0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое синхронная и асинхронная частота вращения двигателя

Синхронные машины. Машины постоянного тока

Главная > Учебное пособие >Физика

б) меньшую чувствительность к колебаниям напряжения, так как его максимальный момент пропорционален напряжению в первой степени (а не квадрату напряжения);

в) строгое постоянство частоты вращения независимо от механической нагрузки на валу.

Недостатками синхронных двигателей являются:

а) сложность конструкции;

б) сравнительная сложность пуска в ход;

в) трудности с регулированием частоты вращения, которое возможно только путем изменения частоты питающего напряжения.

Указанные недостатки синхронных двигателей делают их менее выгодными, чем асинхронные двигатели, при ограниченных мощностях до 100 кВт. Однако при более высоких мощностях, когда особенно важно иметь высокий cosφ и уменьшенные габаритные размеры машины, синхронные двигатели предпочтительнее асинхронных.

1. 14 Пуск в ход синхронного двигателя

Метод асинхронного пуска . Синхронный двигатель не имеет начального пускового момента. Если его подключить к сети переменного тока, когда ротор неподвижен, а по обмотке возбуждения проходит постоянный ток, то за один период изменения тока электромагнитный момент будет дважды менять свое направление, т.е. средний момент за период будет равен нулю. При этих условиях двигатель не сможет прийти во вращение, так как ротор его, обладающий определенной инерцией, не может быть в течение одного полупериода разогнан до синхронной частоты вращения. Следовательно, для пуска в ход синхронного двигателя необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной.

В настоящее время для этой цели применяют метод асинхронного пуска. При этом методе синхронный двигатель пускают в ход как асинхронный, для чего его снабжают специальной короткозамкнутой пусковой обмоткой, выполненной по типу беличьей клетки. Обычно эту клетку изготовляют из латуни с целью увеличения сопротивления стержней При включении трехфазной обмотки якоря в сеть образуется вращающееся магнишое поле, которое, взаимодействуя с током I п в пусковой обмотке (рис. 1. 48, а ), создает электромагнитные силы F и увлекает за собой ротор. После разгона ротора до частоты вращения, близкой к синхронной, постоянный ток, проходящий по обмотке возбуждения, создает синхронизирующий момент, который втягивает ротор в синхронизм.

Рис. 1. 48 – Устройство пусковой обмотки синхронного двигателя ( а ) и схемы его асинхронного пуска ( б, в ): 1 -обмотка возбуждения, 2 – пусковая обмотка, 3 – ротор, 4 – обмотка якоря, 5-гасящий резистор, 6 – якорь возбудителя, 7 – кольца и щетки

В настоящее время применяют две основные схемы пуска синхронного двигателя. При схеме, изображенной на рис. 1. 48, б , обмотку возбуждения вначале замыкают на гасящий резистор, сопротивление которого r доб в 8–12 раз превышает активное сопротивление r в обмотки возбуждения. После разгона ротора до частоты вращения, близкой к синхронной (при s = 0,05), обмотку возбуждения отключают от гасящего сопротивления и подключают к источнику постоянного тока (возбудителю), вследствие чего ротор втягивается в синхронизм. Осуществить пуск двигателя с разомкнутой обмоткой возбуждения нельзя, так как во время разгона ротора при s > 0 в ней индуктируется вращающимся магнитным полем э. д. с.

где Ф m –амплитуда магнитного потока вращающегося поля; ω в – число витков обмотки возбуждения; f 2 = f 1 s -частота изменения тока в обмотке возбуждения.

В начальный момент пуска при s ≈ 1 из-за большого числа витков ω в обмотки возбуждения э.д.с. Е в может достигать весьма большой величины и вызвать пробой изоляции.

При схеме, изображенной на рис. 1.48, в, обмотка возбуждения постоянно подключена к возбудителю, сопротивление которого по сравнению с сопротивлением r в весьма мало, поэтому эту обмотку в режиме асинхронного пуска можно считать замкнутой накоротко. С уменьшением скольжения до s = 0,3 4–0,4 возбудитель возбуждается и в обмотку возбуждения подается постоянный ток, обеспечивающий при s ≈ 0,05 втягивание ротора в синхронизм.

Различие пусковых схем обусловлено тем, что не во всех случаях может быть применена более простая схема с постоянно подключенной к возбудителю обмоткой возбуждения (рис. 1.48, в), так как она имеет худшие пусковые характеристики, чем более сложная схема, приведенная на рис. 1.48, б. Главной причиной ухудшения пусковых характеристик является возникновение одноосного эффекта – влияния тока, индуктируемого в обмотке возбуждения при пуске, на характеристику пускового момента.

Для анализа этого явления предположим вначале, что в двигателе отсутствует пусковая обмотка, а обмотка возбуждения замкнута накоротко. В результате при асинхронном пуске двигателя в обмотке возбуждения индуктируется э.д.с. с частотой f 2 = f 1 s и по обмотке проходит переменный ток, создающий пульсирующее магнитное поле (обмотка возбуждения в этом случае является однофазной обмоткой переменного тока). Пульсирующее магнитное поле можно разложить на две составляющие: прямое и обратное вращающиеся магнитные поля ротора, которые характеризуются потоками Ф пр и Ф обр . Частота вращения каждого из этих полей относительно ротора

Относительно статора прямое поле вращается с частотой

где n 2 = n 1 ( 1 — s ) – частота вращения ротора.

Следовательно, оно вращается синхронно с полем статора; образуемый этим полем с током статора электромагнитный момент М пр изменяется в зависимости от скольжения так же, как и в трехфазном асинхронном двигателе (рис. 1.49, кривая 2 ). Обратное поле ротора вращается относительно статора с частотой

При частотах вращения ротора n 2 n 1 , т.е. при s > 0,5, обратное поле, как видно из формулы (1.45), перемещается относительно статора в сторону, противоположную направлению вращения ротора; при n 2 = 0,5 n 1 это поле неподвижно относительно статора; при n 2 > 0,5 (т.е. при s f 1 (1–2 s ), для которой обмотка статора является коротко-замкнутой. При этом по обмотке статора протекает соответствующий ток. Взаимодействуя с обратным полем ротора, этот ток создает электромагнитный момент M обр . Так как направление момента зависит от направления вращения поля n р.обр относительно статора, то из формулы (1.45) следует, что он является знакопеременным и изменение его направления происходит при s = 0,5 (рис. 1.49, кривая 3 ) .

Читать еще:  Что такое фарсировка двигателя

Таким образом, ток, индуктируемый в обмотке возбуждения при пуске двигателя, создает электромагнитный момент, который при частоте вращения, меньшей 0,5 n 1 , является ускоряющим, а при большей частоте вращения–тормозящим.

Рис. 1.49 – Зависимость электромагнитного момента от скольжения при асинхронном пуске синхронного двигателя

Особенно резко проявляется действие обратного поля при n ≈ 0,5 n 1 .

Наличие пусковой обмотки на роторе существенно уменьшает обратное магнитное поле и величину создаваемого им момента. Однако этот момент, складываясь с асинхронным моментом пусковой обмотки (кривая 1 ), создает в кривой результирующего пускового момента провал при частоте вращения, равной половине синхронной (кривая 4 ) . Этот провал будет тем больше, чем больше ток в обмотке возбуждения. Очевидно, что включение сопротивления в цепь обмотки возбуждения (см. рис. 1.48, б) на период пуска уменьшает ток в этой обмотке и улучшает форму кривой пускового момента.

Следует отметить, что если обмотку возбуждения при пуске не отключить от возбудителя, то по якорю возбудителя в период пуска проходит переменный ток; последнее может вызвать искрение щеток. Поэтому такую схему пуска применяют в случае небольшого нагрузочного момента – не более 50% от номинального – при сравнительно небольшой мощности двигателя.

1.15 Регулирование частоты вращения синхронных двигателей

Частота вращения синхронного двигателя n 2 равна частоте вращающегося магнитного поля n 1 = 60 f 1 / р , следовательно, ее можно регулировать путем изменения частоты питающего напряжения или числа полюсов 2 р. Регулировать частоту вращения путем изменения числа полюсов в синхронном двигателе нецелесообразно, так как, в отличие от асинхронного, здесь требуется изменять число полюсов как на статоре, так и на роторе, что приводит к значительному усложнению конструкции ротора. Поэтому практически используют лишь изменение частоты питающего напряжения.

К синхронному двигателю применимы все основные положения теории частотного регулирования асинхронного двигателя, в том числе необходимость одновременного изменения как частоты, так и питающего напряжения. Однако в чистом виде частотное регулирование частоты вращения синхронных двигателей применяется только при очень малых мощностях, когда нагрузочные моменты невелики, а инерция приводного механизма мала (см. гл. 2). При больших мощностях такие условия имеют место только в некоторых типах электроприводов, например в электроприводах вентиляторов.

Для синхронных двигателей, применяемых в электроприводах с большим моментом инерции приводного механизма, необходимо очень плавно изменять частоту питающего напряжения, чтобы двигатель не выпал из синхронизма. Особенно сложным является пуск в ход двигателя, когда начальная частота должна составлять доли герца, а затем постепенно повышаться до максимального значения. Для таких электроприводов наиболее пригодным является метод частотного регулирования с самосинхронизацией, при котором двигатель в принципе не может выпасть из синхронизма. Последнее достигается тем, что управление преобразователем частоты осуществляется от системы датчиков положения ротора, вследствие чего напряжение подается на каждую фазу двигателя при углах нагрузки θ, меньших 90°. При таком регулировании автоматически обеспечиваются условия устойчивой работы двигателя и его перегрузочная способность определяется только перегрузочной способностью преобразователя частоты.

Синхронные двигатели, регулируемые путем изменения частоты с самосинхронизацией, называют вентильными двигателями; иногда их называют бесколлекторными двигателями постоянного тока. Однако первое название является более правильным, так как такие двигатели могут получать питание от сети как постоянного, так и переменного тока.

Частотное регулирование без самосинхронизации. Электромагнитный момент синхронного двигателя может быть выражен в виде

При частотном регулировании обычно стремятся получить режим работы двигателя с cos φ = 1, когда в обмотке якоря имеют место минимальные потери энергии. Для этого ток якоря I а должен поддерживаться постоянным и минимальным:

Из (1.47) следует, что при неизменных нагрузочном моменте ( М н = М = const ) и потоке возбуждения (Ф в = const ), т.е. токе

возбуждения ( I в = const ), угол θ в процессе регулирования частоты не должен изменяться. Однако при изменении частоты f 1 изменяются э. д. с. Е 0 , угловая скорость ротора ω 1 и индуктивное сопротивление х сн (или сопротивления x d и x q при явнополюсном роторе), т.е.

Поэтому при частотах питающего напряжения f 1 отличных от номинальной частоты f 1ном , формула электромагнитного момента [см. (1.35)] принимает вид:

где с = mE 0 ном f 1 ном /(ω 1ном х сн ном ) – постоянная.

Из ( 1. 49) следует, что при неизменных значениях нагрузочного момента М н = М и тока якоря 1 а = [ а мин необходимо выдерживать условие

т.е. изменять напряжение U п , подаваемое к электродвигателю от преобразователя частоты, пропорционально изменению частоты f 1 . При соблюдении условия ( 1. 50) все стороны треугольника ОАВ (рис. 1. 50, а) будут изменяться пропорционально частоте, а угол θ останется неизменным. При изменении нагрузки необходимо в соответствии с ( 1. 46) изменять поток возбуждения Ф в , т.е. ток возбуждения I в .

Вентильный двигатель. При питании вентильного двигателя от сети постоянного тока в преобразователе частоты должны применяться тиристоры с узлами принудительной коммутации. В двигателях малой мощности допустимо применение транзисторов. На рис. 1. 51, а показана принципиальная схема питания вентильного двигателя от тиристорного преобразователя частоты.

Преобразователь частоты представляет собой автономный инвертор напряжения, который подключен к источнику постоянного тока и формирует трехфазное напряжение изменяющейся частоты; это напряжение подается на фазы А, В и С обмотки якоря двигателя. К каждой фазе может быть подведено положительное (тиристорами Т1 , Т2 и Т3) и отрицательное (тиристорами Т4, Т5 и Т6) напряжения.

Рис. 1. 50 – Векторные диаграммы синхронного двигателя, питаемого от преобразователя частоты при постоянном нагрузочном моменте: а – при постоянном угле θ и cosφ = l ; б – при изменении угла θ

Читать еще:  Что такое theta двигатель

Если вначале пропускать ток через фазы А и В (открыты тиристоры Т1 и Т5), затем через фазы В и С (открыты тиристоры Т2 и Т6), далее через фазы С и А (открыты тиристоры Т3 и Т4) и т.д. в указанной последовательности, то в машине создается вращающееся магнитное поле. При изменении частоты переключения тиристоров изменяется частота напряжения, подаваемого на фазы обмотки якоря, а следовательно, и частота вращения ротора. Для замыкания реактивной составляющей тока якоря в преобразователе имеются диоды Д1 — Д6, включенные параллельно тиристорам, но и в обратном направлении.

Трансформаторные подстанции высочайшего качества

с нами приходит энергия

develop@websor.ru

Номинальные частоты вращения электрических машин

1. Номинальные частоты вращения генераторов и двигателей постоянного тока должны соответствовать указанным в табл.1

Таблица 1 Номинальные частоты вращения машин постоянного тока

Номинальная частота вращения, об/мин

25
50
75
100
125
150
200
300
400
500
600
750
1000
1500
(2200)
3000
4000
(5000)
6000
7500
10000
12 500
15 000
20 000
30 000
40 000
60 000

Примечания:
1. Номинальные частоты вращения генераторов постоянного тока, когда их приводными двигателями являются асинхронные двигатели, могут быть меньше указанных в таблице на частоту вращения, определяемую величиной номинального скольжения приводного двигателя.
2. Номинальные частоты вращения, заключенные в скобки, применять не рекомендуется.
3. Допускается применение номинальных частот вращения, отличных от указанных в таблице, для двигателей, предназначенных для привода шахтного подъема и механизмов металлургического производства, для генераторов с Непосредственным приводом от авиационных и автомобильных двигателей.
4. Номинальные частоты вращения двигателей, предназначенных для работы в электроприводе механизмов металлургических агрегатов и на подъемнотранспортных механизмах, должны соответствовать ГОСТ 184-61, малогабаритных автотракторных электродвигателей — ГОСТ 9443-67.

2. Номинальные частоты вращения электрических машин переменного тока (до 15 000 об / мин) при частотах тока, предусмотренных ГОСТ 6697-67 в диапазоне от 50 до 1000 Гц, должны соответствовать: для синхронных двигателей и генераторов — указанным в табл. 2, для асинхронных трехфазных, двухфазных и однофазных двигателей — указанным в табл. 3.
3. Номинальные частоты вращения электрических машин переменного тока при частотах тока, предусмотренных ГОСТ 6697-67 в диапазоне до 25 Гц, должны соответствовать синхронным частотам вращения, получающимся в результате исполнения электрических машин с числом полюсов:

  • 2 и 4 для синхронных генераторов и двигателей;
  • 2, 4, 6 и 8 для асинхронных двигателей (трех-, двух- и однофазных).

4. Применение номинальных частот вращения, отличных от указанных в пп. 2 и 3, допускается:

  • для электрических машин переменного тока на частоты, отличающиеся от стандартных в технически обоснованных случаях;
  • для генераторов переменного тока с непосредственным приводом от авиационных двигателей;
  • для двигателей магнитной записи и аппаратуры связи, применяемых в системах автономной синхронизации.

Таблица 2 Номинальные частоты вращения синхронных машин

Номинальная частота вращения, об/мин

Синхронные двигатели (Д) и генераторы (Г) частоты, Гц

Методы синхронизации скорости вращения двух частотно-регулируемых приводов

В некоторых приложениях может возникнуть необходимость синхронизации скоростей вращения валов нескольких электродвигателей, механически не связанных между собой. Зачастую для решения данной задачи можно обойтись без использования ПЛК и специализированных блоков синхронизации — исключительно возможностями современных преобразователей частоты. Ниже предлагается несколько простых способов реализации задачи синхронизации скоростей вращения валов нескольких электродвигателей.

Синхронизация без использования датчиков обратной связи по скорости

Данный метод наиболее прост в реализации, не требует дополнительных устройств (интерфейсных плат, датчиков обратной связи и др.). При использовании преобразователей частоты с хорошим бессенсорным векторным управлением может быть обеспечена точность синхронизации скоростей в пределах ± 1% в диапазоне регулирования 1:100 с динамическим откликом примерно 5Гц. Данный метод синхронизации скорости вращения может применяться, например, в частотно-каскадных схемах управления группой насосов.

Синхронизация по аналоговым входам-выходам:

Возможно настроить смещение скоростей, отмасштабировав аналоговый вход ПЧ2 или аналоговый выход ПЧ1. Данный метод синхронизации скоростей вращения можно реализовать практически на любых моделях частотных преобразователей с хорошим аналоговым выходом: разрядность ЦАП должна быть не менее 10.

В простейшем варианте можно просто давать параллельное задание одновременно на оба ЧРП:

Синхронизация по последовательному интерфейсу:

При этом методе синхронизации точность задания скорости ведомого ПЧ2 не зависит от разрядности АЦП и ЦАП аналоговых входов-выходов частотных преобразователей.

Не все частотные преобразователи, в том числе имеющие коммуникационные порты, могут работать в режиме синхронизации по последовательному интерфейсу. В режиме «Master/Slave” могут работать, например, частотные преобразователи Optidrive P2, Optidrive HVAC, Optidrive Plus 3GV и Optidrive VTC по RS-485, а также Delta VFD-С2000 по CANOpen.

Синхронизация по импульсным сигналам с датчиками обратной связи по скорости

Данный метод позволяет обеспечить на порядок более высокую точность синхронизации скоростей (± 0,1%) в диапазоне регулирования 1:1000 с динамическим откликом до 40Гц. В данном режиме могут работать, например, преобразователи частоты Delta VFD-С2000 с платами расширения PG и инкрементальными энкодерами с разрешением от 1000 имп/об.

Данный метод синхронизации скорости вращения нескольких частотно-регулируемых приводов востребован в полиграфическом оборудовании, прокатных станах, в упаковочных и фасовочных линиях, в оборудовании по производству пленки и т.д.

Ведущий и ведомый преобразователи работают с обратной связью по скорости:

Если ведущий привод нерегулируемый или с простым не векторным преобразователем частоты или без возможности работать с обратной связью:

Синхронизация сервоприводов

Сервоприводы позволяют реализовать синхронизацию не только скоростей, но и углового положения валов относительно друг друга с чрезвычайно высокой точностью, например, до 0,001° в сервоприводе Delta ASDA-A2.

Например, в портальном кране обе оси привода портала должны обеспечить перемещение с постоянной скоростью, иначе возможны механические повреждения приводов. Встроенные в сервопривод ASDA-A2 арифметические функции синхронизации портальных приводов дают возможность осуществить синхронность движения по импульсным сигналам от контроллера системы, управляющего одной координатой. Двухосевое управление будет осуществляться самостоятельно, осуществляя синхронизацию. При недопустимом рассогласовании движения по положению появится сигнал аварии и система остановится.

Читать еще:  Датчик расхода воздуха 111 двигатель

(1) Сигналы управления между сервоприводом оси 1 и управляющим контроллером системы

(2) Сигналы управления между сервоприводом оси 2 и управляющим контроллером системы

(3) Импульсные команды позиционирования от контроллера системы к сервоприводам 1 и 2 оси

(4) Импульсная команда рассогласования по положению, посылаемая сервоприводом 1 оси сервоприводу 2 оси

(5) Импульсная команда рассогласования по положению, посылаемая сервоприводом 2 оси сервоприводу 1 оси

Системы типа «электрический вал» на базе сервоприводов позволяют упростить механическую конструкцию системы, избавив её от системы передаточных шестерней, цепей, ремней и т. д., в различных типах роботизированного оборудования, сварочных, сборочных и обрабатывающих автоматических линиях.

При подготовке публикации использованы информационные материалы ООО «Интехникс».

Большая Энциклопедия Нефти и Газа

Синхронная частота — вращение — двигатель

Синхронные частоты вращения двигателей 3000, 1500, 1000, 750 и 600 об / мин; двигателей 07 — 1-го габаритов — на номинальные напряжения 220 или 380 В; двигателей 2 — 9-го габаритов — на 380 или 660 В. [2]

Увеличение синхронной частоты вращения двигателей , приводящее к лучшему использованию материалов, также связано с увеличением номинального коэффициента мощности. [3]

Скольжение s, синхронная частота вращения па двигателя ( частота вращения магнитного поля) и частота вращения я вала двигателя связаны зависимостью. [4]

В, если кратность пускового тока равна 5 0, а синхронная частота вращения двигателя / ii1500 об / мин. [5]

Цифры под каждой схемой означают число полюсов обмотки статора, которое соответствует данной схеме и определяет синхронную частоту вращения двигателя . [6]

При проектировании двигателей электробуров стремятся добиться максимальной мощности при наименьших габаритных размерах, определяемых диаметром долота и технологией бурения. Синхронная частота вращения двигателя определяется исходя из максимально допустимой частоты вращения долота, которая по нормам не должна превышать 1000 об / мин. С другой стороны, конструктивно трудно изготовить погружной двигатель промышленной частоты с синхронной частотой вращения менее 500 об / мин. Следовательно, синхронная частота вращения двигателей электробуров может быть 500, 600, 750 или 1000 об / мин. Опыт бурения глубоких скважин электробурами свидетельствует о целесообразности снижения частоты вращения вала электробура в сочетании с увеличением его момента. Это достигается применением электробура с зубчатым редуктором. У двигателей редукторных электробуров синхронная частота вращения должна быть 1500 об / мин. [7]

Ягодоуборочная машина ЭЯМ-200 оснащена восемью электровибраторами, приводом которых служат асинхронные двигатели мощностью 120 Вт с номинальным напряжением 36 В частотой 200 Гц. Синхронная частота вращения двигателей 12000 об / мин. [9]

При проектировании двигателей электробуров стремятся добиться максимальной мощности при наименьших габаритных размерах, определяемых диаметром долота и технологией бурения. Синхронную частоту вращения двигателя можно определить, исходя из максимально допустимой частоты вращения долота, которая по нормам не должна превышать 1000 об / мин. С другой стороны, конструктивно трудно изготовить погружной двигатель промышленной частоты с синхронной частотой вращения менее 500 об / мин. Следовательно, синхронная частота вращения двигателей электробуров может быть 500, 600, 750 или 1000 об / мин. Опыт бурения глубоких скважин электробурами свидетельствует о целесообразности снижения частоты вращения вала электробура в сочетании с увеличением его момента. Это достигается применением электробура с зубчатым редуктором. У двигателей редукторных электробуров синхронная частота вращения должна быть 1500 об / мин. [10]

При проектировании двигателей электробуров стремятся добиться максимальной мощности при наименьших габаритных размерах, определяемых диаметром долота и технологией бурения. Синхронную частоту вращения двигателя можно определить исходя из максимально допустимой частоты вращения долота, которая по нормам не должна превышать 1000 об / мин. Конструктивно трудно изготовить погружной двигатель промышленной частоты с синхронной частотой вращения менее 500 об / мин. Следовательно, синхронная частота вращения двигателей электробуров может быть 500, 600, 750 или 1000 об / мин. Опыт бурения глубоких скважин электробурами свидетельствует о целесообразности снижения частоты вращения вала электробура в сочетании с увеличением его момента. Это достигается применением электробура с зубчатым редуктором — вставкой. У двигателей редукторных электробуров синхронная частота вращения раина 1500 об / мин. [11]

При проектировании двигателей электробуров стремятся добиться максимальной мощности при наименьших размерах, определяемых диаметром долота и технологией бурения. Синхронную частоту вращения двигателя можно определить, исходя из максимально допустимой частоты вращения долота, которая по нормам не должна превышать 1 000 об / мин. Конструктивно трудно изготовить погружной двигатель промышленной частоты с синхронной частотой вращения менее 500 об / мин. Следовательно, синхронная частота вращения двигателей электробуров может быть 500, 600, 750 или 1000 об / мин. Опыт бурения глубоких скважин электробурами свидетельствует о целесообразности снижения частоты вращения вала электробура в сочетании с увеличением его момента. Это достигается применением электробура с зубчатым редукторов-вставкой. У двигателей редукторных электробуров синхронная частота вращения равна 1500 об / мин. [12]

На рис. 7 — 23 приведена механическая характеристика ( кривая 3) кранового двигателя МТКН312 — 4 / 12 при последовательном включении его обмоток. Механическая характеристика имеет провал момента в зоне синхронной частоты вращения двигателя для быстроходной обмотки, поскольку эта обмотка является по отношению к тихоходной последовательно включенным переменным сопротивлением, имеющим максимальное значение при указанной частоте вращения. Наличие провала недопустимо для механизмов с отрицательным моментом на валу. Для устранения провала быстроходная обмотка шунтируется внешним активным сопротивлением. [14]

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector