действия турбовинтового двигателя схож с турбореактивным, с той разницей, что турбина вращает не только компрессор, но и воздушный винт. Эти двигатели применяются в дозвуковых самолетах и вертолетах, а также для движения быстроходных судов и автомобилей. Наиболее ранние реактивные твердотопливные двигатели использовались в боевых ракетах. Их широкое применение началось в XIX в., когда во многих армиях появились ракетные части. В конце XIX в. были созданы первые бездымные порохи, с более устойчивым горением и большей работоспособностью. В 1920–1930?е годы велись работы по созданию реактивного оружия. Это привело к появлению реактивных минометов – «катюш» в Советском Союзе, шестиствольных реактивных минометов в Германии. Получение новых видов пороха позволило применять реактивные твердотопливные двигатели в боевых ракетах, включая баллистические. Кроме этого они применяются в авиации и космонавтике как двигатели первых ступеней ракет?носителей, стартовые двигатели для самолетов с прямоточными воздушно?реактивными двигателями и тормозные двигатели космических аппаратов. Реактивный твердотопливный двигатель состоит из корпуса (камеры сгорания), в котором находится весь запас топлива и реактивного сопла. Корпус выполняется из стали или стеклопластика. Сопло – из графита, тугоплавких сплавов, графита. Зажигание топлива производится воспламенительным устройством. Регулирование тяги производится изменением поверхности горения заряда или площади критического сечения сопла, а также впрыскиванием в камеру сгорания жидкости. Направление тяги может меняться газовыми рулями, отклоняющейся насадкой (дефлектором), вспомогательными управляющими двигателями и т. п. Реактивные твердотопливные двигатели очень надежны, могут долго храниться, а следовательно, постоянно готовы к запуску. смотреть

Читать еще:  Двигатель адр сколько литров

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

1Классификация реактивных двигателейДвигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энерг. смотреть

7 Различных типов ракет — На основе движущей силы и их использования

Ракетная двигательная установка — это увлекательная технология. Технология, которая генерирует достаточную тягу для перемещения летательных аппаратов по воздуху. Но знаете ли вы, что ракетная технология была изобретена китайцами в 13 веке?

Конечно, тогда ракеты использовались не для запуска космических аппаратов, а для военных целей. В 1380 году мир увидел свою первую ракетную установку, которая на самом деле была огненной стрелой, названной «осиное гнездо», созданное династией Мин.

До середины 20 века ракеты не использовались в промышленных или научных работах. Фактически, первая ракета, которая могла летать достаточно высоко, чтобы выйти из земной атмосферы, была впервые запущена в 1942 году Германией. В 1957 году Советский Союз запустил первую ракету, которая вывела на эллиптическую низкую околоземную орбиту первый искусственный спутник (Спутник 1).

С тех пор космические агентства и научно-исследовательские центры разработали многочисленные ракетные технологии для получения эффективной тяги. Мы перечисляем самые популярные из них, которые привлекли внимание людей за последние семь десятилетий.

Так сколько на самом деле типов ракет? По сути, ракеты можно разделить на две категории:

На основе движущей силы

1. Твердотопливная Ракета

Космический челнок «Колумбия» был запущен с помощью двух твердотопливных ракет-носителей

Все старые ракеты приводились в движение твердотопливными двигателями. Однако теперь появились новые конструкции, более современные виды топлива и функции с использованием твердого топлива. В настоящее время усовершенствованные твердотопливные двигатели в основном используются на разгонных блоках серии Delta и на сдвоенных разгонных блоках «Спейс шаттла».

Твердое топливо может быть изготовлено из многочисленных соединений, например, черного порошка (содержит древесный уголь, серу и нитрат калия), цинк-серы, нитрата калия и композиционных топлив на основе нитрата аммония или перхлората аммония.

Поскольку эти ракеты могут быть надежно запущены в короткие сроки, а твердое топливо может храниться в течение длительного периода времени, они часто используются в военных целях. Маленькие ракеты, такие как Nike Hercules и Honest John, и большие баллистические ракеты, такие как Vanguard и Polaris, используют двигатели на твердом топливе.

Хотя эти ракеты могут обеспечить высокую тягу при относительно низкой стоимости, они не столь эффективны, как современные ракеты на жидком топливе. Они могут использоваться только для выведения на низкую околоземную орбиту до 2 тонн полезной нагрузки.

2. Ракета на жидком топливе

Как следует из названия, жидкостные ракеты используют жидкое топливо для создания тяги. В отличие от твердого топлива, жидкие состоят либо из одного, либо из двух химических веществ (бипропелленты). Жидкое топливо в значительной степени предпочтительнее твердого топлива из-за его высокой плотности и высокого массового соотношения для ракеты.

Инертный газ хранится в баке двигателя под чрезвычайно высоким давлением для принудительного ввода топлива в камеру сгорания. Хотя двигатели имеют меньшее массовое соотношение, они более надежны и поэтому в основном используются в спутниках для поддержания орбиты.

Жидкие ракеты можно далее разделить на три группы: монотопливные ракеты (с одним топливом), двухтопливные ракеты (с двумя различными видами топлива) и более совершенные трехтопливные ракеты (с тремя видами топлива).

Наиболее популярными являются двухтопливные ракеты, работающие на жидком топливе (углеводороде или жидком водороде) и жидкостном окислителе (жидкий кислород). В ракете может также использоваться криогенный двигатель, в котором и окислитель, и топливо — это газы, которые при низких температурах превращаются в жидкость.

Читать еще:  Что смешивает топливо в дизельном двигателе

Первый зарегистрированный полет такой ракеты состоялся в 1926 году, когда профессор Роберт Х.Годдард экспериментировал с аппаратом, использующим жидкий кислород и бензин в качестве топлива.

3. Плазменная ракета

Плазменная двигательная установка 1961 г. Предоставлено: НАСА

В плазменном двигателе тяга создается из квазинейтральной плазмы (где ионы и электроны упакованы в равных количествах). Это тип электрического двигателя, который использует токи и потенциалы (производимые внутри плазмы) для ускорения заряженных частиц в плазме.

За последние два десятилетия многие институты работали или в настоящее время работают над плазменными двигателями, включая Иранское космическое агентство, Австралийский национальный университет и Европейское космическое агентство.

Плазменные ракеты могут быть легко построены и использованы не один раз из-за их простой теории работы и дешевого топлива (большое количество газов, а также их комбинации могут быть использованы в качестве топлива). В отличие от обычных химических ракет, плазменные ракеты не используют все свое топливо сразу, что делает их легко пригодными для использования в полете.

Однако самая большая проблема с плазменными ракетами — это производство достаточного количества электричества для превращения газов в плазму. И из-за их относительно низкой тяги они не подходят для запуска тяжелых спутников. В среднем плазменная ракета может производить примерно 1/2 килограмма тяги. Более того, при использовании плазменных двигателей всегда существует вероятность разрушения ракеты.

VASIMR (переменная удельная импульсная магнитоплазменная ракета) — это новейшие типы ракетных двигателей, работающих на плазме, которые ионизируют топливо в плазму с помощью радиоволн. Одним из многих преимуществ плазменного двигателя является его более высокое удельное значение импульса или Isp, чем у любого другого типа ракет.

Хотя плазменные двигатели до сих пор не используются в коммерческих целях, несколько небольших версий уже успешно развернуто и протестировано. В 2011 году НАСА совместно с компанией по производству двигателей, базирующейся в Массачусетсе, запустило в космос на борту экспериментального спутника Tacsat-2 первый в истории подруливающий аппарат Холла (плазменный).

4. Ионная ракета

Испытание зажигания ионного двигателя в Лаборатории реактивного движения НАСА

Ионные двигатели — это еще одна форма электрического движения, которая использует электрический ток для ускорения положительных ионов. Более конкретно, они используют электростатическую или электромагнитную силу для ускорения ионов и создания тяги.

Ионные двигатели ионизируют топливо, добавляя/удаляя электроны для получения ионов. Ксенон в основном используется в качестве топлива из-за его ионизирующих возможностей и высокой атомной массы, которая производит достаточное количество тяги при ускорении ионов.

Поскольку ксенон является инертным газом с впечатляющей плотностью хранения, его можно эффективно хранить на космических аппаратах. Большинство ионных двигателей используют процесс, известный как термоэмиссия для получения электронов.

Ионные двигатели не могут работать в атмосфере Земли, где ионы присутствуют вне двигателя. Они не могут преодолеть никакого заметного сопротивления воздуха и работают только в вакууме пространства. В настоящее время ионные двигатели (разработанные НАСА) используются для поддержания более чем 100 геосинхронных спутников связи в надлежащем положении.

Первой в мире успешной миссией в дальнем космосе с использованием ионных двигателей была НАСА Deep Space 1 (в 1990 году). Позже JAXA запустила космический корабль Hayabusa в 2003 году, который все еще находится в эксплуатации.

На данный момент НАСА работает над двумя различными ионными двигателями — кольцевым двигателем и эволюционным ксеноновым двигателем НАСА, чтобы увеличить срок эксплуатации космических аппаратов и снизить эксплуатационные расходы.

На основе использования

5. Ракетный автомобиль

Возможно, вы слышали о реактивных машинах, но что насчет ракетных машин? В отличие от реактивного автомобиля, ракетный автомобиль несет и топливо, и окислитель, что устраняет необходимость в компрессоре и воздухозаборнике, что, в свою очередь, снижает общий вес и минимизирует сопротивление.

Эти автомобили могут работать на своих двигателях в течение коротких промежутков времени (

Ракетные двигатели также могут быть использованы в авиации. Ракетные самолеты могут достигать гораздо более высоких скоростей, чем самолеты аналогичного размера, но только на небольших расстояниях. А поскольку им не нужен атмосферный кислород, они идеально подходят для полетов на больших высотах.

Ракетные самолеты были впервые спроектированы немцами во время Первой мировой войны. Однако у этих первоначальных конструкций были некоторые серьезные проблемы с производительностью, которые позже были устранены британскими инженерами в 1950-х годах, когда они разработали свои очень эффективные турбореактивные конструкции. Они могут обеспечить более короткие взлеты и намного более высокое ускорение.

Из-за интенсивного использования ракетных двигателей ракетные двигатели в основном используются в самолетах-перехватчиках и космических самолетах. X-15 является одним из самых популярных образцов ракетных самолетов. Это был ракетообразный самолет с своеобразным клиновидным вертикальным хвостом и короткими крыльями, построенный Североамериканской авиацией. На этапе эксплуатации он установил рекорд высоты и скорости в 354 200 футов и 4 520 миль в час.

Первые реактивные ракеты

Принципы реактивного движения постигались не одним поколением ученых. Для исследований в этой области чаще всего использовались реактивные снаряды, применение их в качестве оружия давало множество преимуществ.

Принципы реактивного движения постигались не одним поколением ученых. Для исследований в этой области чаще всего использовались реактивные снаряды; применение их в качестве оружия давало множество преимуществ.

В 1920 году, сразу после гражданской войны, сложились подходящие условия для создания оружия нового типа. Первопроходцами в те годы стали Владимир Андреевич Артемьев (1885-1962) и Николай Иванович Тихомиров (1859-1930).

В начале 1920-х годов инженер Н. И. Тихомиров задался целью создания ракет на бездымных порохах. В. А. Артемьев уже в те годы был убежден, что следует отказаться от низкокалорийного дымного пороха, поскольку он не позволял увеличить дальность полета ракет. Замена черного пороха на бездымный стала принципиально важным шагом вперед. Творческий союз этих замечательных ученых оказался полезным для ракетостроения. В то время мало кто верил в успех их поисков, считали, что они чудаки и «затеяли фантастику».

Экспериментальные ракеты были небольших размеров

Какие бывают ракеты? Создать реактивный снаряд на бездымном порохе представлялось нереальной задачей. Поиском рецептуры бездымного пороха для ракет занимались профессоры и преподаватели Артиллерийской академии, находившейся тогда в Ленинграде, а также ученые Москвы. Была основана Газодинамическая лаборатория — ГДЛ, начальником которой назначили Н. И. Тихомирова.

В конце 1934 года Газодинамическая лаборатория объединилась с Московской группой изучения реактивного движения (МосГИРД). Именно под таким названием — ГИРД — в истории космонавтики упоминается коллектив гениальных ученых, стоявших у истоков космических полетов.

Создание первой ракеты на бездымном порохе обеспечило появление ракетных снарядов к знаменитой ракетной установке Второй мировой войны «Катюше».

На территории Петропавловской крепости в середине XX века проводились первые испытания ракет.

Устройство для перевозки ракет

Продолжая эстафету. Одним из сотрудников Н. И. Тихомирова был талантливый исследователь Георгий Эрихович Лангемак (1898-1938). Он родился в г. Старобельске Харьковской области. Отец, немец, и мать, швейцарка по национальности, преподавали иностранные языки в гимназии. Георгий с детства в совершенстве владел французским и немецким языками. В 1908-м он поступил в восьмиклассную Елизаветградскую гимназию, которую окончил с серебряной медалью в 1916 году. В том же году Георгий Лангемак стал студентом филологического факультета Петроградского университета, решив всю свою жизнь посвятить изучению японской филологии. Однако годы революции и гражданской войны изменили его планы.

В 1928 году Г. Э. Лангемак окончил Военно-техническую академию (ныне Ракетно-артиллерийская академия имени Императора Петра Великого). Во время учебы вместе с другими слушателями академии выполнял заказы для Газодинамической лаборатории Н. И. Тихомирова (ГДЛ).

Схема ракетного снаряда к ракетной установке «Катюша»

1. Стопорное кольцо взрывателя

2. Взрыватель ГВМЗ

3. Шашка детонатора

4. Разрывной заряд

5. Головная часть

8. Направляющий штифт

9. Пороховой ракетный заряд

10. Ракетная часть

11. Колосниковая решетка

12. Критическое сечение сопла в

В 1933 году после организации Реактивного научно-исследовательского института (РНИИ) на базе ГДЛ и МосГИРД Г. Э. Лангемака назначили начальником Ленинградского отделения РНИИ. В 1934 году в Москве вместе с Б. С. Петропавловским, В. А. Артемьевым, Н. И. Тихомировым, Ю. А. Победоносцевым он завершил доводку реактивных снарядов РС-82 мм и РС-132 мм, ставших основой реактивного миномета «Катюша».

Увлеченный идеями космонавтики, Г. Э. Лангемак вел переписку с К. Э. Циолковским.

Основоположнику космонавтики писал с 1923 по 1930 год еще один гениальный конструктор, крупный ученый в области ракетно-космической техники, посвятивший свою жизнь развитию космонавтики, — Валентин Петрович Глушко (1908-1989). Он родился в Одессе в семье служащего. С юности был увлечен неизведанными тайнами мироздания. В период учебы в Реальном училище имени Святого Павла (позднее — IV Профтехшкола «Металл» им. Л. Троцкого) руководил Кружком общества любителей мироведения при одесском отделении Русского общества любителей мироведения (РОЛМ), увлекался игрой на скрипке. Умел работать на токарном станке, знал слесарное дело. С 1924 года стал публиковать научно-популярные статьи о космических полетах, подготовил к изданию книгу «Проблема эксплуатации планет».

Уже в дипломной работе выпускник физического отделения физико-математического факультета Ленинградского государственного университета Валентин Глушко предложил проект гелиоракетоплана — межпланетного корабля с электрическими ракетными двигателями. В 1929 году часть этой дипломной работы, посвященная электрическому ракетному двигателю, под названием «Металл как взрывчатое вещество» была сдана в отдел при Комитете по делам изобретений.

С 1929 года Валентин Павлович, который знал как появились ракеты, руководил подразделением по разработке электрических и жидкостных двигателей для ракет. Все разработки являлись уникальными: профилированное сопло, теплоизоляция камеры ракетного двигателя, усовершенствованные конструкции ракет. В 1935 году была издана книга «Ракеты, их устройство и применение» под редакцией Г. Э. Лангемака и В. П. Глушко. В 1936 году опубликована работа В. П. Глушко «Жидкое ракетное топливо для реактивных двигателей».

Проектные варианты космической системы «Энергия — Буран»

Под руководством ученого до 1988 года было изготовлено более 50 самых совершенных жидкостных реактивных двигателей (ЖРД) и их модификаций. По его проекту создана многоразовая космическая система «Энергия-Буран». Космическая многомодульная станция «Мир» — настоящий дом на орбите — также во многом обязана своим появлением академику В. П. Глушко и его команде. Он возглавлял работы по совершенствованию пилотируемых космических кораблей «Союз» и разработке их модификаций «Союз Т» и «Союз ТМ», а также грузового корабля «Прогресс», по совершенствованию орбитальных станций «Салют», реализации программы космических пилотируемых полетов, в том числе и международных.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector