0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое регулятор скорости двигателя

Как регулировать обороты двигателя переменного тока

Cпособы регулирования скорости вращения асинхронного двигателя

Асинхронные двигатели переменного тока являются самыми применяемыми электродвигателями абсолютно во всех хозяйственных сферах. В их преимуществах отмечается конструктивная простота и небольшая цена. При этом немаловажное значение имеет регулирование скорости асинхронного двигателя. Существующие способы показаны ниже.

Согласно структурной схеме скоростью электродвигателя можно управлять в двух направлениях, то есть изменением величин:

  1. скорость электромагнитного поля статора;
  2. скольжение двигателя.

Первый вариант коррекции, используемый для моделей с короткозамкнутым ротором, осуществляется за счет изменения:

  • частоты,
  • количества полюсных пар,
  • напряжения.

В основе второго варианта, применяемого для модификации с фазным ротором, лежат:

  • изменение напряжения питания;
  • присоединение элемента сопротивления в цепь ротора;
  • использование вентильного каскада;
  • применение двойного питания.

Вследствие развития силовой преобразовательной техники на текущий момент в широком масштабе изготовляются всевозможные виды частотников, что определило активное применение частотно-регулируемого привода. Рассмотрим наиболее распространённые методы.

Частота вращения

Частоту оборотов АДКР (N) вычисляют по формуле: 60F (частота напряжения в сети)/p (число полюсных пар статора, измеряется в об/мин).

Обычно тех. характеристики указаны на корпусе двигателя. Если такой информации по какой-то причине нет, то число оборотов вычисляют по другим признакам:

  • количеству катушек;
  • учитывается диаметральный шаг отмотки;
  • количеству полюсов по сердечнику статора.

  • Фейсбук
  • Гугл+
  • ЖЖ
  • Blogger

Частотное регулирование

Всего десять лет назад в торговой сети регуляторов частоты вращения скорости ЭД было небольшое количество. Причиной тому служило то, что тогда ещё не производились дешёвые силовые высоковольтные транзисторы и модули.

На сегодня частотное преобразование – самый распространённый способ регулирования скорости двигателей. Трёхфазные преобразователи частоты создаются для управления 3-фазными электродвигателями.

Однофазные же двигатели управляются:

  • специальными однофазными преобразователями частоты;
  • 3-фазными преобразователями частоты с устранением конденсатора.

Схемы регуляторов оборотов асинхронного двигателя

Для двигателей повседневного предназначения легко можно выполнить необходимые расчеты, и своими руками произвести сборку устройства на полупроводниковой микросхеме. Пример схемы регулятора электродвигателя приведён ниже. Такая схема позволяет добиться контроля параметров приводной системы, затрат на техническое обслуживание, снижения потребления электричества наполовину.

Принципиальная схема регулятора оборотов вращения ЭД для повседневных нужд значительно упрощается, если применить так называемый симистор.

Обороты вращения ЭД регулируются с помощью потенциометра, определяющего фазу входного импульсного сигнала, открывающего симистор. На изображении видно, что в качестве ключей применяются два тиристора, подключённых встречно-параллельно. Тиристорный регулятор оборотов ЭД 220 В достаточно часто применяется для регулирования такой нагрузки, как диммеры, вентиляторы и нагревательная техника. От оборотов вращения асинхронного ЭД зависят технические показатели и эффективность работы двигательного оборудования.

Подключение

Способ подключения регулятора оборотов электродвигателя будет отличаться в зависимости от его типа и принципа действия. Поэтому в качестве примера мы разберем один из наиболее распространенных частотных регуляторов, которые используются в самых различных сферах.

Перед подключением обязательно ознакомьтесь с заводской схемой. Как правило, вы можете увидеть ее на самом регуляторе оборотов, либо в паспорте устройства:


Схема подключения регулятора

Далее, пользуясь распиновкой, можно определить количество выводов, которые будут использоваться для подключения регулятора электродвигателя к сети. В нашем примере, рассмотрим случай, когда применяется трехпроводная система, значит, понадобится фаза, ноль и земля. На задней панели регулятора это два вывода AC и FG:


Распиновка регулятора

Затем необходимо проверить цветовую маркировку разъема с приведенной схемой и сопоставить ее со всеми элементами электродвигателя, которые будут подключаться в вашем случае. Если какие-то выводы окажутся лишними, их можно закоротить, как показано на рисунке выше.


Проверьте цветовую маркировку

Если все выводы регулятора соответствуют клеммам электродвигателя, можете подсоединять их друг к другу и к сети.

Регулировка оборотов электродвигателя 220В, 12В и 24В

Для плавности увеличения и уменьшения скорости вращения вала существует специальный прибор – регулятор оборотов электродвигателя 220в. Стабильная эксплуатация, отсутствие перебоев напряжения, долгий срок службы – преимущества использования регулятора оборотов двигателя на 220, 12 и 24 вольт.

Способы изменения вращения зависят от модели электрической машины. Характеристики электрических машин отличаются: постоянного и переменного тока, однофазные, трехфазные. Поэтому говорить нужно о каждом случае отдельно.

Назначение

Технически регулятор оборотов электродвигателя предназначен для изменения количества вращения вала за единицу времени. На этапе разгона корректировка частоты обеспечивает более плавную процедуру, меньшие токи и т.д. В некоторых технологических процессах необходимо регулятор оборотов снижает скорость движения оборудования, изменение подачи или нагнетания сырья и т.д.

Однако на практике данная опция может преследовать и другие цели:

  • Экономия затрат электроэнергии – позволяет снизить потери в моменты пуска и остановки вращений мотора, переключения скоростей или регулировки тяговых характеристик. Особенно актуально для часто запускаемых электродвигателей, использующих кратковременные режимы работы.
  • Контроль температурного режима, величины давления без установки обратной связи с рабочим элементом или с таковой в асинхронных электродвигателях.
  • Плавный пуск – предотвращает бросок тока в момент включения, особенно актуально для асинхронных моторов с большой нагрузкой на валу. Приводит к существенному сокращению токовых нагрузок на сеть и исключает ложные срабатывания защитной аппаратуры.
  • Поддержание оборотов трехфазных электродвигателей на требуемой отметке. Актуально для точных технологических операций, где из-за колебаний питающего напряжения может нарушиться качество производства или на валу возникает разное усилие.
  • Регулировка скорости оборотов электродвигателя от 0 до максимума или от другой базовой скорости.
  • Обеспечения достаточного момента на низких частотах вращения электрической машины.

Простейший вариант

Легче всего изменять обороты электродвигателя постоянного тока. Они меняются простым изменением напряжения питания. Причем неважно где: на якоре или на возбуждении, но это касается только маломощных машин с минимальной нагрузкой. В основном управление скоростью вращения производят по цепи якоря. Более того, здесь возможно реостатное регулирование, если мощность мотора небольшая, или есть довольно мощный реостат.

Это самый неэкономичный вариант. Механические характеристики двигателя с независимым возбуждением самые невыгодные из-за больших потерь, результатом чего является падение механической мощности, КПД.

Еще одна возможность – введение реостата в обмотку возбуждения. Рассматривая характеристики двигателя с независимым возбуждением, увидим, что регулирование скорости вращения возможно только в сторону увеличения оборотов. Это происходит ввиду насыщения обмотки.

Итак, реостатное регулирование скорости вращения аппарата независимого возбуждения оправдано в системах с минимальной нагрузкой. Лучше всего, когда работа при таком включении буде периодической.

В цепи якоря

Это лучший вариант регулирования скорости мотора с независимым возбуждением. Частота вращения прямо пропорциональна подводимому к якорю напряжению. Механические характеристики не меняют своего угла наклона, а перемещаются параллельно друг другу.

Для осуществления этой схемы нужно цепь якоря подключить к источнику напряжения, которое можно менять.

Это возможно в электрических машинах малой или средней мощности. Двигатель большой мощности целесообразно подключить в схему с генератором напряжения независимого возбуждения.

В качестве привода для генератора используют обычный трехфазный асинхронник. Чтобы уменьшить обороты, достаточно на якоре понизить напряжение. Оно меняется от номинального и вниз. Эта схема имеет название «двигатель-генератор». Таким образом можно менять параметры на двигателе 220в.

Для низкого напряжения

Управление агрегатами на 12в проще из-за более низкого напряжения и как следствие, более доступных деталей. Вариантов подобных схем множество, поэтому важно понять сам принцип.

Такой двигатель имеет ротор, щеточный механизм и магниты. На выходе у него всего два провода, контролирование скорости идет по ним. Питание может быть 12, 24, 36в, или другое. Что нужно – это его менять. Лучше, когда в пределах от нуля до максимума. В более простых вариантах 12–0в не получится, другие варианты дают такую возможность.

Кто-то паяет радиоэлементы навесным монтажом, кто-то набирает печатную плату – это уже зависит от желания и возможностей каждого человека.

Этот вариант подойдет, если точность неважна: например, вентилятор. Напряжение меняется от 0 до 12 вольт, пропорционально меняется крутящий момент.

Другой вариант – со стабилизацией оборотов независимо от нагрузки на валу.

Питание 12 вольт, схема очень проста. Двигатель набирает обороты плавно, и также плавно их сбавляет так как напряжение на выходе меняется в пределах 12–0в. Как результат – можно убрать крутящий момент практически до нуля. Если потенциометр крутить в обратном направлении, мотор так же постепенно набирает обороты до максимума. Микросхема очень распространенная, ее характеристики тоже подробно описаны. Питание 12–18в.

Есть еще один вариант, только это уже не для 12, а для 24в питания.

Двигатель постоянного тока, питание – переменное, так как стоит диодный мост. При желании можно мост выбросить и запитывать постоянкой от своего блока питания.

Простой регулятор мощности на 220 Вольт из 5 деталей.

Это схема прекрасно работает с такими приборами, как болгарки, дрели, простые лампочки, пылесосы, нагревательные плиты, тены, коллекторные двигатели, первичные обмотки трансформаторов и так далее…

Я лично для себя собирал данное устройство, чтобы регулировать питание первичной обмотки зарядного устройства для автомобильного аккумулятора, тем самым получая нужные мне параметры на выходе.

Итак, для этого нам потребуется симистор, у меня он был уже прикрученный к радиатору. Симистор у меня был BТА41-600, можно взять и другой, под свои нужды.

  • Резистор 560 ом
  • Динистор, вытащил с энергосберегающей лампы.
  • Конденсатор 0.1 мкф 400 вольт
  • Переменный резистор на 470 кОм, можно взять поменьше.

Вот схема данного устройства, она довольно маленькая

Регулятор оборотов

Регулятор оборотов – это устройство, изменяющее скорость вращения вала двигателя. Чаще подразумеваются электрические устройства.

Зачем нужно регулировать скорость

Помимо очевидных причин, когда устройство оборудования требует наличия нескольких скоростей, называют ряд иных причин. К примеру, асинхронные двигатели на старте потребляют большой ток и не способны развить полный крутящий момент. Следовательно, подъёмники лифта начинают вращаться медленно. Между тем, асинхронные электродвигатели трёх фаз с короткозамкнутым ротором считаются сегодня максимально распространённым видом оборудования. В большинстве применяются следующие способы регулирования:

  1. Изменение скольжения за счёт внедрения реостатов. Обычно включаются в цепь фазного ротора через токосъёмники в виде колец. Начальные условия сильно зависят от нагрузки на вал.
  2. Изменение частоты вращающегося поля сегодня применяется чаще, но остаётся диковинкой. Преобразователи изменяют частоту плавно или ступенями. Порой производится коммутация для изменения числа полюсов обмотки. В последнем случае скорость повышается ступенями. Применяют значения: 750, 1500, 3000, 500, 600 и 1000 оборотов в минуту, соответственно, и количество полюсов – 2, 4, 6 и т.д.
  3. Изменение амплитуды питающего напряжения. Применяется для всех типов электрических двигателей. А для коллекторных часто производится изменение передаваемой мощности путём модуляции ШИМ (в стиральных машинах, к примеру, изменяется угол отсечки напряжения).

Если брать конкретные примеры, коммутация обмоток считается более простым средством, нежели построение преобразователя частоты. По указанной причине способ применяется чаще. Режимы работы условно разбиты на четыре группы:

  • Двигатель при любой скорости отдаёт одинаковую мощность. Режим характерен для большинства станков по обработке металла, древесины.
  • Мощность возрастает пропорционально скорости. Часто встречается в кондиционерах.
  • Мощность на валу опережает рост скорости: центробежные насосы, вентиляторы.
  • Мощность на высоких скоростях понижается.
Читать еще:  Шаговый двигатель nema 17 схема

На практике чаще встречаются первые две группы: P = const, M = const. Применение многоскоростных двигателей улучшает, как правило, технологический процесс:

  1. Станки деревообрабатывающей промышленности, где скорость холостого хода сильно отличается от рабочей.
  2. Плавный пуск лифтов требует подстройки скорости. Постепенно платформа набирает обороты.
  3. Контроль усилия вала с целью бережного отношения к оборудованию. Любая бытовая мясорубка подходит под определение. В кухонных комбайнах присутствует, помимо ручного, и автоматический регулятор оборотов. Тиристорная схема ориентируется на уровень искрения и гибко подстраивает режимы.
  4. Установки, на скорость работы которых влияет время суток. К примеру, климатические системы.
  5. Оборудование нефтяных скважин, где единственный двигатель используется для различных задач. Сюда относится и отрасль прокатки стали.
  6. Двигатели с комбинированными регуляторами оборотов.

Дополнительным преимуществом регулятора оборотов асинхронного двигателя становится возможность значительного снижения пусковых токов. Порой способны до 10 раз превышать номинальные, что становится причиной сбоя защитной автоматики. Выгодным в этом плане смотрится переключение числа полюсов, что используется в судовых двигателях. В станках часто используются механические регуляторы оборотов, аналогично скажем про автомобили (коробки передач).

В электрическом ручном инструменте изменение преимущественно плавное. Регулятор скоростей выполняется в виде потенциометра, изменяющего параметры питания транзисторного или тиристорного ключа, варьируя напряжение питания. Реверс коллекторных двигателей производится перекоммутацией обмоток, для электрического инструмента это редко актуально, не считая шуруповёртов. Кухонные комбайны демонстрируют, как правило, ряд скоростей и реверс. Иногда удобен один способ, иногда другой, все зависит от компромисса между ценой и простотой изделия. В промышленности, помимо указанных, фигурируют прочие факторы.

Механическая характеристика двигателя

Вращающий момент двигателя считается важнейшей характеристикой. Обычно величина падает с повышением оборотов, если потребляется прежняя мощность. Формулу зависимости вращающего момента от мощности нелегко найти в учебниках и современном интернете, указана на скрине. У каждого двигателя отмечаются номинальные параметры и предельные. Это касается и вращающего момента.

Формула зависимости вращающего момента

Скорость вращения зависит от упомянутого параметра, вдобавок они обратно пропорциональны. Потому шофёр перед въездом на подъем снижает передачу. Для асинхронного электрического двигателя связь представлена на графике. Форма кривых демонстрирует, что скорость вращения вала на генерацию всегда больше двигательной. И это правильно, между вращающимся полем и ротором всегда останется разница. Следовательно, для генерации частоты напряжения 50 Гц ось должна делать больше оборотов (свыше 3000 в минуту).

График скорости вращения вала

Из механической характеристики проистекает, что при торможении возникает большой отрицательный момент, что эквивалентно отдаче мощности назад в сеть. Налицо известная многим реактивная составляющая в одном из проявлений. Рабочим участком становится а-б, где двигатель способен развить максимальный момент. Механические характеристики двигателя используются для вычисления схемы построения регулятора оборотов. К примеру, для двигателей с короткозамкнутым ротором, нагруженным на реостат, это линии 2-4. Все регуляторы оборотов оцениваются по механической характеристике.

Вариатор скорости

Бесступенчатые коробки передач сегодня прочно обосновались в автомобильной промышленности. Их особенностью считается плавная подстройка скорости под нужды водителя. Выполняется ременной передачей через систему конусов. От их количества и параметров зависит успешность функционирования устройства.

В промышленности вариаторы бывают электрическими, механическими или гидравлическими. О ручном управлении нет речи в силу больших мощностей. К примеру, лошадиная сила не дотягивает даже до киловатта. Понтиак на 700 коней не крут, если сравнить с турбиной ГЭС, развивающей мегаватты. Конечно, электростанция не содержит вариатора в виде регулятора скорости вращения вала. Пример приведён для создания представления о мощностях, фигурирующих на производстве.

Бесступенчатые регуляторы скорости – непременный спутник станков для точной и качественной обработки деталей. Так было до появления электронных контроллеров. Большинство промышленных вариаторов оперируют с коэффициентами умножения до 5 включительно. Расширенный спектр скоростей скачком усложняет конструкцию, что сильно снижает выгоды от применения технологии. Снижается надёжность переключения. На практике делают следующим образом:

  1. Берётся двигатель с коммутируемыми полюсами на две скорости с отношением 1 к 4.
  2. Момент передаётся на исполнительную часть станка через вариатор с идентичным диапазоном.
  3. В результате получается установка, где перекрываются все значения. Подобное используется и в автомобильных вариаторах.

Допустимо в описанную кинематическую цепь добавлять иные редукторы, ременные или клиновидные, производя дальнейшее расширение диапазона.

Муфты скольжения

Муфты скольжения асинхронных двигателей ограничены соотношением 1 к 4 и позволяют плавно изменять скорость. КПД такого устройства занижено на величину скольжения (в литературе обозначается через S). Под скольжением понимается разница между скоростями вращения ротора и привода оборудования. При разнице в 80% (максимум) КПД составит лишь 20%. Потеря мощности происходит целиком на барабане муфты.

Указанный способ находит ограниченное применение. Используется в комбинированном варианте: сочетание многоскоростного двигателя с муфтой сравнительно узкого диапазона. В результате КПД ощутимо возрастает. Чтобы полнее проиллюстрировать сказанное, рассмотрим пример:

  1. При использовании муфты скольжения с регулировочным диапазоном 1 к 5 КПД составляет 20%.
  2. Двигатель мощностью 5 кВт четыре из них станет рассеивать на силы трения в муфте. Ремень проскальзывает вокруг барабана, снижая скорость передачи.

Коммутация обмоток

Это простейший способ изменения скорости двигателя, но затратный по сборке. Часто применяется в напольных вентиляторах как максимально незаметный. В результате пара-тройка кнопок на стойке позволяют выполнить необходимые манипуляции. Обычно двигатели указанного типа показывают две, три или четыре скорости. Как правило, это модели с короткозамкнутым ротором.

Минус описанного технического решения в том, что теряется мощность на низких скоростях, используется лишь часть обмотки. На практике тяжело найти мотор с числом обмоток более двух. Анализ показывает, что уже в этом случае расходуется наполовину больше меди, а стали – на 30-40%. Одновременно наблюдается эффект снижения КПД за счёт падения коэффициента мощности (увеличивается реактивное сопротивление). Это прослеживается на примере асинхронных двигателей 220 В с пусковой обмоткой, неизменно отключающейся, когда ротор наберёт обороты. Это делается для снижения доли реактивной мощности.

Две отдельные обмотки дают и преимущества, иначе бы их не использовали. Схема коммутации получается проще, а технические характеристики мотора максимально приближены к заданным. В двигателях с отношением скоростей 1 к 2 непременно применяется единственная обмотка. Две обмотки встречаются в трёхскоростных моделях. Особенно сложны трёхфазные двигатели, где при одинаковом числе номиналов оборотов встречается разное число выводов, что зависит от схемы включения (треугольник, звезда и пр.).

Именно на процесс сборки обращают внимание при конструировании. К примеру, для получения четырёх скоростей с минимальным количеством выводов требуется брать соотношения, как 1 к 2: 500, 750, 1000, 1500 или 500, 1000, 1500, 3000. Иначе количество контактов коммутационного реле сильно возрастает. В итоге большая часть многоскоростных двигателей демонстрирует две обмотки.

Пусковые реостаты

Часто для изменения скорости вращения вала используются сопротивления в цепи трёхфазного статора. На момент пуска регистрируется крайне большой ток, для погашения реостат задействуется на полную. По мере разгона разность между полями снижается, сопротивления становятся меньше. Этим увеличивается потокосцепление, вал выходит постепенно на номинальный режим. В конечном итоге реостат замыкается параллельно через реле и отключается. Исходными данными для расчёта величин станут:

  1. Тип двигателя. Читается по маркировке.
  2. Режим работы. К примеру, длительный. Данные берутся из паспорта.
  3. Номинальная мощность обычно указана на шильдике.
  4. Номинальное напряжение указывается отдельно для звезды и треугольника, допустим, 220 и 380 В.
  5. Номинальный ток. Обычно указывается линейный (между фазами).
  6. Скорость вращения вала.
  7. Иногда указываются: схема соединения обмоток ротора, номинальная ЭДС на его разомкнутых зажимах при номинальном напряжении, номинальный ток ротора (в рабочем режиме).

RCSearch

Регулятор скорости

Содержание

  • 1 Описание
  • 2 Характеристики
  • 3 Подключение
    • 3.1 К аккумулятору
    • 3.2 К мотору
    • 3.3 К приёмнику/контроллеру
  • 4 Настройки
  • 5 Как выбрать регулятор?
  • 6 Производители регуляторов
    • 6.1 Профессиональные
    • 6.2 Хоббийные
    • 6.3 Прочие
  • 7 Модели регуляторов
  • 8 FAQ
    • 8.1 Мотор крутится не в ту сторону
    • 8.2 Мотор плохо стартует
    • 8.3 Мотор стартует в разные стороны
    • 8.4 Можно ли подключать два БК-мотора к одному регулятору
    • 8.5 Что такое регуляторы OPTO
  • 9 См. также

Описание [ править ]

ESC (Electronic Speed Controller) — дословно «электронный регулятор скорости», позволяющий точно варьировать электрическую мощность, подаваемую на электродвигатель. Также регулятор определяет направление вращения мотора (сам или способ подключения к нему).

Также встречаются названия: регулятор хода, регулятор оборотов, Motor Speed Controller.

Регулятор для электродвигателей представляют собой программируемое устройство, контролирующее все жизненно важные параметры двигателя. Регулятор позволяет не только менять обороты и направление работы мотора, но и обеспечивать в зависимости от необходимости плавный или резкий старт, ограничение по максимальному току, функцию «тормоза» и ряд других тонких настроек двигателя под нужды моделиста. Для программирования регулятора используются специальные программаторы, либо устройства для подключению регулятора к компьютеру, либо в полевых условиях это можно делать с помощью передатчика и специальной перемычки.

Характеристики [ править ]

  • Максимальный ток – указывает, какой ток контроллер мотора может держать продолжительное время, то есть постоянно. Как правило, этот параметр входит в обозначение контроллера (18А, 10А). Иногда указывают величину кратковременного, пикового тока, допустимого в течении нескольких секунд.
  • Кратковременный ток — способны держать выходные транзисторы контроллера, но рассеивать выделяемое при этом токе количество тепла контроллер не в состоянии.
  • Максимальное рабочее напряжение — указывается, от какого количества никелевых или литий-полимерных банок можно запитывать регулятор. Для контроллеров с BEC-ом, эта величина может иметь зависимость от расчётного количества сервомашинок. Это связано с рассеиванием тепла стабилизатором схемы BEC — при большем числе банок максимальный ток нагрузки BEC и, следовательно, количество сервомашинок меньше. Как правило, если используется BEC, количество банок не превышает 12. Если вы хотите работать с большим количеством банок, то придется ставить или отдельную батарею питания приемника, или использовать внешний BEC. Но в любом случае нельзя превышать максимальное напряжение, допустимое для контроллера.
  • Максимальные обороты (RPM) — программное ограничение максимальных оборотов. Всегда указывается для двухполюсного двигателя. Для многополюсных моторов это число надо разделить на количество пар полюсов. Например, если указано 63000 RPM, то для мотора с 12-ю магнитами максимальные обороты будут 63000/6=10500 RPM. Данная функция не дает мотору набрать большее, чем указано количество оборотов, некоторые контроллеры при превышении этого значения на холостом ходу начинают сбоить, вызывая значительные броски тока — мотор начинает резко дергаться. Этот эффект не является признаком неисправности мотора или контроллера.
  • Внутреннее сопротивление – полное сопротивление силовых ключей контроллера, без учета проводов. Чем мощнее контроллер, тем меньше его внутреннее сопротивление. Как правило, сопротивление проводов сравнимо с внутренним сопротивлением контроллера и вносит до 30% потерь. Для примера, внутреннее сопротивление контроллера Castle Creations Phoenix 25A 13 мОм, а сопротивление 30 см провода сечением 1кв.мм – 6 мОм, то есть почти треть потерь приходится на провода.
  • Частота импульсов контроллера (PWM Frequency) — как правило, составляет 7-8 КГц. У некоторых контроллеров частоту регулирования можно программировать на другие значения — 16 и 32 КГц. Эти значения применяется в основном для высокооборотных 3-4-х витковых моторов с малой индуктивностью, при этом улучшается линейность регулирования частоты вращения. Частота импульсов может доходить и до 400 кГц.
  • Наличие выключателя — это дополнительное удобство, позволяющее не разбирать каждый раз модель, чтобы добраться до аккумулятора и включить/выключить бортовую аппаратуру. Некоторые производители регуляторов не ставят выключателей на контроллеры, рассчитанные на токи ниже 40А.
Читать еще:  Гольф 3 не показывает стрелка температуры двигателя

Хорошее решение — электронный выключатель, который работает на размыкание, и если он в полёте случайно оторвется то контроллер и аппаратура останется включенной. Внимание! Некоторые регуляторы выключают лишь питание приёмника (встроенный BEC), а контроллер при этом остаётся включенным, не подавая никаких сигналов о разряде аккумулятора, который может постепенно разрядиться «в ноль», что для литиевых аккумуляторов заканчивается фатально.

Подключение [ править ]

К аккумулятору [ править ]

Важно! Нельзя делать провода от регулятора до аккумулятора слишком большой длины! Стартовые токи бесколлекторных моторов намного больше, чем аналогичных коллекторных, и при работе моторов возникают большие скачки тока. Конденсаторы, всегда стоящие на входе контроллера, должны быть специального типа, но многие производители экономят на них.

При удлинении проводов от контроллера до батареи начинает сказываться их индуктивность, и может возникнуть ситуация, когда уровень помех по напряжению питания на входе контроллера станет настолько высок, что контроллер не сможет правильно определить положение ротора мотора (иногда при этом еще и «повисает» процессор контроллера). Известны случаи сгорания контроллеров при длине проводов со стороны аккумулятора около 30см.

Кроме того, длинные провода до батареи могут вызывать проблемы при резком старте мотора — контроллер может не перейти от режима старта к рабочему режиму при слишком резком прибавлении “газа”. Для предотвращения этого эффекта во многих контроллерах есть специальные настройки.

Если необходимо увеличить длину проводов (например, двигатель стоит в хвосте модели), то следует

  • прежде всего увеличивать длину проводов от мотора до контроллера. Как правило, контроллеры поставляются с проводами до батареи длиной 13-16см. Такая длина вполне достаточна для надежной работы контроллера, и не следует ее увеличивать более чем на 5см.
  • если увеличение длины проводов от аккумулятора до регулятора неизбежно, но следует их заменить на более «толстые» (увеличить поперечное сечение проводов).

К мотору [ править ]

Мотор подключается к регулятору тремя проводами. Порядок подключения имеет значение только для направления вращения мотора.

К приёмнику/контроллеру [ править ]

К приёмнику или полётному контроллеру регулятор подключается, как правило, через сервопровод, через который получает сигнал управления и даёт питание для приёмника (полётный контроллер обычно питается от другого источника, поэтому либо используются регуляторы OPTO, либо питающий провод сервопровода не используется (вынимается, отрезается).

Настройки [ править ]

Практически все современные регуляторы (за исключением контроллеров моторов со специальными прошивками для мультикоптеров) имеют множество программных настроек. От них зависит режим работы, надежность, а иногда и работоспособность контроллера в паре с тем или иным мотором.

  • Напряжение выключения мотора (cut-off voltage) – при снижении до какого напряжения питания мотор (и только он) будет выключен. Эта функция предназначена для избежания просадок питающего напряжения бортового аккумулятора и, как следствие, сохранения работоспособности аппаратуры при его разряде и для защиты самого аккумулятора от переразряда (последнее особенно важно для литий-полимерных аккумуляторов). Обычно задаётся в количествах «банок». На некоторых контроллерах количество банок литиевых батарей определяется автоматически.
  • Тип выключения мотора (cut-off) – как правило имеет 2 значения.
    • плавный (soft cut-off): контроллер сбрасывает обороты постепенно, не позволяя напряжению на батарее упасть ниже заданного, при этом контроль над моделью сохраняется до последнего.
    • жёсткий (hard cut-off): если зафиксировано падение напряжения ниже заданного, то мотор немедленно останавливается. Жесткое отключение может доставить некоторые неудобства при разряженном аккумуляторе: манипулируя газом, вместо небольшой прибавки оборотов иногда получается полный останов мотора.
  • Тормоз (brake) – торможение мотора после установки газа в «ноль». Может иметь значения включен/выключен, на некоторых контроллерах есть еще программируемая величина тормоза 50-100% и задержка включения тормоза после полного сброса газа. Это необходимо для защиты шестеренок редуктора в случае использования больших и тяжелых пропеллеров, а также полезно при использовании на планерах, когда принудительно нужно остановить пропеллер, чтобы он не раскручивался набегающим потоком воздуха. В некоторых контроллерах, тормоз и плавное выключение мотора – установки взаимоисключающие: для включения плавного отключения мотора надо выключить тормоз и наоборот.
  • Опережение (Timing) – параметр, от которого зависит мощность и КПД пары мотор+регулятор. Может находится в пределах от 0°..30°. Физически это электрический угол опережения коммутации обмоток. Для двухполюсных моторов при увеличении опережения обороты и мощность на максимальных оборотах растут, а общий КПД падает.
    • Для двух и 4-х полюсных моторов с внутренним ротором рекомендуют значения 5°..15°. При больших значениях опережения мощность практически не растет, а КПД падает на 3-5% — это важно для соревнований, где счет идет именно на эти проценты.
    • Для многополюсных моторов с внешним ротором ситуация иная — для них оптимальным по КПД и мощности является опережение 25°..30°. При изменении угла опережения от 5° до 25° растут и КПД и выходная мощность. Однако прирост этот невелик — около 3%.
  • Режим старта (start mode) — не имеет как правило каких-то числовых значений, описывается только как мягкий, (soft) жесткий (hard), быстрый (fast) и пр. Быстрый старт рекомендуется для моторов без редукторов и для использования в соревнованиях. При использовании быстрого старта в моторах с редукторами возможно повреждение шестерен. Плавный старт обеспечивает меньшие пусковые токи в момент старта и позволяет избежать возможных перегрузок по току контроллера, но время раскрутки мотора до полных оборотов увеличивается.
  • Время акселерации или задержка акселерации (acseleleration time или acseleration delay) – устанавливает время набора оборотов после старта до максимума. Устанавливается меньше для моторов с легкими пропеллерами без редукторов и больше для моторов с редукторами и в случае срабатывания защиты по току при резком прибавлении газа.
  • Ограничение тока (Curent limiting) – уровень срабатывания защиты по току. Устанавливается более чувствительным в случае применения моторов с большим стартовым током и батарей с высоким внутренним сопротивлением. При этом желательно установить плавное отключение мотора, в противном случае при резких манипуляциях газом мотор будет останавливаться, что может критично сказаться на управлении. Не рекомендуется отключать защиту по току, если вы не уверены, что ток мотора не может превысить максимально допустимое значение для контроллера, что может привести к повреждению контроллера.
  • Режим газа (throttle type или throttle mode) – устанавливает зависимость оборотов мотора от положения стика газа. Может иметь значения:
    • автокалибровки (auto calibrating) – при этом контроллер самостоятельно определяет положение малого и полного газа
    • фиксированный (fixed) — когда характеристика жёстко задана производителем.
  • Гувернёр (governor) — настройка предназначена для вертолётов, когда положению ручки газа соответствуют определенные обороты, а не мощность двигателя, контроллер в данном режиме работает как автоматическая система поддержания оборотов, прибавляя мощность при увеличении нагрузки на двигатель.
  • Реверс (reverse) — смена направления вращения. Обычно для изменения направления вращения двигателя надо поменять местами любые два провода от мотора. Но в продвинутых контроллерах, возможно изменить направление вращения мотора программно.

Как выбрать регулятор? [ править ]

  • Мощность регулятора должна соответствовать мощности мотора. Соответственно максимальный ток, на который рассчитан регулятор, должен быть не меньше максимального тока, на который рассчитан мотор. Обратная разница вполне допустима — рабочий ток определяется нагрузкой (мотором), а не регулятором. При больших токах 60-80А контроллер лучше выбирать с запасом на 10-15А больше.
  • Если планируется использовать литий-полимерные аккумуляторы — регулятор должен иметь соответствующие настройки.
  • Внимательно изучите все характеристики выбранного регулятора.

Производители регуляторов [ править ]

Профессиональные [ править ]

На этих контроллерах летает, плавает и ездит большинство спортсменов. Однако это и самые дорогие контроллеры.

  • Castle Creations — Один из мировых лидеров в производстве профессиональных контроллеров для спортсменов.
  • Kontronik

Два способа регулирования скорости однофазного насоса. Частотный преобразователь или регулятор напряжения для управления скоростью однофазного насоса?

Главная > Способы регулирования однофазного насоса

Ежедневно проектируются системы водоснабжения, в которых предполагается использование погружного или поверхностного однофазного электронасоса. Для большинства проектов управление скоростью насоса, поставленное в зависимость от текущей нагрузки в системе водоснабжения — желательный и предпочтительный вариант выбора. Автоматическое регулирование скорости насоса обеспечит стабильный напор, уменьшит потребление электроэнергии и снизит акустический шум.

Однофазные одноступенчатые и многоступенчатые насосы, как правило, оснащены конденсаторными асинхронными электродвигателями. Конденсаторный двигатель насоса содержит две статорные обмотки, в одной из которых размещен постоянно подключенный конденсатор. Современные способы регулирования однофазного насоса, оснащенного конденсаторным двигателем, основаны на реализации частотного метода (1) или метода регулирования напряжения (2). В первом варианте внешним регулирующим устройством выступает специальный однофазный преобразователя частоты, во втором — регулятор мощности.

Мы рассмотрим возможности двух электронных устройств управления скоростью однофазного насоса производства компании Italtecnica Srl (Италия), основанных на различных принципах регулирования – специализированного частотного преобразователя для однофазного насоса Sirio Entry 230 и регулятора напряжения MITO.

1. Частотный преобразователь для однофазного насоса Sirio Entry 230 с однофазным выходом 1х230В.

Преобразователь частоты для однофазного насоса Sirio Entry 230 разработан компанией Italtecnica для вольт-частотного регулирования скорости однофазного насоса. Sirio Entry 230 формирует выходное напряжение 1х230В, 30-50Гц. Физическая величина, подлежащая контролю – давление. Для осуществления задачи контроля давления Sirio Entry 230 оснащен интегрированным аналоговым датчиком давления и ПИД-регулятором. Алгоритмы работы Sirio Entry 230 позволяют обеспечить устойчивый пуск и регулирование однофазного электродвигателя мощностью до 1,5кВт в заданном диапазоне частот.

Модификация Sirio Entry XP позволяет управлять скоростью однофазного насоса мощностью до 1,8кВт в диапазоне частоты 35-50Гц. Узкие диапазоны регулирования обусловлены зависимостью емкостного сопротивления конденсатора от частоты напряжения.

Однофазный насос, регулируемый с помощью Sirio Entry 230, не требует никаких конструктивных изменений однофазного насоса (поверхностного или погружного). Преобразователь частоты Sirio Entry 230 монтируется непосредственно в магистральный трубопровод и обеспечивает простой ввод в эксплуатацию, установкой нескольких параметров. Sirio Entry 230 — специализированный преобразователь частоты, построенный с учетом особенностей эксплуатации и защиты монофазного насоса.

2. Однофазный тиристорный регулятор напряжения MITO с однофазным выходом 1х230В.

Читать еще:  Греется двигатель авто причина

На сегодняшний день частотное регулирование остается наиболее эффективным и доступным решением регулирования асинхронного электродвигателя, в том числе и регулирования однофазного насоса. До относительно недавнего времени доступные по цене преобразователи частоты для однофазного насоса попросту отсутствовали на рынке. Это заставляло инженера осуществлять поиск других решений и способов регулирования.

Компания Italtecnica разработала тиристорное устройство регулирования характеристик однофазного насоса с помощью изменения напряжения статора. Это устройство получило название электронного регулятора мощности MITO.

В конструкции регулятора частоты для однофазного насоса MITO – два включенных встречно-параллельных тиристора, которые формируют на выходе регулируемое среднеквадратическое значение однофазного напряжения.

Регулятор мощности MITO регулирует однофазный насос номинальной мощностью электродвигателя до 0,75кВт в диапазоне изменения выходного напряжения 170-230В, обеспечивая поддержание заданного давления по сигналу интегрированного датчика давления. Алгоритмы управления MITO позволяют осуществлять контроль потребляемого тока и продолжительности работы в режиме регулирования напряжения, что направлено на предотвращение условий перегрева двигателя. Преимущество тиристорного регулятора напряжения MITO в сравнении с частотным способом регулирования однофазного насоса только одно – более низкая цена. Применимость метода ограничивает мощность двигателя однофазного насоса ( для регулятора MITO мощность насоса P2 ≤ 0,75кВт) и невозможность обеспечивать регулирование насоса в продолжительном режиме.

Как выбрать регулятор скорости вращения вентиляторов

Зачем нужен регулятор скорости вращения вентиляторов (реобас)?

Не секрет, что высокопроизводительные микропроцессорные устройства греются при работе: чем больше нагрузка – тем сильнее. Для многих элементов современного компьютера установки на «чип» обычного радиатора уже недостаточно – требуется активный отвод тепла. Проще всего это реализовать с помощью вентилятора (кулера): уже никого не удивляют системные блоки с суммарным числом кулеров в 8-10 шт. Иногда на материнской плате не хватает разъемов для подключения дополнительных вентиляторов, и подключение производится через разветвитель питания или реобас.

Одиночный кулер шумит несильно и электроэнергии потребляет мало. Но если в корпусе их с десяток, шум становится уже некомфортным, да и потребление электроэнергии возрастает до вполне заметных значений.

Чаще всего необходимость изменения скорости вращения вентиляторов связана как раз с избыточной шумностью системного блока. Если эффективность охлаждения системного блока достаточно высока и перегрева каких-либо элементов компьютера не возникает даже при самых высоких нагрузках, можно попробовать снизить скорость вращения некоторых вентиляторов.

Одним из способов такого снижения является использование реобаса – многоканального регулятора скорости вращения вентиляторов.

Но этот способ – не единственный. Большинство современных материнских плат способно регулировать скорость вращения подключенных вентиляторов. Во многих случаях даже не понадобится установки какого-либо программного обеспечения – необходимая функция встроена в BIOS.

В этой модели вход в БИОС выполняется стандартно — кнопкой Del

Для входа в BIOS необходимо при загрузке компьютера нажать определенную клавишу (или сочетание клавиш), чаще всего – Delete. Если по нажатию Delete при загрузке компьютера ничего не происходит, следует посмотреть на нижние строчки экрана при загрузке – там при начале загрузки обычно выводится подсказка, какие именно клавиши следует нажимать для входа в BIOS.

Примеры страниц BIOS с настройками работы вентиляторов

В BIOS следует найти страницу с настройками работы вентиляторов (Fan Speed, Fan Control, Fan Profile и т.п.) Настройки CPU Fan относятся к кулеру процессора, Chassis Fan – к кулеру (или кулерам) корпуса. Настройки кулера процессора следует менять только если вы точно знаете, что делаете и уверены в правильности своих действий – перегрев процессора может привести к выходу его из строя. Настройки кулера корпуса не столь критичны, но бездумно их менять тоже не стоит; будет нелишним перед изменением записать все старые значения.

Для регулировки скорости вращения в первую очередь следует убедиться, что эта функция включена: параметр Q-Fan Control (или Fan Speed Control) должен иметь значение Enabled. При этом становятся доступны параметры тонкой настройки вентилятора – в некоторых BIOS их много, в других меньше. Чаще всего самым простым способом снижения шума (или, наоборот, улучшения охлаждения) является смена профиля (Q-Fan Profile). Для снижения шума следует установить его в Silent, для увеличения охлаждения – в Performance или Turbo.

После сохранения настроек и перезапуска системы следует убедиться, что настроенный кулер крутится и что не происходит перегрева системы, в обратном случае следует вернуть старые настройки BIOS.

Speed Fan — самая популярная программа управления кулерами

Если нужные настройки в BIOS не нашлись, не стоит расстраиваться – чаще всего подключенными к материнской плате вентиляторами можно управлять и с помощью специализированного ПО. Самая популярная из таких программ (и при этом абсолютно бесплатная) – это speed fan. При запуске программы в первой же вкладке будут отображены все найденные вентиляторы, их скорости вращения и температуры элементов компьютера – на них следует ориентироваться при настройке кулеров. Рекомендации по настройке те же – следует с осторожностью оперировать настройками CPU Fan (кулер процессора) и GPU Fan (кулер видеокарты). При изменении скоростей (от 0 до 100%) следует отслеживать воздействие этих изменений на температуру. В программе также можно задать критические температуры для всех элементов и, указав, какой кулер за какую температуру отвечает, запустить режим автоматического регулирования скорости вентиляторов.

Если же ни speed fan, ни другие аналогичные программы «не увидели» вентиляторов, или если вентиляторы вообще подключены не к материнской плате – тогда для настройки их скорости вращения потребуется реобас.

Перед рассмотрением характеристик реобасов следует упомянуть об еще одной, очень частой причине повышенной шумности вентиляторов – забивание кулеров пылью и/или загустевание в них смазки. Если вам кажется, что раньше компьютер шумел меньше, возможно, никаких программ и устройств для снижения шума не потребуется – достаточно будет почистить кулер от пыли и (при необходимости) обновить смазку.

Характеристики регуляторов скорости вращения вентиляторов

Тип реобаса

Основная задача разветвителя питания – обеспечить питанием дополнительные вентиляторы, для которых не нашлось разъемов на материнской плате. Разветвитель может и вообще не иметь функции управления скоростью вращения вентиляторов. Если такая функция и есть, то реализована она будет программно.

Регулятор оборотов (реобас) – обладает большей, по сравнению с разветвителем, функциональностью. Кроме подключения дополнительных вентиляторов, реобас предоставляет и некоторые дополнительные возможности, среди которых могут быть:

— контроль и отображение скорости вращения каждого подключенного вентилятора;

— контроль температуры от собственного термодатчика (или нескольких термодатчиков);

— автоматическая или ручная регулировка скоростей вращения вентиляторов;

— контроль и отображение мощности, потребляемой подключенными вентиляторами

Тип управления скоростью вращения может быть ручным или автоматическим.

При ручном управлении скорость вращения задается оператором вручную – с помощью кнопок, ручки регулятора или на сенсорном экране. Несмотря на простоту такого способа управления, удобным он будет только в тех случаях, когда не требуется менять скорость вращения вентиляторов во время работы компьютера. Для подстройки скорости вращения корпусных вентиляторов такой способ еще сгодится, а для управления скоростью вращения кулера процессора – уже нет.

Автоматический тип управления, предусматривающий автоматическое изменение скорости вращения кулера в зависимости от показаний термодатчика, намного удобнее в эксплуатации и обеспечивает лучшие условия работы оборудования. Для управления кулерами элементов, сильно меняющих температуру в зависимости от нагрузки, следует использовать реобасы с автоматическим типом управления.

Количество подключаемых вентиляторов определяет, какое максимальное количество вентиляторов можно подключить к реобасу. Следует иметь в виду, что с ростом количества подключенных вентиляторов, растет и потребляемая устройством мощность; у блока питания компьютера должен быть достаточный запас мощности.

Наличие дисплея с возможностью вывода на него значений температур и скоростей вращения вентиляторов в некоторых случаях может оказаться нелишним. Дисплей может предупредить о приближающемся перегреве или неисправности вентилятора и предотвратить сбой или потерю данных. Для серверов (часто не имеющих своего монитора) такой дисплей будет особенно полезен.

Контроль температуры осуществляется по термодатчикам материнской платы либо по собственным термодатчикам реобаса. В последнем случае следует также выяснить количество каналов измерения температуры (проще говоря, количество термодатчиков). У многих реобасов контроль температуры производится по одному термодатчику. Если к такому реобасу предполагается подключение и кулеров процессора/видеокарты, это может привести к проблемам (если установить датчик у процессора, он может «не заметить» перегрева видеокарты и наоборот). Реобасы с несколькими термодатчиками стоят дороже, но в случаях, аналогичных вышеприведенному, на этом экономить не стоит.

Разъемы для подключения вентиляторов могут быть 2-pin 3-pin и 4-pin.

2-pin и 3-pin разъемы предполагают управление скоростью вращения вентилятора с помощью изменения его напряжения питания. Этот наиболее простой способ, поэтому реализующие его реобасы и вентиляторы недороги. Недостатками этого способа является невысокая точность задания частоты вращения и снижение крутящего момента со снижением напряжения. Вентиляторы с 3-pin разъемом вообще не могут крутиться медленнее некоторого порогового значения – крутящий момент становится настолько мал, что его не хватает для проворота крыльчатки. Для корпусных вентиляторов и вентиляторов жестких дисков такие вентиляторы подойдут, но на процессоры уже давно принято ставить вентиляторы, подключаемые 4-pin разъемом.

4-pin разъемы предполагают управление скоростью вращения вентилятора с помощью широтно-импульсной модуляции (ШИМ). При этом питание на вентилятор подается полное — 12 вольт – но не постоянно, а импульсами, меняя продолжительность которых, можно очень точно задавать частоту вращения вентилятора. Кроме того, при таком способе нет ограничения на минимальную скорость вращения – регулируемый таким способом вентилятор может вращаться даже со скоростью 1 об/мин. Единственный недостаток такого способа – он сложнее в реализации, а следовательно, дороже.

Разъем питания реобаса может быть 3-pin (в этом случае регулятор скорости подключается к одному из свободных 3-pin разъемов материнской платы) 4-pin Molex (питание берется с одного из разъемов блока питания) и SATA (питание берется с разъема SATA материнской платы).

Варианты выбора

Если вам нужно просто подключить пару дополнительных вентиляторов по минимальной цене – выбирайте разветвитель питания для вентиляторов по цене от 230 рублей.

Если какой-то из вентиляторов системного блока крутится слишком сильно, обратите внимание на регуляторы скорости вращения одного вентилятора с ручным управлением. С его помощью можно будет легко подстроить скорость вращения вентилятора до требуемой и стоить он будет от 180 рублей.

Для управления несколькими корпусными вентиляторами можно приобрести реобас на несколько вентиляторов с ручным управлением. В зависимости от дополнительных функций он обойдется вам в 900-3800 рублей.

Для управления всеми вентиляторами компьютера следует выбирать реобас на несколько вентиляторов с возможностью автоматического управления их скоростью вращения. Такие стоят в диапазоне 230-8000 рублей.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector