0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое турбовальный двигатель

Газотурбинный двигатель

В авиации газотурбинный двигатель полностью заменил поршневой даже в сравнительно небольших установках. Все больше применяется газовая турбина в судостроении и на тепловых электростанциях. От турбины в этих установках требуется отдача максимальной мощности при постоянной частоте вращения, частичные нагрузки при максимальной частоте вращения не используются и нет необходимости в быстром изменении мощности и частоты вращения. Повышается интерес к применению газовой турбины и для привода автомобиля. Ряд особенностей газотурбинного двигателя служат причиной того, что он до сих пор не применяется в автомобилях.

Характер кривой крутящего момента одновального газотурбинного двигателя невыгоден для применения в автомобиле. Момент быстро падает с уменьшением частоты вращения и имеет нулевое значение при снижении максимальной частоты вращения приблизительно на 40 %. Для привода автомобиля пригодна только двухвальная газовая турбина, изображенная на рис. 1. Турбина привода компрессора 3 приводит в движение компрессор 1 , тяговая турбина 4 размещена на валу отбора мощности. В теплообменнике 5 отработавшие газы подогревают воздух на входе его в камеру сгорания 2 , что улучшает термический КПД установки.

Рис. 1. Двухвальный газотурбинный двигатель:
а — схема двигателя; б — зависимость относительной величины крутящего момента от относительной частоты вращения.

Турбинное колесо 4 имеет наибольший момент, когда его частота вращения равна нулю, при этом компрессор с турбинным колесом 3 может вращаться с максимальной частотой вращения. При возрастании частоты вращения тяговой турбины ее крутящий момент изменяется в соответствии с графиком, приведенным на рис. 1, б. Такая характеристика крутящего момента очень выгодна для использования в автомобиле и может исключать использование преобразователя момента.

Другое отрицательное свойство газотурбинного двигателя состоит в том, что его удельный расход топлива при частичной нагрузке быстро возрастает. У автомобиля, особенно легкового, двигатель в основном работает при частичных нагрузках и полностью загружен лишь в течение очень короткого периода времени. Этим объясняется тот факт, что газотурбинный двигатель начали применять прежде всего на грузовых автомобилях для дальних магистральных перевозок, когда автомобильный двигатель постоянно работает в условиях, близких к полной нагрузке.

Возникают также проблемы размеров газотурбинного двигателя. КПД газовой турбины зависит не от частоты вращения колеса, а от его окружной скорости. Для сохранения оптимальной окружной скорости при необходимости уменьшения максимальной мощности следует уменьшить диаметр колеса, а его частоты вращения увеличить. Однако у турбин с небольшим диаметром колеса зазор между наружным диаметром лопаток и корпусом в связи с наличием допусков на изготовление не уменьшается пропорционально снижению диаметра турбинного колеса, а имеет большее относительное увеличение. Это означает большие потери при перетекании газа через этот зазор и ухудшение КПД турбины. Поэтому газовую турбину невыгодно применять в установках мощностью ниже 100 кВт. Эти недостатки газотурбинного двигателя тормозят его применение в легковых автомобилях.

Следует, однако, рассмотреть и основные преимущества газотурбинного двигателя, к ним относятся:

  • возможность применения почти всех видов топлива;
  • небольшое содержание вредных веществ в отработавших газах вследствие большого коэффициента избытка воздуха при сгорании в турбине;
  • более простое обслуживание, так как отпадает необходимость замены масла, которое не взаимодействует с горячими газами; минимальные потери трения в подшипниках, малый износ и большая долговечность;
  • отсутствие вибраций, так как вращающиеся детали можно легко сбалансировать;
  • малая шумность и возможности ее дальнейшего снижения;
  • благоприятная характеристика кривой крутящего момента;
  • легкость холодного пуска двигателя без необходимости обогащения смеси;
  • высокая удельная мощность на единицу массы;
  • отсутствие системы охлаждения.

Эти преимущества являются настолько важными, что в настоящее время ведутся интенсивные разработки газотурбинного двигателя для легковых автомобилей. Основное внимание уделено повышению максимальной температуры газов на входе в турбину. Уже получены хорошие результаты, и имевшаяся первоначально температура газов 900 °C увеличилась до требуемых 1300 °C. На рис. 2 показано влияние температуры на входе в турбину на ее мощность, термический КПД и удельный расход топлива.

Рис. 2. Влияние температуры на входе Tвх в турбину на КПД газотурбинного двигателя η и его удельный расход топлива ge .

Работу в условиях постоянной температуры выше 1300 °C не выдерживает ни один металл, поэтому необходимо применять керамические материалы. Для изготовления лопаток турбины целесообразно использовать нитриды кремния, которые и при указанной температуре имеют достаточную прочность. Недостатки керамических материалов состоят в том, что они не выдерживают резкого изменения температур при холодном пуске и изменении нагрузки. Разработки керамических материалов успешно продолжаются и можно ожидать, что после 1985 г. появятся материалы, которые позволят газотурбинному двигателю иметь такой же удельный расход топлива, как у дизеля.

Для снижения удельного расхода топлива в газовой турбине используют вращающийся теплообменник. Он представляет собой диск из пористого керамического материала, приводимый от двигателя и вращающийся с очень низкой частотой вращения. Отработавшие газы из турбины проходят через этот диск и нагревают его. Поворачиваясь, нагретая часть диска подходит к отверстиям трубопровода, ведущего от компрессора в камеру сгорания, и воздух, проходя через диск в противоположном направлении, нагревается. Теплота, которая была бы отведена из двигателя с отработавшими газами, используется для подогрева воздуха, подаваемого в камеру сгорания. Трудности состоят в герметизации диска теплообменника, необходимой для предотвращения потерь теплоты при перемещении диска от одного трубопровода к другому. Негерметичность современных теплообменников составляет сейчас лишь 2 % от величины, наблюдавшейся у их первых прототипов.

Хорошие динамические характеристики двухвальной газовой турбины обеспечиваются регулируемым направляющим аппаратом, т. е. поворотными направляющими лопатками перед вторым турбинным колесом. Привод лопаток – гидравлический, управляемый электронным устройством, которое осуществляет также контроль безопасности работы турбины при возникновении неисправностей в ней или в некоторых из ее деталей.

При резком отпускании педали управления двигателем поворотные лопатки перед турбиной устанавливаются в положение торможения и на турбине возникает отрицательный момент, в результате действия которого частота вращения тяговой турбины быстро снижается.

В качестве примера на рис. 3 представлен схематичный разрез турбины, разработанной фирмой «Мерседес-Бенц» для большого легкового автомобиля. Турбина выполнена по двухвальной схеме с вращающимся теплообменником. Достигнутая мощность 94 кВт, наибольший крутящий момент 332 Н∙м при заторможенном вале тяговой турбины. Степень сжатия одноступенчатого радиального компрессора равна при этом 4, температура на входе в турбинное колесо достигает 1252 °C.

Рис. 3. Схема газотурбинного двигателя «Мерседес-Бенц» дли легковых автомобилей:
1 — воздушный фильтр; 2 — компрессор; 3 — камера сгорания; 4 — турбина привода компрессора; 5 — тяговая турбина с регулируемым направляющим аппаратом; 6 — вращающийся керамический теплообменник; 7 — привод вспомогательных агрегатов.

Расчетная мощность этого двигателя составляет 110 кВт при частоте вращения вала первой турбины 60000 – 65000 мин -1 , максимальный крутящий момент 550 Н∙м. Двигатель рассчитан на работу при температуре поступающих из камеры сгорания газов на вход в турбину около 1350 °C. Диаметр колеса компрессора составляет 180 – 185 мм, колеса первой турбины 165 мм, второй – 170 – 175 мм. На основе характеристики этого двигателя были проведены расчеты расхода топлива автомобилем массой 1600 кг, оснащенного таким двигателем. При скорости 90 км/ч, расчетный расход топлива равен 5,1 л/100 км, при скорости 120 км/ч — 6,7 л/100 км, в городском цикле согласно стандарту ДИН 70030 расход топлива составил 14,2 л/100 км. Турбина совместно с воздушным фильтром и приводом вспомогательных агрегатов имеет массу 240 кг, длину 770 мм, ширину 650 мм, высоту 550 мм. При проведении расчетов площадь фронтальной проекции автомобиля считалась равной 2 м 2 , а значение коэффициента сопротивления воздуха cx – 0,3.

Другая турбина, разработанная фирмой «Фольксваген», имеет сходную концепцию и развивает мощность 110 кВт. Степень сжатия компрессора 4,5, расход воздуха 0,84 кг/с. Температура газа на входе в турбину равна 1110 °C, минимальный удельный расход топлива составляет 290 г/(кВт∙ч), расход топлива при 30 %-ной нагрузке равен 330 г/(кВт∙ч). Масса турбины 210 кг. Расход топлива автомобилем модели «Ro 80» массой 1700 кг в городском цикле составил 15,3 л/100 км, на шоссе — 9,4 л/100 км, а в среднем — 12,6 л/100 км. Окружная скорость колеса компрессора с загнутыми назад лопатками составляет 513 м/с, максимальная частота вращения компрессора равна 63700 мин -1 , тяговой турбины — 52200 мин -1 . На входе в компрессор имеется регулируемый направляющий аппарат в виде поворотных лопаток, которые позволяют снизить расход топлива при частичных нагрузках и на холостом ходу.

Читать еще:  Двигатели копейки какие были

Состояние развития в области газовых турбин в 1981 г. показывало, что достигнут заметный рост долговечности турбин мощностью выше 100 кВт, хотя по этому параметру турбины все еще отстают от двигателей внутреннего сгорания. Большое преимущество турбины состоит в том, что она может работать на заменителях нефтяного топлива. Дальнейшее развитие газотурбинных двигателей зависит от применения новых керамических материалов для рабочего колеса и направляющего аппарата турбины, ее теплообменника и камеры сгорания. При использовании в автомобиле двухвального газотурбинного двигателя необходимо после тяговой турбины применить редуктор и многоступенчатую автоматическую коробку передач. При этом использование трансформатора крутящего момента после турбины не требуется.

Что такое турбовальный двигатель

Газотурбинный двигатель – это разновидность теплового двигателя, который работает по не очень простому принципу. Газ в двигателе сжимается и нагревается, после чего, энергия этого газа преобразуется в механическую работу. Как Вы могли заметить, с первых слов описания данного двигателя, все процессы происходят в потоке движущегося газа, что кардинально отличается от принципа работы поршневого двигателя.

Как работает газотурбинный двигатель? Если рассматривать, более подробно процесс работы газотурбинного двигателя, то можно выделить несколько этапов, которые в соединении описывают сложный процесс преобразования энергии сжатого газа в механическую работу. Какие это этапы?

  • Подача и смесь. Атмосферный воздух в сжатом виде поступает из компрессора в камеру сгорания. Туда же поступает и топливо, в результате чего получается топливная смесь, которая в процессе сгорания выделяет очень много энергии.
  • Преобразование. После того, как топливная смесь в процессе сгорания преобразуется в энергию, необходимо преобразовать ее в механическую работу. Это происходит благодаря вращению специальных «лопаток» струей газа под большим давлением.
  • Разделение работы. Часть полученной механической работы от энергии топливной смеси, уходит на сжатия воздуха для следующей подачи, в компрессоре, а остальная энергия передается на приводимый агрегат.

Именно та работа, которая передается на приводимый агрегат и называется полезной! К слову, газотурбинный двигатель по праву считается двигателем, имеющим наибольшую удельную мощность, среди остальных двигателей внутреннего сгорания. Топливом к газотурбинному двигателю можно считать практически любое горючее: керосин, бензин, мазут, природный газ, дизельное топливо, судовое топливо, водяной газ, спирт, а также мелкий уголь!

Принцип работы газотурбинных двигателей.
Чтобы добиться высокого КПД в тепловом двигателе, необходимо добиться высокой температуры сгорания топливной смеси, но не всегда это можно достичь. Препятствиями можно назвать не способность материалов, из которых построен двигатель (никель, сталь, керамика и прочие) выдерживать большие температуры и давление. Очень большое количество трудов инженеров было направлено на то, чтобы успешно отводить тепло от турбины и использовать его там, где это необходимо. Смело можно сказать, что их работа была проведена не зря, ведь в настоящее время, благодаря подобным разработкам, было достигнута эта цель путем перенаправления тепла выхлопных газов, сжатому воздуху. Такой процесс называется рекуперирование. Это очень успешных подход, ведь в противном случае тепло выхлопных газов было бы просто утеряно, а так, оно способно служить источником нагрева сжатого воздуха, перед процессом дальнейшего сгорания. Таким образом, можно смело утверждать, что без этого процесса и специальных теплообменников (рекуператоров) не удалось бы достигнуть столь высокого КПД.

Максимальная скорость вращения турбинных лопаток, определяет максимальное давление, которое нужно достигнуть для получения наивысшей мощности двигателя. При этом, как правило, чем меньше двигатель, тем выше должна быть частота вращения вала, для поддержания максимальной скорость турбинных лопаток.

Устройство газотурбинного двигателя.
Что касается устройства, тут все не так и сложно, как можно себе представить. Газотурбинный двигатель состоит из камеры сгорания, где также установлены свечи зажигания и форсунка, для подачи топлива и получения искры в камере сгорания. Турбинное колесо со специальными лопатками установлено на одном валу с компрессором. К устройство двигателя также относятся: понижающий редуктор, теплообменник, выпускной трубопровод, впускной канал, а также диффузор и сопла.

При вращении вала компрессора, его лопасти захватывают воздух, который поступает через впускной канал. После того, как компрессор увеличивает скорость движения до 500 метров в секунду, он нагнетает его в диффузор. На выходе диффузора, скорость воздуха уменьшается, но с тем же повышается его давление. После диффузора, воздух попадает в теплообменник, где нагревается теплом отработанных газов и переходит в камеру сгорания. Помимо подогретого и сжатого воздуха, в камеру сгорания постоянно подается топливо в распыленном виде, через форсунку. Топливо смешивается с воздухом, образуя топливную смесь, далее эта смесь воспламеняется, с помощью искры, которую производит свеча. В результате сгорания, давление в камере повышается, нагретые газы проходят через сопло и попадают на лопатки турбинного колеса, которые приводятся в движение. Крутящий момент турбинного колеса передается через понижающий редуктор на трансмиссию автомобиля. Отработанные газы подходят в теплообменник, где подогревают поступивший сжатый воздух и выходят в атмосферу.

Основным недостатком газотурбинного двигателя является стоимость тепло прочных материалов, из которых должен быть построен двигатель. Помимо этого сложность работ и высокая степень очистки воздуха, который попадает в двигатель, также хорошо бьют по карману, но не смотря ни на что, разработка и усовершенствование газотурбинного двигателя уже вовсю проходит как в нашей стране, так и за границей.

Типы газотурбинных двигателей.
Касательно типов, их очень большое количество, при этом суть работы одна и та же, но выполнение – немного различно. В зависимости от типов, газотурбинный двигатель имеет широкое применение на морских судах, железнодорожных составах, автомобилях, самолетах, вертолетах и даже в танках.К слову на сегодняшний день лишь американский танк Абрамс М1А1 оснащен газотурбинным двигателем.У советских инженеров тоже были попытки применить ГТД на танках,было даже несколько прототипов на базе Т-80,но почему то дальнейшие разработки были свёрнуты.

Энциклопедия техники

разновидность газотурбинного двигателя, в котором полезная внешняя работа реализуется в турбине, вал которой не связан механически с валом (валами) турбокомпрессорной части двигателя . Т. д. называют также ГТД со свободной силовой турбиной. По условиям работы турбокомпрессора Т. д. во многом сходен с ТРД, если в последнем выходное сопло заменить свободной силовой турбиной. На практике такое преобразование ТРД в Т. д. и наоборот часто встречается. Свободная силовая турбина — конструктивная особенность вертолётных ГТД. Однако Т. д. находит применение и на лёгких самолётах, а также в ряде неавиационных энергетических установок. Выходной вал силовой турбины может быть направлен либо вперёд (через полый вал турбокомпрессорной части), либо назад (через выходной газовый канал). В ряде случаев Т. д. может иметь встроенное пылезащитное устройство на входе и промежуточный редуктор на валу свободной турбины.
Применение свободной силовой турбины существенно отражается на закономерностях взаимного влияния элементов двигателя, способах регулирования и конструктивных формах. В Т. д. помимо обычных характеристик (по частоте вращения турбокомпрессора пт.к., высотной и скоростной) следует также рассматривать и характеристику по частоте вращения свободной турбины пс.к. Для каждого постоянного значения частоты вращения турбокомпрессора, характеризующего уровень располагаемой работы, существует определённая зависимость мощности Nдв, реально выдаваемой Т. д., от частоты вращения свободной турбины. Диапазон возможного изменения частоты вращения выходного вала Т. д. составляет обычно 10—15% от номинальной при оптимальной мощности Nопт. Дальнейшее расширение этого диапазона может приводить к ощутимым потерям мощности.

Смотреть значение Турбовальный Двигатель в других словарях

Двигатель — двигателя, м. 1. Машина, приводящая что-н. в движение; механизм, преобразующий какой-н. вид энергии в механическую работу (тех.). внутреннего сгорания. Электрический двигатель.
Толковый словарь Ушакова

Читать еще:  Двигатель mitsubishi lancer 10 характеристики двигателя

Двигатель М. — 1. Устройство, преобразующее какой-л. вид энергии в механическую работу. 2. перен. Сила, способствующая росту, развитию чего-л.
Толковый словарь Ефремовой

Двигатель — -я; м.
1. Машина, превращающая какой-л. вид энергии в механическую энергию. Паровой д. Д. внутреннего сгорания. Реактивный д.
2. чего. Сила, побуждающая к чему-л., содействующая.
Толковый словарь Кузнецова

Бензиновый Двигатель — , самый распространенный ВИД ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ.
Научно-технический энциклопедический словарь

Ветровой Двигатель — , техническое приспособление, использующее силу ветра для выработки энергии, которая приводит в действие механизмы, либо для генерации электричества. Начиная с 1970 г.
Научно-технический энциклопедический словарь

Вечный Двигатель — , существует две теоретические формы вечного двигателя. В первой механизм работает бесконечно без притока ЭНЕРГИИ извне. Однако этот вид машины противоречит первому.
Научно-технический энциклопедический словарь

Двигатель — • (мотор), механизм, преобразующий энергию (такую как тепло или электричество) в полезную работу. Термин «мотор» иногда применяется к ДВИГАТЕЛЮ ВНУТРЕННЕГО СГОРАНИЯ.
Научно-технический энциклопедический словарь

Двигатель Ванкеля — , двигатель внутреннего сгорания, в котором вместо поршней действуют роторы. Конструкция была разработана в 1950-х гг. немецким инженером Феликсом Ванкелем (1902-88). Каждый.
Научно-технический энциклопедический словарь

Двигатель Внутреннего Сгорания — , широко используемый в машинах и мотоциклах двигатель, внутри которого горючее сгорает так, что выделяемые при этом газы могут производить движение. Бывает двух видов.
Научно-технический энциклопедический словарь

Двигатель С Воспламенением От Сжатия — , см. ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ.
Научно-технический энциклопедический словарь

Двухтактный Двигатель — , двигатель, в котором движение каждого поршня осуществляется в два этапа. Эта операция называется двухтактным циклом. Во многих малых бензиновых двигателях используется.
Научно-технический энциклопедический словарь

Дизельный Двигатель — , ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ, в котором тепло для поджигания горючего получается путем сжатия воздуха. Этот тип двигателя был изобретен Рудольфом ДИЗЕЛЕМ в 1890-е.
Научно-технический энциклопедический словарь

Ионный Двигатель — , тип РАКЕТНОГО двигателя, который в качестве движущей силы использует не горячие газы, а ионы (ионный ракетный двигатель), испускаемые в электрическом поле атомами.
Научно-технический энциклопедический словарь

Корабельный Двигатель — , силовая установка, используемая для приведения в движение морских КОРАБЛЕЙ и в качестве вспомогательной установки в более маленьких плавающих суднах. В XIX и начале.
Научно-технический энциклопедический словарь

Линейный Двигатель — , тип ЭЛЕКТРИЧЕСКОГО ДВИГАТЕЛЯ, разработанный для мощных высокоскоростных поездов. В принципе похож на роторный электрический мотор, но вместо нескольких катушек (ротора).
Научно-технический энциклопедический словарь

Паровой Двигатель — , ДВИГАТЕЛЬ, приводимый в действие силой пара. Пар, получаемый путем нагрева воды, используют для движения. В некоторых двигателях сила пара заставляет двигаться поршни.
Научно-технический энциклопедический словарь

Поршневой Двигатель — , любой ДВИГАТЕЛЬ, в котором поршень совершает возвратно-поступательное движение, такой как ПАРОВОЙ ДВИГАТЕЛЬ или ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ, обычно спользуемый.
Научно-технический энциклопедический словарь

Прямоточный Воздушно-реактивный Двигатель — (ПВРД), авиационный РЕАКТИВНЫЙ ДВИГАТЕЛЬ, реактивный мотор, приводящий в движение летательный аппарат с помощью скоростного потока воздуха, сжимаемого в приемном устройстве.
Научно-технический энциклопедический словарь

Реактивный Двигатель — , двигатель, который обеспечивает продвижение вперед, быстро выпуская струю жидкости или газа в направлении, противоположном направлению движения. Чтобы создать высокоскоростной.
Научно-технический энциклопедический словарь

Солнечный Двигатель — (гелиотермический двигатель), устройство, превращающее СОЛНЕЧНУЮ ЭНЕРГИЮ в механическую РАБОТУ. Чаще всего используется для обеспечения РЕАКТИВНОЙ ТЯГИ для космического.
Научно-технический энциклопедический словарь

Стартовый Двигатель — , РАКЕТНЫЙ двигатель, который сообщает движение снаряду или космическому кораблю на первых стадиях полета, а затем отделяется и тем самым уменьшает собственный вес.
Научно-технический энциклопедический словарь

Тепловой Двигатель — , любой двигатель, который превращает тепловую энергию (обычно сжигаемого топлива) в полезную механическую энергию. Таким образом, все ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ.
Научно-технический энциклопедический словарь

Термоэлектрический Двигатель — , разновидность РАКЕТНОГО реактивного двигателя, сочетающего тепловую и электрическую энергию для разгона частиц до огромных скоростей. В дуговом РЕАКТИВНОМ ДВИГАТЕЛЕ.
Научно-технический энциклопедический словарь

Турбовентиляторный Двигатель — , ТУРБИННЫЙ двигатель, разработанный на основе ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ, но более эффективный. В нем имеется компрессор, нагнетающий воздух из воздухозаборника в.
Научно-технический энциклопедический словарь

Турбовинтовой Двигатель — , авиационный двигатель с пропеллером (воздушным винтом), который приводится в действие газовой ТУРБИНОЙ через передаточный механизм (редуктор). Турбина сжимает воздух.
Научно-технический энциклопедический словарь

Турбореактивный Двигатель — , авиационный двигатель (вид газовой ТУРБИНЫ), в котором энергия вырабатывается реактивной силой расширяющихся газов. Спереди в компрессор поступает воздух, нагнетается.
Научно-технический энциклопедический словарь

Четырехтактный Двигатель — , ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ, работа каждого поршня которого делится на четыре такта, составляющие четырехтактный цикл, или цикл Отто, названный так в честь его.
Научно-технический энциклопедический словарь

Ванкеля Двигатель — роторно-поршневой двигатель внутреннего сгорания,конструкция которого разработана в 1957 немецким ученым Ф. Ванкелем (F.Wankel). В Ванкеля двигателе 3-гранный ротор (поршень).
Большой энциклопедический словарь

Вечный Двигатель — (лат. perpetuum mobile — перпетуум мобиле) -1) вечныйдвигатель 1-го рода — воображаемая, непрерывно действующая машина,которая, будучи раз запущенной, совершала бы работу без получения.
Большой энциклопедический словарь

Лекция 1 Назначение и принцип действия ТВаД

1. Наземное применение газотурбинных двигателей;

2. Принцип действия турбовальных двигателей (ТВаД).

1. Наземное применение газотурбинных двигателей (ГТД)

Параллельно с развитием авиационных ГТД началось применение ГТД в промышленности и на транспорте. В 1939 г. Швейцарская фирма A.G. Brown Bonery ввела в эксплуатацию первую электростанцию с газотурбинным приводом мощностью 4 МВт и к.п.д. 17,4 %, которая находится в работоспособном состоянии и в настоящее время. В 1941 г. вступил в строй первый железнодорожный газотурбовоз, оборудованный ГТД мощностью 1620 кВт
(2200 л.с.) этой же фирмы. С конца 1940-х г.г. прошлого века ГТД начинают применяться для привода морских судовых движителей, а c конца 1950-х г.г. – в составе газоперекачивающих агрегатов на магистральных газопроводах для привода нагнетателей природного газа.

Быстрому внедрению ГТД в различные отрасли промышленности и транспорта способствовали неоспоримые преимущества этого класса тепловых двигателей перед другими энергетическими установками (паротурбинными, дизельными и др.):

— большая мощность в одном агрегате;

— компактность, малая масса (рис. 1.1);

— уравновешенность движущихся элементов;

— широкий диапазон применяемых топлив;

— легкий и быстрый запуск, в том числе при низких температурах;

— хорошие тяговые характеристики;

— высокая приемистость и хорошая управляемость.


Наиболее массовое применение ГТД механического привода находят в газовой промышленности для привода нагнетателей природного газа в составе газоперекачивающих агрегатов на компрессорных станциях магистральных газопроводов, а также для привода агрегатов закачки природного газа в подземные хранилища (рис. 1.2). К примеру, только в ОАО «Газпром» к настоящему времени эксплуатируются около 3100 газотурбинных двигателей суммарной установленной мощностью свыше 36000 МВт. ГТД используются также для привода насосов, технологических компрессоров, воздуходувок на предприятиях нефтяной, нефтеперерабатывающей, химической и металлургической промышленности. Мощностной диапазон ГТД от 0,5 до 50 МВт.

Основная особенность перечисленного приводимого оборудования – зависимость потребляемой мощности N от частоты вращения n, температуры и давления нагнетаемых сред. Поэтому ГТД механического привода должны быть приспособлены к работе с переменной частотой вращения и мощностью. Этому требованию в наибольшей степени отвечает схема ГТД со свободной силовой турбиной (рис. 1.5), ГТД выполненные по такой схеме получили название – турбовальные двигатели (ТВаД).

ГТД для привода электрогенераторов используются в составе газотурбинных электростанций (ГТЭС) простого цикла и конденсационных электростанций комбинированного парогазового цикла (ПГУ), вырабатывающих «чистую» электроэнергию, а также в составе когенерационных установок (в российской литературе они часто называются «ГТУ-ТЭЦ»), производящих совместно электрическую и тепловую энергию (рис. 1.3).

Современные ГТЭС простого цикла (рис. 1.4), имеющие относительно умеренный электрический КПД hэл=25…40 %, в основном используются в пиковом режиме эксплуатации – для покрытия суточных и сезонных колебаний спроса на электроэнергию. Эксплуатация ГТД в составе пиковых ГТЭС характеризуются высокой цикличностью (большим количеством циклов «пуск-нагружение-работа под нагрузкой-останов»). Возможность ускоренного пуска является важным преимуществом ГТД при работе в пиковом режиме.

Электростанции комбинированного парогазового цикла
(см. рис.1.3) используются в базовом режиме (постоянная работа с нагрузкой, близкой к номинальной, с минимальным количеством циклов «пуск-останов» для проведения регламентных и ремонтных работ). Современные ПГУ, базирующиеся на газотурбинных двигателях большой мощности (N>150 МВт), достигают КПД выработки электроэнергии hэл = 58…60 % и являются к настоящему времени самыми совершенными энергосистемами большой мощности.

Читать еще:  Что такое реверсирование и как осуществляется реверсирование двигателей

В когенерационных установках тепло выхлопных газов ГТД используется в котле- утилизаторе для производства горячей воды и (или) пара для технологических нужд или для использования в системах централизованного отопления. Совместное производство электрической и тепловой энергии значительно снижает её себестоимость. Коэффициент использования тепла топлива в когенерационных установках достигает 90%.

Электростанции комбинированного парогазового цикла и когенерационные установки являются наиболее эффективными и динамично развивающимися современными энергетическими системами. В настоящее время мировое производство энергетических ГТД составляет около 12000 штук в год суммарной мощностью около 76000 МВт.

Основная особенность ГТД для привода электрогенераторов – постоянство частоты вращения выходного вала на всех режимах (от холостого хода до максимального) и высокие требования к точности поддержания частоты вращения, от которой зависит качество вырабатываемого тока. Этим требованиям в наибольшей степени соответствуют одновальные ГТД, поэтому они широко используются в энергетике.

Принцип действия турбовальных двигателей (ТВаД)

Турбовальный двигатель является газотурбинным двигателем непрямой реакции. В отличие от ГТД прямой реакции, эффективная (полезная) работа цикла Le превращается в механическую работу – избыточную мощность турбины компрессора или эффективную мощность свободной (силовой) турбины (СТ) Ne = NСТηСТ, и может быть использована для привода воздушного винта (ВВ) самолета, несущего винта (НВ) вертолета, наземных и водных транспортных средств, электрогенераторов, компрессоров и др. (рис. 1.5).

ТВаД включает в себя (см. рис. 1.5):

– осевой компрессор (ОК);

– камеру сгорания (КС);

– турбину компрессора (ТК);

– свободную (силовую) турбину (СТ);

– выходное устройство (ВУ).

В cечении н–н – невозмущенный воздушный поток (см. рис. 1.5).

Далее по тракту двигателя происходят следующие процессы:

между сечениями 0–вх – разгон, выравнивание и стабилизация воздушного потока в сужающемся канале ВЗ;

между сечениями вх–к – основное сжатие воздуха за счет подвода к нему механической работы от вращающихся рабочих лопаток компрессора;

между сечениями к–г – подвод тепла к рабочему телу за счет сжигания в воздухе горючего (авиационный керосин, топливный газ);

между сечениями г–ТК – расширение газа в ТК и превращение части энтальпии в крутящий (располагаемый) момент Мт.расп на валу турбины, передаваемый через общий вал на вращение компрессора и привод дополнительных агрегатов;

Рис. 1.5. Изменение параметров рабочего тела по тракту ТВаД

между сечениями ТК–т – расширение газа в СТ и превращение части энтальпии в крутящий (располагаемый) момент МСТ на валу свободной турбины, передаваемый через выходной вал на привод внешних потребителей.

между сечениями т–с – расширение отработавшего газа в ВУ для сброса его в атмосферу.

До сечения н–н (см. рис. 1.5) воздушный поток является невозмущенным. От сечения н–н до сечения вх–вх поток воздуха разгоняется в сужающемся канале ВЗ. Скорость потока с увеличивается. Так как на этом отрезке пути к воздуху не подводится и от него не отводится энергия, то, в соответствии с законом сохранения энергии, увеличение кинетической энергии c 2 /2 приводит к уменьшению энтальпии потока. Уменьшение энтальпии сопровождается снижением давления и температуры рабочего тела (воздуха).

От сечения вх–вх до сечения к–к к потоку воздуха подводится механическая энергия от вращающихся лопаток ОК. Воздушный поток сжимается, следовательно, возрастает его давление и температура (энтальпия), но рост энтальпии, в основном, идет за счет подводимой механической работы и лишь частично за счет кинетической энергии самого потока, поэтому скорость потока с уменьшается незначительно.

Так как расход воздуха постоянный (Мв = const), а его объем уменьшается за счет существенного увеличения плотности при сжатии, для сохранения неразрывности потока необходимо уменьшать площадь проходного сечения тракта ТРД для исключения значительного снижения скорости потока .

От сечения к–к до сечения г–г к рабочему телу, сжатому в ОК, подводится теплота QКС, выделяющаяся при сжигании в КС топливно-воздушной смеси (ТВС), состоящей из смеси воздуха и авиационного керосина.

Рабочий процесс в КС организован таким образом, что статическое давление остается постоянным, а температура резко возрастает , следовательно, резко возрастает энтальпия за счет подведенной извне энергии (теплоты).

От сечения г–г до сечения ТК–ТК рабочее тело (сжатый и нагретый воздух и газообразные продукты сгорания топлива) расширяется в ТК. Часть энтальпии превращается в крутящий момент Мт.расп на валу ТК, который необходим для привода ОК и вспомогательных агрегатов. Следовательно температура и давление снижаются

Так как ОК сжимает атмосферный (холодный) воздух, а в ГТ расширяется горячий газ, то располагаемая работа, совершаемая расширяющимся газом в ступени ГТ, значительно выше, чем потребная работа сжатия в ступени ОК. Это позволяет одно- духступенчатой ГТ вращать многоступенчатый компрессор.

От сечения ТК–ТК до сечения т–т происходит расширение рабочего тела (газа) в СТ. Часть энтальпии превращается в крутящий момент МСТ. на валу СТ, который необходим для привода внешних потребителей. Следовательно, температура и давление снижаются.

От сечения т–т до сечения с–с происходит расширение рабочего тела (газа) в ВУ. Часть энтальпии превращается в кинетическую энергию . Так как ВУ – энергоизолированная система (отсутствует подвод энергии извне и отвод энергии в окружающую среду), то при расширении газ совершает внешнюю механическую работу по разгону потока, то есть полная энергия рабочего тела не изменяется, но часть энтальпии превращается в кинетическую энергию .

Контрольные вопрсы:

1. Назвать преимущества ГТД перед другими энергетическими установками.

2. Назвать области применения ГТД в наземной технике.

3. Объяснить назначение когенерационных установок на базе ГТД.

4. Пояснить состав и принцип действия ТВаД.

5. Какие энергетические преобразования происходят в узлах ТВаД?

Лекция 2. Термодинамические циклы ТВаД

1. Идеальные термодинамические циклы (ТВаД);

2. Термический КПД идеального цикла.

Идеальные термодинамические циклы (ТВаД)

Последовательность процессов, в результате которых рабочее тело приходит в исходное состояние, называется циклом (рис. 1.6, 1.7).

Условия идеального цикла:

1) процесс обратим;

2) нет потерь тепла, кроме отдачи тепла в «холодильник»;

3) отсутствуют трение, гидравлические и механические потери;

4) рабочее тело неизменно по составу (химическим и физическим свойствам);

5) состояние рабочего тела рассматривается в характерных сечениях: н–н; вх–вх; к–к; г–г; ТК–ТК; т – т; с–с за узлами ТВаД, в которых происходят энергетические преобразования.

Работа идеального цикла ТРД соответствует площади фигур н–к–г–с–н, ограниченных кривыми процессов (см. рис. 1.6, 1.7).

Рис. 1.6. Диаграмма цикла ТРД в координатах р–J: н–вх – адиабатное сжатие в ВЗ; вх–к – адиабатное сжатие в ОК; к–г – изобарный подвод тепла в КС; г–ТК – адиабатное расширение в ТК; ТК–т – адиабатное расширение в СТ; т–с – адиабатное расширение в РС; с–н – отвод тепла в «холодильник» (выброс газа в атмосферу)

Рис. 1.7. Диаграмма цикла ТРД в координатах ТS: н–вх – изоэнтропное сжатие в ВЗ; вх–к – изоэнтропное сжатие в ОК; к–г – изобарный подвод тепла в КС; г–ТК – изоэнтропное расширение в ТК; ТК–т – изоэнтропное расширение в СТ; т–с – изоэнтропное расширение в РС; с–н – отвод тепла в «холодиль-ник» (выброс газа в атмосферу)

Разность между подведенной к рабочему телу (газу) теплотой Q1 и отведенной – Q2 является той частью теплоты, которая превратилась в полезную работу цикла:

где эквивалентна площади фигуры Sн–н–к–г–с–Sс; эквивалентна площади фигуры Sн–н–с–Sс.

Так как то выражение (1.1) примет вид

. (1.2)

, (1.3)

где – полезная внешняя работа при изоэнтропном расширении Lи.р (эквивалентна площади фигуры рк–к–г–с–н–рн); – потребная внешняя работа при изотропном сжатии Lи.с (эквивалентна площади фигуры рн–к–н–рк).

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты