0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое режим рекуперации в асинхронных двигателях

Способы торможения асинхронного двигателя

Торможение АД можно осуществить как при питании его от сети переменного тока, так и путем подключения цепи статора к источнику по­стоянного тока (динамическое торможение), а также при его само­возбуждении [1].

При включении АД по основной схеме (см. рис. 62, а) возможно торможение противовключением и рекуперативное торможение.

Торможение противовключением осуществляется двумя путями. Один из них связан с изменением чередования на статоре двух фаз питающего АД напряжения. Допустим, например, что АД работа­ет по механической характеристике 1 в точке а (рис. 104, а) при чередовании на статоре фаз напряжения сети ABC. Тогда при пере­ключении двух фаз (например, В и С) АД переходит на работу по характеристике 1 в точке d, участок db которой соответствует тор­можению противовключением. При торможении противовключением к двигателю подводится мощность, как со стороны статора, так и со стороны ротора. Вся подведенная к АД мощность выделяется в цепи обмотки ротора. Для ограничения тока и момента АД при торможении противовключением необходимо вклю­чение добавочных резисторов в цепь ротора или статора. При включении добавочных сопротивлений в цепь ротора происходит «смягчение» механических характеристик двигателя. Причем, чем больше добавочное сопротивление цепи ротора, тем мягче механическая характеристика и тем дальше в область положительных значений скольжения s сдвигается максимум момента. Величина же самого максимального (критического) момента Мк остается неизменной.

Другой путь перевода АД в режим торможения противовключе­нием может быть использован при активном характере момента нагрузки Мс. Допустим, что требуется осуществить спуск груза, обес­печивая его торможение с помощью АД (так называемый тормоз­ной спуск груза). Для этого АД включается на подъем с большим добавочным сопротивлением R в цепи ротора (кривая 2). Вслед­ствие превышения моментом нагрузки Мс пускового момента двигателя Мп и его активного характера груз начнет опускаться с уста­новившейся скоростью — Ω уст 1. АД при этом будет работать в режи­ме торможения противовключением.

Рис.104. Механические характеристики АД при торможении противовключением (а) и с рекуперацией энергии в сеть (б)

Рекуперативное торможение осуществляется в том случае, когда скорость АД превышает синхронную ω1 и он работает в генератор­ном режиме параллельно с сетью. Такой режим возникает, например, при переходе двухскоростного АД с высокий скорости на низкую, как это показано на рис. 104, б. Предположим, что в исходном поло­жении АД работал по характеристике 1 в точке а, вращаясь со скоро­стью Ωуст1. При увеличении числа пар полюсов АД переходит на ра­боту по характеристике 2 в точке b, участок be которой соответству­ет торможению с рекуперацией (отдачей) энергии в сеть.

Этот же вид торможения может быть реализован в системе «пре­образователь частоты — двигатель» при останове АД или его пере­ходе с одной характеристики (c частотой f1) на другую характеристику (с частотой f2

Рекуперативное торможение также может быть реализовано в ЭП грузоподъемных механизмов при спуске грузов. Для этого АД включается в направлении спуска груза (характеристика 3 на рис. 104, а). После окончания разбега он будет работать в точке с со скоростью – Ωуст.2. При этом осуществляется процесс спуска груза с отдачей энергии в сеть.

Рекуперативное торможение является наиболее экономичным видом торможения АД.

Для динамического торможения обмотку статора АД отключа­ют от сети переменного тока и подключают к источнику постоян­ного тока, как это показано на рис. 105. Обмотка ротора АД 1 при этом может быть закорочена или в ее цепь включаются добавочные резисторы 3 с сопротивлением R.

Постоянный ток Iп, значение которого может регулироваться ре­зистором 2, протекает по обмоткам статора и создает неподвижное в пространстве магнитное поле (возбуждает АД). При вращении ро­тора в нем наводится ЭДС, под действием которой в обмотке проте­кает ток, создающий магнитный поток, также неподвижный в прост­ранстве. Взаимодействие тока ротора с результирующим магнитным полем АД создает тормозной момент, за счет которого достигается эффект торможения. Двигатель в этом случае работает в режиме ге­нератора независимо от сети переменного тока, преобразовывая кинетическую энергию движущихся частей ЭП и рабочей машины в электрическую, которая рассеивается в виде тепла в цепи ротора.

Формулы для характеристик АД в режиме динамического тор­можения выводятся на основании анализа его схемы замещения. Опуская вывод формул, представим графически электромеханичес­кую I2‘(s) (кривая 7) и механические M(s) кривые 46 характерис­тики АД.

Характеристика расположена на рисунке в первом квадран­те, где s = Ω/ω1 — скольжение АД в режиме динамического тормо­жения. Механические характеристики АД расположены во втором квадранте.

Различные искусственные механические характеристики АД в режиме динамического торможения можно получить, изменяя со­противление R добавочных резисторов 3 в цепи ротора или по­стоянный ток Iп, подаваемый в обмотки статора. На рисунке пока­заны механические характеристики АД для различных сочетаний Iп и R. Характеристика 6 соответствует току Iп1 и сопротивлению ре­зистора R, максимальный момент на ней равен Мm1, а скольже­ние, ему соответствующее, — sm1.

Увеличение сопротивления резис­торов 3 R2д 2 > R2д 1 при Iп = const не приводит к изменению максималь­ного момента, в то время как максимальное скольжение sm при этом пропорционально возрастает, что видно из характеристики 4.

Увеличение тока Iп (Iп2>Iп1) при R=const вызывает увеличение максимального момента пропорционально квадрату тока. Харак­теристика двигателя в этом случае имеет вид кривой 5. Варьируя зна­чения Iп и R можно получить желаемый вид механических характе­ристик АД в режиме динамического торможения и тем самым соот­ветствующую интенсивность торможения асинхронного ЭП.

Читать еще:  Что открывается у термостата двигатель 406

Рис.105. Схема (а) и характеристики (б) АД при динамическом торможении

Торможение АД при самовозбуждении основано на том, что после от­ключения АД от сети его электромагнитное поле затухает (исчеза­ет не мгновенно) в течение некоторого, пусть и небольшого интер­вала времени. За счет энергии этого затухающего поля и ис­пользования специальных схем включения АД можно обеспечить его самовозбуждение и реализовать тормозной режим. На практи­ке применение нашли так называемые конденсаторное и магнит­ное торможение АД.

При конденсаторном торможении, схема которого приведена на рис.105, а, возбуждение АД 1 осуществляется с помощью конден­саторов 2, подключаемых к статору. Отметим, что конденсаторы могут подключаться к статору постоянно (глухое подключение) или с помощью дополнительного контактора, будучи при этом со­единенными в схему треугольника или звезды.

Определяющим фактором, от которого зависят вид и расположе­ние характеристик АД 1. 3 (см. рис. 106, б), а значит, интенсивность торможения, является емкость конденсаторов С (кривые 1. 3 соот­ветствуют значениям С1 35 363738>

Дата добавления: 2019-02-08 ; просмотров: 2474 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Рекуперативные преобразователи частоты со звеном постоянного тока для трехфазных асинхронных двигателей , страница 2

3) форма кривой переменного тока, потребляемого из питающей сети;

4) внешняя (нагрузочная) характеристика преобразователя;

Преобразователи частоты выполняются с фиксированным соотношением частот входного и выходного напряжений и с переменным их соотношением или с регулируемой частотой. Преобразователи с регулируемой частотой нашли широкое применение в области электропривода для регулирования скорости асинхронных двигателей.

Структурная схема преобразователя частоты с промежуточным звеном постоянного тока приведена на рисунке 2. Переменное напряжение U1 с частотой f1 поступает на вход выпрямителя В. Выпрямленное напряжение сглаживается фильтром Ф и поступает на вход автономного инвертора АИ, имеющего выходное напряжение U2 с частотой f2. В преобразователях данного типа частота выходного напряжения не зависит от частоты питающей сети и может быть как больше, так и меньше этой частоты [2].

Рисунок 2 — Структурная схема преобразователя частоты со звеном постоянного тока

Двойное преобразование энергии приводит к снижению к.п.д. и к некоторому ухудшению массогабаритных показателей по отношению к преобразователям с непосредственной связью.

Для формирования синусоидального переменного напряжения используются автономные инверторы напряжения и автономные инверторы тока [3].

Инверторами тока называются автономные инверторы, которые связаны с источником питания через сглаживающий реактор, обеспечивающий неизменный ток. Рекуперация энергии в сеть осуществляется при изменении полярности напряжения, подключаемого к нагрузке. В качестве вентилей в инверторах тока используют однооперационные тиристоры. Для коммутации тиристоров параллельно нагрузке обычно подключается коммутирующий конденсатор. По способу подключения конденсатора к нагрузке такие инверторы называются также параллельными [4]. Особенностью схемы является мягкая внешняя характеристика.

Рисунок 3 – Преобразователь частоты с АИТ

Главным достоинством тиристорных преобразователей частоты, как и в схеме с непосредственной связью, является способность работать с большими токами и напряжениями, выдерживая при этом продолжительную нагрузку и импульсные воздействия [3].

Инверторами напряжения называются автономные преобразователи, в которых переменное напряжение на нагрузке образуется в результате ее периодического подключения с помощью ключей к источнику постоянного напряжения, причем с помощью ключей обеспечивается чередующаяся полярность импульсов напряжения на нагрузке [4].

При переходе двигателя в режим торможения постоянная составляющая тока на входе инвертора меняет направление на обратное по сравнению с двигательным режимом, что вызывает дополнительный заряд конденсатора на выходе выпрямителя и увеличение напряжения на нем [1]. Если используется активный выпрямитель, то при этом происходит рекуперация энергии в сеть. Особенностью схемы является жесткая внешняя характеристика.

Рисунок 4 – Преобразователь частоты с АИН

Инверторы напряжения выполняются на полностью управляемых приборах (транзисторах, двухоперационных тиристорах, однооперационных тиристорах, снабженных цепями коммутации) [4].

До недавнего прошлого преобразователи частоты на тиристорах GTO составляли основную долю и в низковольтном частотно регулируемом приводе. Но с появлением IGBT транзисторов произошел «естественный отбор» и сегодня преобразователи на их базе общепризнанные лидеры в области низковольтного частотно регулируемого привода.

Биполярные транзисторы с изолированным затвором IGBT отличают от тиристоров полная управляемость, простая неэнергоемкая система управления, самая высокая рабочая частота

Вследствие этого преобразователи частоты на IGBT позволяют расширить диапазон управления скорости вращения двигателя, повысить быстродействие привода в целом.

Тормозные режимы асинхронных двигателей

Полная механическая характеристика асинхронного двига­теля во всех квадрантах по­ля Мs, пред­ставлена на рис.3.14.

Асин­хронный двига­тель может ра­ботать в трех тормозных ре­жимах: рекупе­ративного тор­можения, дина­мического тор­можения и тор­можения противовключением; специфи­ческим тормоз­ным режимом является также конденсатор­ное торможе­ние.

Рис.3.14. Полная механическая характеристика асинхронного двигателя

Рекуперативное генераторное торможение возможно, когда скорость ротора выше скорости вращения электромагнитного поля статора, чему соответствует отрицательное значение скольжения ω > ω; s Iна­чинает сказываться насыщение магнитной це­пи двигателя.

Рис.3.17. Механические характеристи­ки асинхронного двигателя в режиме динамического торможения

Для асинхронных двигателей с фазным ротором регулирование тормозного момента мо­жет производиться так­же введением дополни­тельного сопротивления в цепь ротора. Эффект от введения добавочно­го сопротивления анало­гичен тому, которое имеет место при пуске асинхронного двигателя: благодаря улуч­шению cosφ2 повышается критическое скольжение двигателя и увеличивается тормозной момент при больших скоростях вращения

Работу асинхронного двигателя в режиме динамического торможения можно рассматривать как работу трехфазного асин­хронного двигателя при питании его постоянным током, т.е. то­ком при частоте f1|=0. Второе отличие заключается в том, что об­мотки статора питаются не от источника напряжения, а от источ­ника тока. Следует также иметь в виду, что в схеме динамическо­го торможения ток протекает (при соединении обмоток в звез­ду) не по трем, а по двум фазным обмоткам.

Читать еще:  602 двигатель какие форсунки

Энергетически в режиме динамического торможения асин­хронный двигатель работает как синхронный генератор, нагру­женный на сопротивление роторной цепи двигателя. Вся механи­ческая мощность, поступающая на вал двигателя, при торможении преобразуется в электрическую и идет на нагрев сопротивле­ний роторной цепи.

Возбуждение асинхронной машины в режиме динамического торможения может осуществляться не только подачей постоянного тока в обмотки статора машины, но также в режиме самовозбуждения путем подключения конденсаторов к цепям статора асинхронной машины, как это показано на рис. 3.19. Такой способ торможения называют конденсаторным торможением асинхронных двигателей. По энергетической сущности этот вид торможения идентичен динамическому торможению, т.к. энергия, поступающая с вала, преобразуется в электрическую и выделяется в виде потерь в роторе двигателя.

Рис.3.19. Схема включения асинхронного двигателя в ре­жиме динамического торможе­ния с самовозбуждением от конденсаторов

Процесс самовозбуждения асинхронного двигателя проис­ходит следующим образом. Под действием остаточного потока ротора в обмотках статора наводится э.д.с,, под действием кото­рой возникает намагничивающий ток, протекающий через кон­денсаторы. При этом увеличивается поток машины, следователь­но, наводимая э.д.с. и ток намагничивания. Верхняя и нижняя границы режима самовозбуждения и величина тормозного мо­мента зависят от величины емкости конденсаторов. Данный спо­соб торможения применяется для приводов малой мощности (до 5кВт), т.к. требует установки конденсаторов значительного объе­ма.

Торможение противовключением может быть в двух случа­ях:

в первом, когда при работе двигателя необходимо его экстренно остановить, и с этой целью меняют порядок чередова­ния фаз питания обмоток статора двигателя;

во втором, когда электромеханическая система движется в отрицательном направлении под действием спускаемого груза, а двигатель включается в направлении подъема, чтобы ограни­чить скорость спуска (режим протягивающего груза).

В обоих случаях электромагнитное поле статора и ротор двигате­ля вращаются в разные стороны. Скольжение двигателя в режиме противовключения всегда больше 1

> 1

В первом случае (см.рис.3.20) двигатель, работавший в т.1, после изменения порядка чередования фаз двигателя переходит в тормозной режим в т. 1, и скорость привода быстро снижается под действием тормозного момента Мт и статического моментаМс. При замедлении до скорости, близкой к ну­лю, двигатель необходи­мо отключить, иначе он будет разгоняться в противоположном направ­лении вращения.

Во втором случае после снятия механиче­ского тормоза двигатель, включенный в направле­нии вверх, под действи­ем силы тяжести спус­каемого груза будет вращаться в противопо­ложном направлении со скоростью, соответст­вующей точке 2. Работа в режиме противовключения под действием протягивающего груза возможна при использо­вании двигателей с фаз­ным ротором. При этом в цепь ротора вводится значительное добавоч­ное сопротивление, ко­торому соответствует характеристика 2 на рис.3.20.

Рис.3.20. Режим противовключения асинхронного двигателя 1, Г — естественные механические ха­рактеристики при включении «вперед» и «назад» 2 — механическая характеристика дви­гателя с фазным ротором со включен­ным добавочным сопротивлением в цепь ротора.

Энергетически режим противовключения крайне неблаго­приятен. Ток в этом режиме для асинхронных короткозамкнутых двигателей превосходит пусковой, достигая 10-кратного значе­ния. Потери в роторной цепи двигателя складываются из потерькороткого замыкания двигателя и мощности, которая передается на вал двигателя при торможении

ΔРsnв = Мтω + Мт ω

Для короткозамкнутых двигателей режим противовключения возможен только в течение нескольких секунд. При использова­нии двигателей с фазным ротором в режиме противовключения обязательно включение в цепь ротора добавочного сопротивле­ния. В этом случае потери энергии остаются такими же значи­тельными, но они выносятся из объема двигателя в роторные сопротивления.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

  • Справочник электрика
    • Бытовые электроприборы
    • Библиотека электрика
    • Инструмент электрика
    • Квалификационные характеристики
    • Книги электрика
    • Полезные советы электрику
    • Электричество для чайников
  • Справочник электромонтажника
    • КИП и А
    • Полезная информация
    • Полезные советы
    • Пусконаладочные работы
  • Основы электротехники
    • Провода и кабели
    • Программа профессионального обучения
    • Ремонт в доме
    • Экономия электроэнергии
    • Учёт электроэнергии
    • Электрика на производстве
  • Ремонт электрооборудования
    • Трансформаторы и электрические машины
    • Уроки электротехники
    • Электрические аппараты
    • Эксплуатация электрооборудования
  • Электромонтажные работы
    • Электрические схемы
    • Электрические измерения
    • Электрическое освещение
    • Электробезопасность
    • Электроснабжение
    • Электротехнические материалы
    • Электротехнические устройства
    • Электротехнологические установки

Тормозные режимы асинхронных двигателей

Асинхронный движок может работать в последующих тормозных режимах: в режиме рекуперативного торможения, противовключения и динамическом.

Рекуперативное торможение асинхронного мотора

Режим рекуперативного торможения осуществляется в этом случае, когда скорость ротора асинхронного мотора превосходит синхронную.

Режим рекуперативного торможения фактически применяется для движков с переключением полюсов и в приводах грузоподъемных машин (подъемники, экскаваторы и т.п.).

При переходе в генераторный режим вследствие конфигурации знака момента меняет символ активная составляющая тока ротора. В данном случае асинхронный движок дает активную мощность (энергию) в сеть и потребляет из сети реактивную мощность (энергию), нужную для возбуждения. Таковой режим появляется, к примеру, при торможении (переходе) двухскоростного мотора с высочайшей на низкую скорость, как показано на рис. 1 а.

Рис. 1. Торможение асинхронного мотора в основной схеме включения: а) с рекуперацией энергии в сеть; б) противовключением

Представим, что в начальном положении движок работал на характеристике 1 и в точке а, вращаясь со скоростью ωуст1 . При увеличении числа пар полюсов движок перебегает на характеристику 2, участок бс которой соответствует торможению с рекуперацией энергии в сеть.

Читать еще:  Что означает двигатель стуканул

Тот же вид торможения может быть реализован в системе преобразователь частоты – движок при останове асинхронного мотора либо при переходе с свойства на характеристику. Для этого осуществляется уменьшение частоты выходного напряжения, а тем синхронной скорости ωо = 2π f / p .

В силу механической инерции текущая скорость мотора ω будет изменяться медлительнее чем синхронная скорость ωо , и будет повсевременно превосходить скорость магнитного поля. Из-за этого и появляется режим торможения с отдачей энергии в сеть .

Рекуперативное торможение также может быть реализовано в электроприводе грузоподъемных машин при спуске грузов. Для этого движок врубается в направлении спуска груза (черта 2 рис. 1 б).

После окончания торможения он будет работать в точке со скоростью – ωуст2 . При всем этом осуществляется процесс спуска груза с отдачей энергии в сеть.

Рекуперативное торможение является более экономным видом торможения.

Торможение асинхронного электродвигателя противовключением

Перевод асинхронного мотора в режим торможения противовключением может быть выполнен 2-мя способами. Какой-то из них связан с конфигурацией чередования 2-ух фаз питающего электродвигатель напряжения.

Допустим, что движок работает на характеристике 1 (рис. 1 б) при чередовании фаз напряжения АВС. Тогда при переключении 2-ух фаз (к примеру, В и С) он перебегает на характеристику 2, участок аб которой соответствует торможению противовключением.

Обратим внимание на то событие, что при противовключении скольжение асинхронного мотора меняется от S = 2 до S = 1.

Ротор при всем этом крутится против направления движения поля и повсевременно замедляется. Когда скорость спадает до нуля, движок должен быть отключен от сети, по другому он может перейти в двигательный режим, при этом ротор его будет крутиться в направлении, оборотном предшествующему.

При торможении противовключением токи в обмотке мотора могут в 7–8 раз превосходить надлежащие номинальные токи. Приметно миниатюризируется коэффициент мощности мотора. О КПД в этом случае гласить не приходится, т.к. и преобразуемая в электронную механическая энергия и энергия, потребляемая из сети, рассеиваются в активном сопротивлении ротора, и полезно применяемой энергии в этом случае нет.

Короткозамкнутые движки краткосрочно перегружаются по току. Правда, у их при (S > 1) вследствие явления вытеснения тока приметно растет активное сопротивление ротора. Это приводит к уменьшению и повышению момента.

С целью роста эффективности торможения движков с фазным ротором в цепи их роторов вводят дополнительные сопротивления, что позволяет ограничить токи в обмотках и прирастить момент.

Другой путь торможения противовключением может быть применен при активном нраве момента нагрузки, который создается, к примеру, на валу мотора грузоподъемного механизма.

Допустим, что требуется выполнить спуск груза, обеспечивая его торможение при помощи асинхронного мотора. Для этого движок методом включения в цепь ротора дополнительного резистора (сопротивления) переводится на искусственную характеристику (ровная 3 на рис. 1).

Вследствие превышения моментом нагрузки Мс пускового момента Мп мотора и его активного нрава груз может опускаться с установившейся скоростью – ωуст2 . В этом режиме торможение скольжения асинхронного мотора может изменяться от S = 1 до S = 2.

Динамическое торможение асинхронного мотора

Для динамического торможения обмотки статора движок отключают от сети переменного тока и подключают к источнику неизменного тока, как это показано на рис. 2. Обмотка ротора при всем этом может быть закорочена, либо в ее цепь врубаются дополнительные резисторы с сопротивлением R2д.

Рис. 2. Схема динамического торможения асинхронного мотора (а) и схема включения обмоток статора (б)

Неизменный ток Iп, значение которого может регулироваться резистором 2, протекает по обмоткам статора и делает относительно статора недвижное магнитное поле. При вращении ротора в нем наводится ЭДС, частота которой пропорциональна скорости. Эта ЭДС, в свою очередь, вызывает возникновение тока в замкнутом контуре обмотки ротора, который делает магнитный поток, также недвижный относительно статора.

Взаимодействие тока ротора с результирующим магнитным полем асинхронного мотора делает тормозной момент, за счет которого достигается эффект торможения. Движок в данном случае работает в режиме генератора независимо от сети переменного тока, преобразовывая кинетическую энергию передвигающихся частей электропривода и рабочей машины в электронную, которая рассеивается в виде тепла в цепи ротора.

На рисунке 2 б показана более всераспространенная схема включения обмоток статора при динамическом торможении. Система возбуждения мотора в этом режиме является несимметричной.

Для проведения анализа работы асинхронного мотора в режиме динамического торможения несимметричную систему возбуждения подменяют симметричной. С этой целью принимается допущение, что статор питается не неизменным током Iп, а неким эквивалентным трехфазным переменным током, создающим такую же МДС (магнитодвижущую силу), что и неизменный ток.

Электромеханическая и механические свойства представлены на рис. 3.

Рис. 3. Электромеханическая и механические свойства асинхронного мотора

Черта размещена на рисунке в первом квадранте I, где s = ω / ωo – скольжение асинхронного мотора в режиме динамического торможения. Механические свойства мотора размещены во 2-м квадранте II.

Разные искусственные свойства асинхронного мотора в режиме динамического торможения можно получить, изменяя сопротивление R2 д дополнительных резисторов 3 (рис. 2) в цепи ротора либо неизменный ток I п, подаваемый в обмотки статора.

Варьируя значения R2 д и I п, можно получить хотимый вид механических черт асинхронного мотора в режиме динамического торможения и, тем, подобающую интенсивность торможения асинхронного электропривода.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector