0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое удельный расход топлива авиационного двигателя

Что такое удельный расход топлива авиационного двигателя

2. ХАРАКТЕРИСТИКИ СИЛОВОЙ УСТАНОВКИ САМОЛЁТА ИЛ-86

2.1. Сила тяги и удельный расход топлива самолёта ИЛ-86

На самолете ИД-86 установлено четыре двигателя НК-86, которые на взлетном режиме при частоте вращения ротора высоко­го давления 7400 об/мин дают тягу 520кН. Это обеспечивает са­молету высокую тяговооруженность

Благодаря большой тяговооруженности и четырем силовым установ­кам обеспечивайся высокая безопасность полета. При отказе одного двигателя обеспечивается безопасность продолжения взле­та на трех двигателях.

При отказе одного двигателя обеспечива­ется возможность продолжения полета на трех двигателях. При отказе двух двигателей обеспечивается возможность продолжения полета и безопасная посадка, на ближайшем аэродроме.

Для улучшения посадочных характеристик двигатели оборудо­ваны системой реверсирования тяга.

Следует учитывать потери силы тяги при установке двига­телей на самолет. Эти потери объясняются уменьшением расхода воздуха за счет каналов воздухозаборников, уменьшением скорости истечения газа из реактивного сопла за счет реверса и откло­нения оси сопла от оси самолета.

Тяга двигателя зависит от расхода воздуха и соотношения скорости истечения газа из реактивного сопла и скорости полета самолета.

P = GB ( WV )/ q , Н(кН)

где GB – расход воздуха, равный ≈ 300 кг/с;

WV / q – удельная тяга (Руд),

W – скорость истечения газа из реактивного сопла, равная ≈ 500м/с,

V – скорость полета самолета.

q – ускорение свободного падения, равное 9,81м/с .

Из формулы видно, что чем больше секундный расход воз­духа и больше удельная тяга, тем больше реактивная тяга. Рас­ход воздуха через двигатель зависит от сжатия воздуха динамической и степени сжатия компрессора , а скорость истечения газа из реактивного сопла зависит от степени расширения газа на турбине и степени расширения газа на реактивном, сопле

Удельным расходом топлива ( C р) называется часовой расход топлива в килограммах, необходимый для получения 1 H тяги двигателя в 1ч.

где С h — часовой расход топлива, кг;

P — сила тяги, Н.

2.2. Дроссельная характеристика двигателя самолёта ИЛ-86

Дроссельной характеристикой двигателя называется зависи­мость тяги, удельного расхода топлива и температуры газов перед турбиной от частоты вращения ротора турбины.

На режиме малого газа 55% (25-40° РУД) двигатель работа­ет устойчиво, обеспечивая минимальную тягу 6 кн, при этом ре­жиме вся энергия газов расходуется на вращение двигателя. Тя­га двигателя при этом небольшая из-за малой частоты вращения, а следовательно, небольшого расхода воздуха и степени сжатия компрессора, а также малых скоростей истечения газа из реак­тивного сопла (рис.4). Часовой расход топлива невелик, но удельный (из-за малой тяги) довольно значительный и достигает 0,1

При увеличении режима работы двигателей увеличивается количество подаваемого топлива, мощность и частота вращения ротора турбины, что привело к увеличению степени сжатия комп­рессора, росту расхода воздуха и скорости истечения газов из реактивного сопла.

Удельный расход топлива в процессе увеличения РУР будет уменьшаться, так как двигатель рассчитан на крейсерский режим работы ( n = 80 – 90% ВД), где КПД его будет максимальным. При выходе двигателя на взлетный режим часовой расход топлива, температура газов и частота вращения ротора турбины становят­ся максимальными. Это дает максимальные значения степени сжа­тия компрессора, расхода воздуха, скорости истечения газа из реактивного сопла и тяги, которая при n = 94,5% (115° РУД) равна 130 кН.

Рис. 4. Дроссельная характеристика двигателя

Рис. 5. Скоростная характеристика двигателя

При закрытии клапанов перепуска из-за увеличения расхода воздуха через турбину реактивная тяга увеличивается, а удель­ный расход топлива уменьшается (см. рис.4).

При включении реверса тяги возникает обратная тяга, дос­тигающая 40 кН. При включении реверса на большой скорости об­ратная тяга будет больше, чем на малых скоростях.

2.3. Скоростная характеристика двигателя самолёта ИЛ-86

Скоростной характеристикой двигателя называется зависимость тяги и удельного расхода от скорости полета самолета.

При увеличении скорости полета происходит рост секунд­ного расхода воздуха через двигатель по причине увеличения суммарной степени сжатия. Суммарная степень сжатия увеличива­ется, т.к. динамическая степень сжатия увеличивается более значительно, чем уменьшается степень сжатия компрессора. Удель­ная тяга , несмотря на рост скорости истечения газов из реактивного сопла из-за более сильного увеличения скорости полета V , уменьшается. Процесс уменьшения удельной тяги идет более быстро, чем рост расхода воздуха, и поэтому тяга двигателя по скорости уменьшается, доходя до нуля, когда скорость полета будет равна скорости истечения газа W (рис.5). Удельный расход топлива при этом непрерывно увеличивается, особенно на больших скоростях, ввиду увеличения подачи топли­ва в связи с ростом расхода воздуха и уменьшением тяги двига­теля.

2.4. Высотная характеристика двигателя самолёта ИЛ-86

Высотной характеристикой двигателя называется зависимость тяги и удельного расхода топлива от высоты полета.

При стандартной атмосфере о достижением высоты 11000м температура, атмосферное давление в плотность воздуха умень­шаются, а на высотах от 11000 до 25000м температура не изменяется.

Тяга двигателя с поднятием на высоту уменьшается (рис.6), падает расход воздуха из-за уменьшения его плотнос­ти, но до 11000м уменьшение расхода замедляется ростом степе­ни сжатия компрессора, которая увеличивается из-за уменьшения температуры наружного воздуха.

После 11000м температура наружного воздуха становится постоянной, степень сжатия не увеличивается, расход воздуха уменьшается пропорционально падению плотности (см.рис.6).

Удельная тяга (Руд) до высоты 11000м растет ввиду роста скорости истечения газов W , увеличение которой объясняется ростом степени сжатия компрессора. Поэтому из-за увеличения удельной тяги (Руд) тяга двигателя медленнее падает из-за роста расхода воздуха, а после 11000м тяга падает пропорцио­нально уменьшению плотности воздуха, так как ничто не замед­ляет ее уменьшения (рис,7), она уменьшается в 2 – 2,5раза.

Удельный расход топлива Ср с поднятием на высоту умень­шается из-за роста степени сжатия компрессора и роста КПД двигателя.

Параметры двигателя НК-86 (Н=0, V =0)

Рис. 6. Высотная характеристика двигателя

Рис.7. характеристики двигателя

2.5. Влияние температуры и давления окружающего воздуха на тягу двигателя самолёта ИЛ-86

В зависимости от принятого закона регулирования для оп­ределенного двигателя можно получить различный характер изме­нения рабочих параметров двигателя в зависимости от температуры окружающего воздуха. Так, для двигателя НК-86 закон ре­гулирования принят по постоянной физической частоте вращений компенсатора II каскада. В соответствии с указанным законом частота вращения ротора турбины двигателя температура поддер­гивается расчетной на взлетном режима + 30°С (см.рис.7).

Читать еще:  Двигатель а650 на чем

Несмотря на то, что с понижением температуры воздуха плотность его растет, частота вращения ротора поддерживается постоянной в результате увеличения расхода топлива, при этом температура газов перед турбиной также останется почти посто­янной. За счет повышения плотности воздуха и, следовательно, увеличения весового заряда воздуха, а также увеличения степе­ни повышения давления в компрессоре при понижении температуры на входе в двигатель тяга двигателя возрастает.

При температуре воздуха + 30°С на взлетном режиме топлив­ный насос-регулятор дает максимальную производительность.

При дальнейшем понижении температуры воздуха на входе в двигатель плотность воздуха возрастает, увеличивается потребная работа компрессора, а располагаемая работа турбины увеличиться не может, так как насос выдает максимальную про­изводительность (шайба стоит на упоре).

В связи с этим падает частота вращения, производитель­ность насоса уменьшается, уменьшается расход топлива и снижа­ется температура газов перед турбиной, а тяга двигателя в ре­зультате увеличения массового расхода воздуха остается почти постоянной.

При уменьшении давления на 20 мм рт.ст. из-за уменьше­ния расхода воздуха тяга двигателя уменьшается на 3–4%. Сте­пень сжатия компрессора не изменяется, так как давление падает по всему тракту двигателя.

Удельный расход топлива

Количество топлива, расходуемого в двигателе за единицу времени на единицу мощности, называется удельным расходом топлива.

— В зависимости от того, к какой мощности отнесен расход топлива,

1. удельный индикаторный расход

2. удельный эффективный расход топлива.

Слово «удельный» часто опускается. Эффективный расход топлива является важным параметром ДВС, всегда указан в заводском паспорте двигателя и является показателем экономичности двигателя по расходу топлива.

Единица измерения gi килограмм на джоуль (кг/дж) показывает количество топлива (в кг), которое затрачивается на получение 1 дж индикаторной работы в цилиндре.

Учитывая, что 1 вт=1 дж, получим 1 дж=1 вт∙1 сек.Значит, единицей измерения расхода топлива является кг/ (вт ∙ сек).*

В практике эксплуатации двигателей мощность принято измерять
в киловаттах (квт), а расход топлива указывать на час,

G-часовой расход топлива кгчас
Ni- индикаторная мощность кВт

При измерении мощности в лошадиных силах (л. с.) индикаторный расход топлива

определяют по соотношению 1 кВт = 1.36 л.с или 1л.с. = 0.775 кВт.

Удельный эффективный расход топлива находят следующим образом:

ge= gi. ηм то есть эффективный расход топлива больше индикаторного расхода на величину механических потерь в двигателе

Индикаторный и эффективный расходы топлива для судовых дизелей равны:

Индикаторный gi: Главные Вспомогательные

в кг/квт∙ч 0,165—0,185 0,175—0,200

в кг/л. с. ч 0,120—0,135 — 0,130—0,145
эффективный ge

в кг/квт∙ч 0,200—0,225 0,220—0,250

в кг/л. с. ч 0,145—0,165 0,160—0,180

На данный момент достигнут самый низкий удельный эффективный расход топлива на двигателе Wartsila — Sulzer RTA FLEX 96 мощностью 108000 л.с с электронной системой управления подачи топлива в цилиндры(COMMON RAIL). Удельный же расход топлива на всех режимах колеблется в районе 118-126 граммов на лошадиную силу в час; что в 1,5-2,5 раза ниже, чем у автомобильных дизелей.

на графиках представлена зависимость удельного эффективного расхода топлива для ДВС с наддувом и без наддува. Очевидно, что у двигателя без наддува расход топлива больше, незначительное отличие только на 75% нагрузки.

В судовых условиях расход топлива замеряют при помощи мерных баков.

Объем среднего бачка известен, на мерном стекле в график зависимости Ne от ge

районе узких переходов между верхним и нижним бачками сделаны отметки.

При переключении расхода топлива на мерный бачок, фиксируют время расхода известного объема и затем вычисляют часовой расход топлива. Если при этом была известна мощность двс во время снятия расхода топлива график зависимости Ne от ge, об.мин ( например ДГ- по току и напряжению),то возможно

рассчитать удельный эффективный расход топлива. Для главных двигателей на речных судах по часовому расходу топлива определяют эффективную мощность по специальной монограмме зависимости расхода топлива от мощности.

На современных судах судовые силовые установки снабжаются электронными системами диагностики, которые позволяют с центрального поста управления контролировать все важные параметры СЭУ, в том числе удельный расход топлива.

Ответить на следующие вопросы:

Малый авиационный газотурбинный двигатель

Экспериментальные образцы газотурбинных двигателей (ГТД) впервые появились в преддверии Второй мировой войны. Разработки воплотились в жизнь в начале пятидесятых годов: газотурбинные двигатели активно использовались в военном и гражданском самолетостроении. На третьем этапе внедрения в промышленность малые газотурбинные двигатели, представленные микротурбинными электростанциями, начали широко применяться во всех сферах промышленности.

Общие сведения о ГТД

Принцип функционирования общий для всех ГТД и заключается в трансформации энергии сжатого нагретого воздуха в механическую работу вала газовой турбины. Воздух, попадая в направляющий аппарат и компрессор, сжимается и в таком виде попадает в камеру сгорания, где производится впрыскивание топлива и поджег рабочей смеси. Газы, образовавшиеся в результате сгорания, под высоким давлением проходят сквозь турбину и вращают ее лопатки. Часть энергии вращения расходуется на вращение вала компрессора, но большая часть энергии сжатого газа преобразуется в полезную механическую работу вращения вала турбины. Среди всех двигателей внутреннего сгорания (ДВС), газотурбинные установки обладают наибольшей мощностью: до 6 кВт/кг.

Работают ГТД на большинстве видов диспергированного топлива, чем выгодно отличаются от прочих ДВС.

Проблемы разработки малых ТГД

При уменьшении размера ГТД происходит уменьшение КПД и удельной мощности по сравнению с обычными турбореактивными двигателями. При этом удельная величина расхода топлива так же возрастает; ухудшаются аэродинамические характеристики проточных участков турбины и компрессора, снижается КПД этих элементов. В камере сгорания, в результате уменьшения расхода воздуха, снижается коэффициент полноты сгорания ТВС.

Читать еще:  Что такое ветровой двигатель

Снижение КПД узлов ГТД при уменьшении его габаритов приводит к уменьшению КПД всего агрегата. Поэтому, при модернизации модели, конструкторы уделяют особое внимание увеличению КПД отдельно взятых элементов, вплоть до 1%.

Для сравнения: при увеличении КПД компрессора с 85% до 86%, КПД турбины возрастает с 80% до 81%, а общий КПД двигателя увеличивается сразу на 1,7%. Это говорит о том, что при фиксированном расходе топлива, удельная мощность увеличится на ту же величину.

Авиационный ГТД «Климов ГТД-350» для вертолета Ми-2

Впервые разработка ГТД-350 началась еще в 1959 году в ОКБ-117 под начальством конструктора С.П. Изотова. Изначально задача состояла в разработке малого двигателя для вертолета МИ-2.

На этапе проектирования были применены экспериментальные установки, использован метод поузловой доводки. В процессе исследования созданы методики расчета малогабаритных лопаточных аппаратов, проводились конструктивные мероприятия по демпфированию высокооборотных роторов. Первые образцы рабочей модели двигателя появились в 1961 году. Воздушные испытания вертолета Ми-2 с ГТД-350 впервые были проведены 22 сентября 1961 года. По результатам испытаний, два вертолетных двигателя разнесли в стороны, переоснастив трансмиссию.

Государственную сертификацию двигатель прошел в 1963 году. Серийное производство открылось в польском городе Жешув в 1964 году под руководством советских специалистов и продолжалось до 1990 года.

Малый газотурбинный двигатель отечественного производства ГТД-350 имеет следующие ТТХ:

— вес: 139 кг;
— габариты: 1385 х 626 х 760 мм;
— номинальная мощность на валу свободной турбины: 400 л.с.(295 кВт);
— частота вращения свободной турбины: 24000;
— диапазон рабочих температур -60…+60 ºC;
— удельный расход топлива 0,5 кг/кВт час;
— топливо — керосин;
— мощность крейсерская: 265 л.с;
— мощность взлётная: 400 л.с.

В целях безопасности полетов на вертолет Ми-2 устанавливают 2 двигателя. Спаренная установка позволяет воздушному судну благополучно завершить полет в случае отказа одной из силовых установок.

ГТД — 350 на данный момент морально устарел, в современной малой авиации нужны более можные, надежные и дешевые газотурбинные двигатели. На современный момент новый и перспективным отечественным двигателем является МД-120, корпорации «Салют». Масса двигателя — 35кг, тяга двигателя 120кгс.

Общая схема

Конструктивная схема ГТД-350 несколько необычна за счет расположения камеры сгорания не сразу за компрессором, как в стандартных образцах, а за турбиной. При этом турбина приложена к компрессору. Такая необычная компоновка узлов сокращает длину силовых валов двигателя, следовательно, снижает вес агрегата и позволяет достичь высоких оборотов ротора и экономичности.

В процессе работы двигателя, воздух поступает через ВНА, проходит ступени осевого компрессора, центробежную ступень и достигает воздухосборной улитки. Оттуда, по двум трубам воздух подается в заднюю часть двигателя к камере сгорания, где меняет направление потока на противоположное и поступает на турбинные колеса. Основные узлы ГТД-350: компрессор, камера сгорания, турбина, газосборник и редуктор. Системы двигателя представлены: смазочной, регулировочной и противообледенительной.

Агрегат расчленен на самостоятельные узлы, что позволяет производить отдельные запчасти и обеспечивать их быстрый ремонт. Двигатель постоянно дорабатывается и на сегодняшний день его модификацией и производством занимается ОАО «Климов». Первоначальный ресурс ГТД-350 составлял всего 200 часов, но в процессе модификации был постепенно доведен до 1000 часов. На картинке представлена общая смеха механической связи всех узлов и агрегатов.

Малые ГТД: области применения

Микротурбины применяют в промышленности и быту в качестве автономных источников электроэнергии.
— Мощность микротурбин составляет 30-1000 кВт;
— объем не превышает 4 кубических метра.

Среди преимуществ малых ГТД можно выделить:
— широкий диапазон нагрузок;
— низкая вибрация и уровень шума;
— работа на различных видах топлива;
— небольшие габариты;
— низкий уровень эмиссии выхлопов.

Отрицательные моменты:
— сложность электронной схемы (в стандартном варианте силовая схема выполняется с двойным энергопреобразованием);
— силовая турбина с механизмом поддержания оборотов значительно повышает стоимость и усложняет производство всего агрегата.

На сегодняшний день турбогенераторы не получили такого широкого распространения в России и на постсоветском пространстве, как в странах США и Европы в виду высокой стоимости производства. Однако, по проведенным расчетам, одиночная газотурбинная автономная установка мощностью 100 кВт и КПД 30% может быть использована для энергоснабжения стандартных 80 квартир с газовыми плитами.

Коротенькое видео, использования турбовального двигателя для электрогенератора.

За счет установки абсорбционных холодильников, микротурбина может использоваться в качестве системы кондиционирования и для одновременного охлаждения значительного количества помещений.

Автомобильная промышленность

Малые ГТД продемонстрировали удовлетворительные результаты при проведении дорожных испытаний, однако стоимость автомобиля, за счет сложности элементов конструкции многократно возрастает. ГТД с мощностью 100-1200 л.с. имеют характеристики, подобные бензиновым двигателям, однако в ближайшее время не ожидается массовое производство таких авто. Для решения этих задач необходимо усовершенствовать и удешевить все составляющие части двигателя.

По иному дела обстоят в оборонной промышленности. Военные не обращают внимание на стоимость, для них важнее эксплуатационные характеристики. Военным нужна была мощная, компактная, безотказная силовая установка для танков. И в середине 60-ых годов 20 века к этой проблеме привлекли Сергея Изотова, создателя силовой установки для МИ-2 — ГТД-350. КБ Изотова начало разработку и в итоге создало ГТД-1000 для танка Т-80. Пожалуй это единственный положительный опыт использования ГТД для наземного транспорта. Недостатки использования двигателя на танке — это его прожорливость и привередливость к чистоте проходящего по рабочему тракту воздуху. Внизу представлено короткое видео работы танкового ГТД-1000.

Малая авиация

На сегодняшний день высокая стоимость и низкая надежность поршневых двигателей с мощностью 50-150 кВт не позволяют малой авиации России уверенно расправить крылья. Такие двигатели, как «Rotax» не сертифицированы на территории России, а двигатели «Lycoming», применяемые в сельскохозяйственной авиации имеют заведомо завышенную стоимость. Кроме того, они работают на бензине, который не производится в нашей стране, что дополнительно увеличивает стоимость эксплуатации.

Читать еще:  Двигатель 1gz расход топлива

Именно малая авиация, как ни одна другая отрасль нуждается в проектах малых ГТД. Развивая инфраструктуру производства малых турбин, можно с уверенностью говорить о возрождении сельскохозяйственной авиации. За рубежом производством малых ГТД занимается достаточное количество фирм. Сфера применения: частные самолеты и беспилотники. Среди моделей для легких самолетов можно выделить чешские двигателиTJ100A, TP100 и TP180, и американский TPR80.

В России со времен СССР малые и средние ГТД разрабатывались в основном для вертолетов и легких самолетов. Их ресурс составлял от 4 до 8 тыс. часов,

На сегодняшний день для нужд вертолета МИ-2 продолжают выпускаться малые ГТД завода «Климов» такие как: ГТД-350, РД-33,ТВЗ-117ВМА, ТВ-2-117А, ВК-2500ПС-03 и ТВ-7-117В.

Как посчитать расход топлива в час ?

Вопрос расхода дизеля является самым основным при приобретении спецтехники с двигателями внутреннего сгорания.

Любое устройство необходимо изначально поставить на баланс. Топливо при этом списывается по существующим нормативным документам. Однако, для спецтехники нет четких показателей расхода на 100 км. Производители наоборот устанавливают расход на единицу мощности двигателя.

Для того чтобы рассчитать расход топлива за один моточас работы необходимо использовать соответствующую формулу: (N*t*G*%)/p.

Для определения и точного расчета формулы необходимо четко знать все нужные составляющие:

  • N — это мощность двигателя, измеряющаяся в кВт;
  • t – время расхода топлива, то есть 1 час;
  • G – удельный расход топлива машины, г/кВт-ч;
  • % – процент загруженности машины во время работы;
  • p – плотность топлива. Для дизеля плотность постоянная и составляет 850 грамм на литр.

Мощность двигателя в основном определяется в лошадиных силах. Для того чтобы узнать мощность в кВт необходимо посмотреть в документы о технике от производителя.

Удельный расход топлива представляет собой показатель сведений о потреблении двигателя при определенных нагрузках. Такие данные не найти в документах о технике, их необходимо уточнять при покупке или у официальных дилеров.

Главной составляющей в формуле расчета является процент загруженности техники. Под ним понимают сведения о работе ДВС на максимальных оборотах. Процент указывается производителем для каждого типа транспорта. Например, для некоторых погрузчиков на базе МТЗ из всех 100 % рабочего времени, на максимальных оборотах двигатель проработает примерно 30%.

Удельный расход топлива

Вернемся к удельному расходу. Выражается он в отношении израсходованного горючего на 1 единицу мощности. Таким образом, чтобы рассчитать всё в теории, для максимального значения необходимо использовать формулу Q=N*q. Где Q является искомым показателем расхода горючего за 1 час работы, q – удельный расход топлива и N – мощность агрегата.

Например, имеются данные о мощности двигателя в кВт: N = 75, q = 265. За один час работы такой агрегат будет потреблять почти 20 кг соляры. При таком расчете стоит помнить о том, что агрегат не будет на протяжении всего времени работать непосредственно на максимальных оборотах. Также расчет ведется в литрах, поэтому чтобы не переводить все по таблицам и не ошибиться в следующих расчетах, необходимо использовать усовершенствованную формулу расчета Q = Nq/(1000*R*k1).

В данной формуле искомый результат Q определяет расход топлива в литрах за один час работы. k1 – является коэффициентом, указывающим на работу двигателя при максимальных оборотах коленчатого вала. R – постоянная величина, соответствующая плотности топлива. Остальные показатели остаются прежними.

Коэффициент максимальной работы двигателя равен 2,3. Рассчитывается по формуле 70% нормальной работы / на 30% работы на повышенных оборотах.

Стоит помнить о том, что на практике, расходы по теории всегда выше, так как двигатель лишь часть времени работает на максимальных оборотах.

Расчет расхода топлива мотоблока

Многие владельцы дачных участков и не только они зачастую задаются вопросом о том, каким же образом возможно произвести расчет потребления топлива у мотоблока при определенной работе.

Рассчитать потребление бензина у мотоблока можно только при непосредственной его работе. Для этого необходимо залить бачок топлива мотоблока по максимальному уровню бензином. Затем нужно производить вспашку земли. По завершении вспашки определенного участка необходимо замерить площадь вспаханного участка. После этого посчитать сколько горючего было потрачено на вспашку данного участка. Аналогично для всех других типов работ (уборка картофеля, мульчирование, покос и т.д.)

Рассчитывается это дело с использованием электронных весов. Берется простая тара с топливом и измеряется ее удельный вес. Затем на весах устанавливается тарирование. После этого нужно в бак долить бензина до прежнего уровня и тару с топливом обязательно вновь установить на весы. Электронные весы покажут разницу между канистрами топлива. Данная разница и будет итоговым показателем расхода горючего на площадь земли, с которой была произведена работа. В отличие от первого случая со спецтехникой, здесь потребление горючего ведется в килограммах.

При этом стоит помнить о том, что скорость работы мотокультиватора примерно должна составлять от 0,5 до 1 км за один час работы. На основании этого, производится общий расчет расхода топлива по часам. По установленным нормативам, от производителей мотоблоков имеются данные о среднем расходе топлива за один час работы. Для маломощных мотоблоков мощностью 3,5 л.с. расход колеблется в пределах от 0,9 до 1,5 кг за один час работы.

Мотоблоки средней мощности потребляют в среднем от 0.9 до 1 кг/час. Самые мощные устройства расходуют на один час от 1,1 до 1.6 кг.

Нормы расхода топлива за один моточас для дизельных двигателей

Нормы потребления дизельного топлива для спецтехники составляют в среднем при простом транспортном режиме 5,5 л на 1 час работы. При экскавации грунтов по первой или второй степени расход снижается до 4,2 литра за 1 час работы.

Если производить дополнительно погрузку или разгрузку данных грунтов, то для всех экскаваторов на базе МТЗ расход будет равен 4,6 литрам за 1 час работы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector