0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Датчик температуры воздуха инжекторного двигателя

Что такое инжекторный двигатель, отличия от карбюраторного

Инжектор – это самый популярный электронно-механический узел в автомобилестроении. Устройство и принцип работы инжектора одновременно просты и сложны. Конечно, рядовому автовладельцу необязательно вникать в детали конструкции инжекторных систем и их программного обеспечения, но основные моменты знать не помешает.

Ниже мы расскажем о том, что такое инжектор, каков принцип его работы, и какие типы инжекторных форсунок чаще всего применяются на современных двигателях.

Рекомендуем посмотреть видео внизу страницы, на котором хорошо показано, как работает инжектор.

Такие вещи своими силами не ремонтируются, однако разбираться в устройстве инжектора стоит, хотя бы для того, чтобы не попасть впросак при оплате счета в автосервисе.

Главные отличия карбюратора от электронного впрыска

Электронный инжекторный двигатель кардинально различается от карбюраторного. В карбюраторном моторе смесеобразование внешнее (готовится в карбюраторе), а инжекторные форсунки впрыскивают топливо, либо в коллектор перед впускным клапаном, либо в цилиндр непосредственно.

Карбюратор – на 80% механическое устройство, если не считать экономайзера принудительного холостого хода (когда двигатель отключается при отпущенной педали газа на ходу), и электронного подсоса (для запуска и прогрева двигателя, смесь подается обогащенной).

Инжектор является дозатором, который способен в разное время и в течение разного времени впрыскивать топливо.

Если взять два одинаковых двигателя, на одном из которых топливная система будет инжекторная, а на втором карбюраторная, у второго мощность будет выше на 15-20%.

Режимы работы

Инжекторный двигатель способен работать в 2 режимах.

  1. Холодного пуска. Во время запуска топливо оседает на стенках впускных труб и значительно меньше испаряется. Вследствие этого, топливная смесь незначительно утрачивает свои способности. Для устранения негативного эффекта необходима дополнительная подача топлива при запуске, до достижения топливом необходимой температуры, благодаря чему достигаются нужные обороты холостого хода.
  2. Частичной или полной нагрузки. Максимальной мощности двигатель достигает в момент полного открытия дроссельной заслонки. При повышении оборотов (при быстром открытии заслонки) способность топлива к испарению снижается. Во избежание этого и достижения нужных оборотов происходит дополнительная подача топлива.

Разновидности инжектора

На сегодняшний день используется электронный распределенный непосредственный впрыск. Переходным этапом инжектирования был моновпрыск (центральный) с одной форсункой. Моновпрыск использовался очень мало, так как недостатков было больше, чем достоинств. Скоро его заменил распределенный впрыск.

Распределенный электронный впрыск топлива предполагает наличие форсунок, по одной на каждый цилиндр. Воздух в цилиндры попадает через впускной коллектор и дозируется дроссельной заслонкой.

Непосредственный впрыск напоминает дизельную топливную систему, так как форсунки вмонтированы прямо в цилиндры, от чего и происходит название.

Multi-Point fuel injection

Многоточечный впрыск стал значительным шагом вперед, по сравнению с одноточечным впрыском, поскольку позволил автомобилям вкладываться в нормы токсичности ЕВРО-3.

Одноточечный впрыск, ввиду неизлечимых болезней, обусловленных особенностями конструкции, мог выполнить только требования ЕВРО-2.

История эволюции систем впрыска автомобилей крайне интересна, но не она является главной темой этой статьи. Именно поэтому уделять внимание тонкостям работы таких систем управления двигателем с распределенным впрыском, как D-Jetronic, KE-Jetronic, K-Jetronic и L-Jetronic мы не будем. Устанавливать на авто перечисленные вариации перестали еще в начале 90-х, а поэтому встретить автомобиль с «живой» системой распределительного впрыска такого типа крайне сложно.

Главное отличие полноценного инжектора от моновпрыска – наличие 4-х форсунок, расположенных вблизи впускных клапанов. Компоненты инжекторного двигателя:

  1. – топливный насос, который в подавляющем большинстве случаев расположен в баке;
  2. – фильтр грубой очистки топлива;
  3. – регулятор давления топлива, от которого к баку идет магистраль обратки для слива лишнего топлива. В некоторых авто обратная магистраль отсутствует как таковая, а регулятор топлива находится рядом с насосом в баке;
  4. – форсунка. На рисунке сверху показано, как все форсунки соединены топливной рампой;
  5. – расходомер воздуха;
  6. – датчик температуры охлаждающей жидкости;
  7. – регулятор холостого хода (РХХ);
  8. – потенциометр, фиксирующий фактическое положение дроссельной заслонки (ДПДЗ);
  9. – датчик частоты вращения коленчатого вала (ДПКВ);
  10. – кислородный датчик;
  11. – ЭБУ;
  12. – распределитель зажигания.

Расчет массы воздуха

Помимо форсунок, особенностью системы является способ расчета массы воздуха. Существует всего 5 способов измерения количества воздуха, проходящего через дроссельную заслонку:

    • обороты/нагрузка. Применяется на одноточечной системе впрыска и в качестве резервного варианта для распределительного впрыска, если расходомер воздуха выходит из строя;
  1. расходомер флюгерного типа. Применялся на системах управления двигателем Jetronic;
  2. ДМРВ – датчик массового расхода воздуха. Принцип работы основывает на поддержании электрическим током постоянной температуры нагревательного элемента. Проходящий через ДМРВ воздух охлаждает элемент, что требует увеличения тока. При помощи преобразователя величина тока нагрева элемента преобразовывается в выходное напряжение. Между напряжением и массой поступившего воздуха существует зависимость, которая и позволяет ЭБУ рассчитать количество необходимого для подачи топлива;

MAP-сенсор – датчик давления во впускном коллекторе. ЭБУ, имея информацию о величине абсолютного давления во впускном коллекторе и дополнительно используя показания датчика температуры воздуха, рассчитывает цикловую подачу топлива;

  • датчик объема воздуха. Измеряется именно объем, который впоследствии пересчитывается в массу; на данный момент такой способ расчета воздуха не используется.
  • Характеристика

    Преимущества распределительного впрыска на клапаны:

    • равномерное наполнение цилиндров;
    • использование ДМРВ или MAP-сенсора позволяет точно рассчитывать расход воздуха, что дает больше возможностей для регулировки ТПВС на всех режимах работы мотора.

    Именно поэтому автомобили с полноценным инжектором всегда мощнее и экономичнее авто с одноточечным впрыском.

    Устройство инжекторного двигателя

    Простейший инжектор состоит из следующих компонентов:

    • ЭБУ (электронный блок управления),
    • электрический бензонасос,
    • топливная рампа и датчик давления топлива,
    • электронные форсунки,
    • впускной коллектор с дроссельной заслонкой,
    • датчики: температуры ОЖ, детонации, расхода воздуха, положения дросселя, положения коленчатого вала, наличия кислорода в выпускном коллекторе.

    Как вышеуказанные компоненты взаимодействуют между собой, на примере запуска двигателя: при повороте ключа в замке зажигания включается бортовая сеть, электробензонасос начинает подкачку топлива.

    После следующего поворота срабатывает датчик положения коленвала, чтобы поджечь своевременно смесь. Топливо через рампу попадает в форсунки. Отношение топлива к воздуху, угол зажигания и момент подачи топлива определяется блоком управления, который основывается на данных датчиков температуры ОЖ, ДМРВ и ДПДЗ.

    Во время работы инжекторного двигателя все датчики фиксируют изменения в двигателе, о чем постоянно сообщают блоку управления.

    В программе блока управления «зашита» целая сетка, называемая топливной картой. Топливная карта позволяет корректировать смесь по следующим параметрам:

    1. момент открытия форсунки;
    2. время, при котором игла форсунки открыта;
    3. количество топлива;
    4. угол зажигания.

    Под каждый режим работы (запуск, холостой ход, слабые нагрузки, средний режим, и режим максимальных оборотов) запрограммированы свои параметры, указанные выше. Это одно из главных отличий от карбюратора, так как имеется возможность широкой настройки топливной системы программируемым способом.

    Форсунки

    Через них производится выплеск порций топливной массы в коллекторное и цилиндровое отделения, причем открытие/закрытие клапана в течение секунды повторяется многократно.

    По способу аппаратного управления и используемого количества деталей подразделяют на категории:

    1. Дроссельный моновпрыск (TBI)— подача сырья для детонации осуществляется одной деталью. Подаваемая струя не синхронизируется со срабатыванием клапана впуска. Управляющие сигналы на форсуночное сообщение производятся из внутриколлекторного чипа. Принцип распространен на старых моторах 90-х годов выпуска.
    2. Впрыск с распределением (MFI) — используется во всех современных автомобилях с бортовым компьютером. Передача горючего происходит комплектно: одна форсунка — один цилиндр. Форсунковый блок крепится поверх коллектора, а весь процесс синхронизируется с ЦБУ, согласно с тем, как работает система зажигания инжекторного двигателя. При сравнении сводных характеристик предшественников — КПД увеличен до 10%.

    MFI-элементы по подаче струи бывают: электрогидравлические, электромагнитные, пьезоэлектрические. Они применяются при распределении впрыска:

    • Одновременном (синхронное наполнение всех цилиндров);
    • Попарно-параллельном — одна пара поршней принимает нижнее положение, другая — верхнее. Залив топлива и вывод продуктов сгорания производятся так же;
    • Двухстадийном (фазовом)— передача горючего в камеры сгорания производится в две операции.
    • Непосредственном — применяется в конструкциях моторов, подразумевающих сжигание сверхобедненного кислородом состава.

    Важный факт: технология TBI сегодня практически не распространена, так как она менее экономичная и ненадежная!

    Достоинства и недостатки двигателя с электронным впрыском

    Из плюсов можно выделить:

    • широкие возможности настройки двигателя под свои потребности (максимальная мощность, или максимальная экономичность),
    • весь процесс работы двигателя управляется электроникой,
    • компьютерная диагностика,
    • экологичность.
    • стоимость ремонта и обслуживания,
    • уязвимость электроники,
    • зависимость от стабильного напряжения бортовой сети.

    Основные неисправности

    Из-за того, что инжектор – это цепочка сложных электронных систем, некоторые из деталей имеют свойство изнашиваться, а именно:

    Электронные датчики, такие как ДМРВ, лямбда-зонд (датчик выявления кислорода в выхлопной трубе), датчик температуры охлаждающей жидкости — часто выходят из строя в силу своей работ в агрессивной среде

    Читать еще:  Блокировка запуска двигателя из за высокой температуры

    Топливные форсунки, особенно непосредственного впрыска, уязвимы к загрязнению, вследствие чего мотор начинает троить. Но чистка форсунок требуется не так часто, как чистка карбюратора

    Выход из строя форсунки из-за западания иглы, что приводит к гидроудару (несжимаемая жидкость в виде топлива не сгорает, из-за чего поршень давит на шатун, когда тот стремится вверх, результат — пробитие блока цилиндров).

    Рекомендации по эксплуатации инжекторного двигателя

    Инжекторная система питания долговечна, но требуется соблюдать следующие меры:

    • Раз в год производить чистку форсунок (добавкой моющей присадки в топливо),
    • Каждые 10 000 км менять топливный фильтр,
    • Сократить на 30-50% диапазон замены воздушного фильтра,
    • Обрабатывать средством для контактов провода датчиков двигателя,
    • Обеспечить герметизацию ЭБУ.

    А также раз в 20 000 км надо чистить дроссельную заслонку, регулятор холостого хода и впускной коллектор.

    Виды системы

    Свое название инжекторная система впрыска топлива получила от устройства, которое отвечает за распыление бензина – инжектора (от англ. Injection – впрыск, injector – форсунка). Система питания такого типа устанавливалась на самолеты еще в 20-х годах прошлого столетия. Что примечательно, уже тогда это был непосредственный впрыск топлива в цилиндры двигателя. Основное внимание уделим развитию вариациям системы Motronic, в которой за подачу топлива и регулировку угла зажигания отвечает блок управления двигателем (далее ЭБУ или ECU).

    Принцип работы инжектора на автомобилях

    Принцип работы инжектора заключается в том, чтобы подать своевременно в камеры сгорания топливовоздушную смесь. Это необходимо для нормального функционирования двигателя. Системой управления корректируется момент подачи напряжения на электроды свечей, чтобы воспламенить эту смесь. Причем эти параметры контролируются системой датчиков, установленных на двигателе.

    Электронный блок управления

    Для работы любого инжекторного мотора необходим блок управления микроконтроллерного типа. К нему подключаются:

    1. Исполнительные механизмы при помощи электромагнитных реле.
    2. Датчики через согласующие устройства.

    Питание осуществляется от бортовой сети. Принцип работы инжектора ВАЗ такой же, как и на любом другом автомобиле. Электронный блок состоит из:

    1. Постоянной памяти – она необходима для хранения информации, записи алгоритмов работы.
    2. Оперативной памяти – в нее записывается текущая информация, все данные при выключении зажигания стираются из нее.
    3. Микроконтроллера – он позволяет обрабатывать поступающие сигналы и регулировать работу всех исполнительных механизмов.

    В памяти устройства записан алгоритм работы, зависит он от поступающих сигналов с датчиков. Называется этот алгоритм «прошивкой» или «топливной картой».

    Система датчиков

    На инжекторных двигателях устанавливается множество датчиков, они позволяют считывать максимальное количество информации о работе. Следующие датчики можно встретить на отечественных и импортных автомобилях:

    1. Расхода воздуха.
    2. Температуры антифриза.
    3. Положения коленчатого вала.
    4. Положения распределительного вала.
    5. Давления во впускном коллекторе.
    6. Скорости автомобиля.
    7. Уровня бензина в баке.
    8. Положения дроссельной заслонки.
    9. Концентрации кислорода в выхлопных газах.

    Все эти датчики управляют исполнительными механизмами, которые участвуют в образовании смеси и корректировке угла опережения зажигания.

    Датчик массового расхода воздуха

    Это устройство, в основе которого находится нить из драгметалла – платины. Стоимость таких датчиков очень высокая, поэтому лучше следить за его состоянием и не допускать поломок. Обязательно нужно знать, какой у датчика принцип работы. На ВАЗ всех моделей с инжекторными моторами такие приборы устанавливаются.

    Работает он так:

    1. Нить из платины прогревается до 600 градусов.
    2. Через фильтр в трубку с нитью поступает поток воздуха под действием разрежения во впускном коллекторе.
    3. В блоке управления имеются данные о температуре нити и размерах трубки датчика.
    4. Поток воздуха охлаждает нить на несколько градусов.
    5. По разнице температур ЭБУ высчитывает количество воздуха, которое проходит через трубку за определенный момент времени.

    Эти данные необходимы для того, чтобы составить топливную смесь в правильной пропорции.

    Датчик температуры антифриза

    Этот прибор позволяет электронному блоку управления понять, что двигатель прогрет до рабочей температуры. При запуске холодного двигателя в топливной смеси нужно уменьшать количество воздуха, для этого используется регулятор холостого хода. При помощи этого мотор работает максимально эффективно, быстро выводится в устоявшийся режим. Принцип работы ГБО 2 поколения на инжекторе такой же, как и на карбюраторе. Вот только при помощи сигнала с датчика температуры можно реализовать запуск двигателя на бензине и после прогрева автоматический переход на газовое топливо. Располагается датчик температуры в блоке двигателя или в корпусе термостата.

    Датчики положения валов

    Устанавливаются эти приборы на коленчатом и распределительном валах. Стоит отметить, что на распредвалах не всегда используются датчики – часто обходятся без них. Но их использование позволяет добиться максимальной мощности от двигателя, улучшить качество смесеобразования, правильно скорректировать момент подачи искры на электроды свечей.

    Работают приборы на эффекте Холла – при прохождении металлического предмета возле активной части датчика происходит генерация импульса. Он подается на электронный блок управления и сравнивается с остальными параметрами работы мотора. Намного лучше сможет работать двигатель в режиме холостого хода. Принцип работы инжекторной системы основывается на сравнении сигналов, поступающих от датчиков.

    Датчик давления во впускном коллекторе

    Его еще называют МАР-сенсор. Он может использоваться как совместно с датчиком расхода воздуха, так и полностью замещать его. Поэтому, если на двигателе имеется МАР-сенсор, поломка ДМРВ почти не страшна. Его функции перейдут к этому прибору. В основе элемента находится чувствительная пластина, которая под действием давления меняет сопротивление. Соединение с электронным блоком управления производится при помощи согласующего устройства.

    Датчик положения дроссельной заслонки

    Устанавливается на корпусе дросселя, датчик может быть аналоговым или бесконтактным. Первые работают по принципу переменного резистора – при вращении оси заслонки происходит перемещение бегунка на обмотке. При этом меняется сопротивление элемента, уменьшается или увеличивается уровень сигнала, поступающего на электронный блок управления. Существуют приборы бесконтактного типа, они работают так же, как энкодеры. Отличаются высокой надежностью, но с аналоговыми приборами не взаимозаменяемы.

    Прибор позволяет оценить положение заслонки, чтобы выдать информацию об этом блоку управления. Последний, исходя из этого значения, подаст в топливную рампу именно столько бензина, сколько необходимо для нормального смесеобразования.

    Лямбда-зонд

    Это прибор, который позволяет оценить содержание кислорода в выхлопной системе. Изготавливается датчик из керамики, обычно из диоксида циркония. Особенность этого материала в том, что он становится проницаемым для ионов кислорода при условии, что произойдет нагрев до температуры 300 градусов и выше. Замер уровня кислорода происходит как внутри выхлопной системы, так и снаружи.

    Ведь блок управления не измеряет точное количество кислорода, он только оценивает разницу в проводимости керамического элемента внутри и снаружи системы. Именно такой используется принцип работы. Инжекторы на автомобилях функционируют нормально только лишь при условии, что система работает стабильно. Датчик снаружи вырабатывает определенный сигнал, который считается электронным блоком как эталон. Именно с ним происходит сравнение сигнала, поступающего от внутреннего лямбда-зонда.

    Датчик уровня бензина

    Применяются механизмы поплавкового типа, очень похожи по принципу действия на резистивные датчики положения заслонки дросселя. При изменении уровня топлива в баке поплавок будет подниматься или опускаться. При этом изменяется сопротивление датчика в цепи. Используется прибор для того, чтобы оповещать водителя об уровне бензина. Может применяться и для автоматического перехода с газа на бензин и обратно, если установлено ГБО.

    Датчик скорости

    Предназначен для контроля скорости автомобиля. Может устанавливаться как в тросиковом спидометре, так и в электронном. В первом случае прибор позволяет только выдавать сигнал для работы системы впрыска. Во втором случае он включен в цепь электронного спидометра. При наличии электроусилителя рулевого управления, иммобилайзера или иных охранных систем, этот датчик подключается к ним. Дело в том, что усилитель руля работает только при движении с малой скоростью. Как только скорость увеличивается, необходимость в усилителе отпадает. Многие охранные системы соединяются с датчиком скорости, чтобы обеспечить максимальную безопасность.

    Исполнительные механизмы

    Для нормального функционирования инжекторной системы используются исполнительные механизмы. Принцип работы механического инжектора «Ауди» немного отличается от электронного. Суть процессов примерно аналогичная.

    В системе используются такие исполнительные устройства:

    1. Электрический топливный насос.
    2. Регулятор холостого хода.
    3. Топливные форсунки.
    4. Дроссельный узел.
    5. Модуль зажигания.

    При помощи всех этих устройств производится управление двигателем внутреннего сгорания. Именно с помощью них можно поддержать на нормальном уровне холостой ход. Принцип работы инжектора в этом режиме такой же, как и в любом другом.

    Типы впрыска топлива

    Центральный впрыск во многом похож на карбюраторную систему, только вместо сложной совокупности каналов и жиклеров используется одна электромагнитная форсунка. Она устанавливается на впускной коллектор, и через нее подается топливная смесь в камеры сгорания. Недостаток один – при выходе из строя форсунки автомобиль не сможет продолжать движение.

    Читать еще:  Что такое спг двигатель

    Намного лучше в работе окажутся системы с парным или фазированным впрыском. Особенно эффективны последние – смесь поступает в камеры сгорания каждого цилиндра, в зависимости от того, в каком конкретно цикле на данный момент находится мотор. Устанавливается по одной форсунке на цилиндр и столько же катушек зажигания. Но может применяться и модуль.

    Питание двигателя газом

    Инжекторные двигатели можно без особых проблем перевести на питание газом (пропаном или метаном). Вот только если решите установить ГБО второго поколения, необходимо использовать меры защиты. Проблема в том, что при работе газобаллонного оборудования могут происходить хлопки. Для карбюратора это не очень страшно, а вот в инжекторных моторах может выйти из строя датчик расхода воздуха. Принцип работы ГБО 2 поколения на инжекторе заключается в том, чтобы обезопасить от хлопков систему впрыска. Для этого производится установка специальных устройств.

    Но намного лучше использовать ГБО 4 поколения – такие устройства предназначены для установки на инжекторные моторы. В комплекте имеется несколько датчиков, которые дополняют стандартную конструкцию, а также электронный блок управления. Он соединяется со штатным и берет данные о работе двигателя именно от него. Пятое поколение газобаллонного оборудования используют крайне редко – стоимость его очень высокая.

    При переходе с бензина на газ необходимо выполнить такие условия:

    1. В системе охлаждения жидкость должна быть теплой – свыше 50 градусов. Только в этом случае газ сможет нормально испаряться в редукторе.
    2. Обязательно необходимо отключить бензиновые форсунки.
    3. Сразу же происходит включение газовых форсунок.
    4. Время их открывания должно немного отличаться от аналогичного параметра бензиновых. Коэффициент вычисляется при калибровке.
    5. Происходит корректировка угла опережения зажигания, так как октановое число газа более 100.

    Инжектор «Вентури» и автомобильный

    Отличий у них множество, но есть и схожие черты. Принцип работы инжектора «Вентури» заключается в том, чтобы по трубе определенного диаметра пропустить жидкость или газ. На этой трубе имеется форсунка определенного диаметра, через нее вещество выходит под действием давления. При помощи такого инжектора получается реализовать системы орошения полей, подачу жидкости в емкости на производстве. В большинстве случаев такими инжекторами производится замер количества жидкости, проходящей за единицу времени.

    I4CAR

    Твой Автомобильный Портал

    Датчики инжекторного двигателя

    Опубликовано 04.03.2015 от Sa1amandeR в Автосоветы // 0 Комментарии

    В 80-ых годах производители автомобилей начали активно внедрять, мало кому известную среди простых автолюбителей на то время, технологию принудительной подачи топлива. Такая система впрыска горючего была разработана как альтернатива карбюраторам. Но в связи со сложностью конструкции, довольно долго не применялась. Главным отличием данных систем от карбюраторных является принцип подачи топлива. В двигателях с принудительной системой подачи, как можно определить исходя из названия, горючее принудительно впрыскивается в цилиндр или впускной коллектор. Впрыск осуществляется специальными распылителями – форсунками. В наше время двигателя с такой системой принято называть инжекторными.

    Уже сейчас можно говорить о том, что инжекторные двигателя практически вытеснили карбюраторные. Это не удивительно, так как преимуществ у них больше чем недостатков.

    — более рациональный и экономичный расход топлива за счет улучшения его дозировки;

    — мощность двигателя увеличивается приблизительно на 7-10%;

    — улучшается «динамика» автомобиля;

    — легче запускается двигатель в любых погодных условиях;

    — срок эксплуатации больше;

    Приведенные выше преимущества появились благодаря новому принципу работы системы подачи горючего. Управление системой осуществляться специальными микроконтроллерами – электронное управление. На основе полученных от датчиков данных, микроконтроллером определяется момент, когда должны открыться форсунки, а также и время, на протяжении которого они должны быть открыты.

    Если вспомнить первые модели таких систем, то все выше описанные функции микроконтроллера ложились на «плечи» механических устройств. В наше время главными деталями используемыми в инжекторных двигателях для работы системы снабжения топливом являются: ЭБУ (электронный блок управления), распылители (форсунки) и набор специальных электронных датчиков. Все данные детали, можно сказать, работают как один сплошной механизм.

    В данной статье мы рассмотрим электронные датчики, которые снабжают необходимой информацией ЭБУ.

    Датчики инжекторного двигателя

    Как работает инжектор

    Датчик массового расхода воздуха (волюметр) – необходим для получения информации о количестве всасываемого воздуха двигателем (кг/ч.). Надежность – хорошая. Главной проблемой для такого датчика является влага, которая попадет в него с воздухом. Основная «поломка» у данного элемента – отправка на ЭБУ завышенных значений. При низких оборотах, такая погрешность достигает 10-20%, что несомненно сказывается на стабильной работе мотора во время холостого хода. Также могут появиться некоторые проблемы с запуском. Когда двигатель работает на высоких оборотах, такие погрешности приводят к нерациональному использованию топлива (больше расход).

    Датчик положения дроссельной заслонки – необходим для получения информации о текущем состоянии педали «газ». Работа элемента может быть нарушена благодаря мойщикам двигателей или в результате некачественного изготовления на заводе. Соответственно сложно определить даже приблизительные сроки службы. Основными показателями нарушений в работе датчика являются завышенные обороты во время холостого хода, провалы и рывки при незначительных нагрузках.

    Датчик температуры охлаждающей жидкости – по функциональному назначению похож на карбюраторный «подсос». При низкой температуре двигателя, необходимо больше топлива. Также отвечает за включение вентилятора и выключение охлаждающего вентилятора. Надежность – высокая. Возможные неисправности – нарушается изоляция провода рядом с датчиком, повреждаются контакты в самом датчике. Результат поломки – вентилятор может включаться, когда двигатель холодный, появляются проблемы с запуском двигателя, когда он нагрет, повышается расход горючего.

    Датчик детонации – работает по принципу пьезо зажигалки. Напряжение увеличивается прямо пропорционально возрастающей силе удара. Служит для отслеживания детонационных стуков мотора. Повреждение датчика влияет на оптимальность работы двигателя и расход горючего.

    Датчик кислорода – элемент отвечающий за информацию по остаткам кислорода в отработавших газах. В случае, если кислород в них отсутствует, топливная смесь является богатой, если же кислород присутствует – бедной. Данные служат для корректировки подачи горючего. Использовать этиловый бензин запрещено. Повреждение датчика влияет на расход топлива и выброс вредных веществ.

    Давайте подробнее рассмотрим то, как работает такой датчик.

    Наиболее известным типом можно назвать циркониевый кислородный датчик. Это своего рода переключатель, который при достижении в выхлопных газах показателя кислорода 0.5%, резко меняет состояние. Такой показатель равнозначен с идеальным стехиометрическим соотношением воздуха и топлива (14.7:1). Интерфейс таких датчиков сделан следующим образом: горячий датчик (300 С и больше) при малом содержании кислорода (меньше 0,5%), выдавая слабый ток, будет давать напряжение на выходе 0,45-0,8 V, а при более высоком показателе (больше 0,5%) – 0,2-0,45 V. Точное значение напряжения не важно. Когда смесь является бедной, подача топлива увеличивается, если во время следующего периода измерения, оказываться, что смесь уже довольно богатая – количество уменьшается. Подача горючего регулируется по фактическому сгоранию. Делает возможным адаптацию системы под разные условия работы. Во время холостого хода, напряжение на датчике колеблется в пределах 1-2 Гц, а при 3000 об/мин. – 10-15 Гц. Из-за того, что нормальная работа датчика возможна только когда он прогрет, ЭБУ системы TCCS будет «ловить» информацию от него, когда будет достаточно прогрет двигатель. В последнее время в них монтируют специальный подогреватель.

    Датчик скорости – снабжает ЭБУ информацией о скорости машины. Имеет среднюю надежность. Поломка такого датчика в основном не оказывает серьезного влияния на работу двигателя или ездовые характеристики авто.

    Датчики положения коленчатого вала – можно назвать основным датчиком. На основе его показаний рассчитывается необходимое время подачи горючего и искры, а также определяется нужный цилиндр. С точки зрения конструкции, является магнитом и катушкой с тонким проводом. Имеет достаточно большой эксплуатационный ресурс. Зубчатый шкив коленчатого вала и данный датчик работаю вместе. Если данный элемент выходит из строя, двигатель останавливается. В наилучшем варианте будет ограничение по количеству оборотов (3500-5000 об/мин).

    Датчик фаз – установка производится на 16-ти клапанные двигателя. Полученные данные используются, чтобы организовать подачу топлива в целевой цилиндр. Когда датчик ломается, система переходит в попарно-параллельный режим, из-за чего топливная смесь резко обогащается.

    Устройство и принцип работы инжектора

    Инжекторный двигатель – агрегат, укомплектованный системой электронного впрыска топлива, управляемый электронным блоком управления. Массовый переход на инжектор к концу 80-х годов вполне оправдан: впрысковые моторы более экологичны, экономичны, по ходу работы состав и количество смеси корректируется согласно нагрузкам двигателя ЭБУ.

    Главные отличия карбюратора от электронного впрыска

    Электронный инжекторный двигатель кардинально различается от карбюраторного. В карбюраторном моторе смесеобразование внешнее (готовится в карбюраторе), а инжекторные форсунки впрыскивают топливо, либо в коллектор перед впускным клапаном, либо в цилиндр непосредственно.

    Читать еще:  Датчик давления масла в рампе двигателя 4jx1

    Карбюратор – на 80% механическое устройство, если не считать экономайзера принудительного холостого хода (когда двигатель отключается при отпущенной педали газа на ходу), и электронного подсоса (для запуска и прогрева двигателя, смесь подается обогащенной).

    Инжектор является дозатором, который способен в разное время и в течение разного времени впрыскивать топливо.

    Если взять два одинаковых двигателя, на одном из которых топливная система будет инжекторная, а на втором карбюраторная, у второго мощность будет выше на 15-20%.



    Разновидности инжекторных моторов

    В зависимости от числа форсунок, входящих в конструкцию, инжекторы разделяются на следующие категории:

    1. Моновпрыск (одноточечный).
    2. Распределенный.
    3. Прямой.

    В первом варианте имеется единственная форсунка, поставляющая горючее во все цилиндры по очереди. Данная конструкция обладает множественными недочетами, поэтому не нашла широкого применения.

    Распределенный впрыск состоит из коллектора и набора форсунок, предназначенных для клапанов впуска цилиндров.

    При прямом впрыске топливо поступает из форсунки не в коллектор, а сразу в камеру сгорания.

    Разновидности инжектора

    На сегодняшний день используется электронный распределенный непосредственный впрыск. Переходным этапом инжектирования был моновпрыск (центральный) с одной форсункой. Моновпрыск использовался очень мало, так как недостатков было больше, чем достоинств. Скоро его заменил распределенный впрыск.

    Распределенный электронный впрыск топлива предполагает наличие форсунок, по одной на каждый цилиндр. Воздух в цилиндры попадает через впускной коллектор и дозируется дроссельной заслонкой.

    Непосредственный впрыск напоминает дизельную топливную систему, так как форсунки вмонтированы прямо в цилиндры, от чего и происходит название.

    Виды и типы инжекторов

    Инжекторы бывают двух видов:

    1. С одноточечным впрыском. Такая система является устаревшей и на автомобилях уже не используется. Суть ее в том, что форсунка только одна, установленная во впускном коллекторе. Такая конструкция не обеспечивала равномерного распределения топлива по цилиндрам, поэтому ее работа была сходной с карбюраторной системой.
    2. Многоточечный впрыск. На современных авто используется именно этот тип. Здесь для каждого цилиндра предусмотрена своя форсунка, поэтому такая система отличается высокой точностью дозировки. Устанавливаться форсунки могут как во впускной коллектор, так и в сам цилиндр (инжекторная система непосредственного впрыска).

    На многоточечной инжекторной системе подачи топлива может использовать несколько типов впрыска:

    1. Одновременный. В этом типе импульс от ЭБУ поступает сразу на все форсунки, и они открываются вместе. Сейчас такой впрыск не используется.
    2. Парный, он же попарно-параллельный. В этом типе форсунки работают парами. Интересно, что только одна из них подает топливо непосредственно в такте впуска, у второй же такт не совпадает. Но поскольку двигатель – 4-тактный, с клапанной системой газораспределения, то несовпадение впрыска по такту на работоспособность мотора влияния не оказывает.
    3. Фазированный. В этом типе ЭБУ подает сигналы на открытие для каждой форсунки отдельно, поэтому впрыск происходит с совпадением по такту.

    Примечательно, что современная инжекторная система подачи топлива может использовать несколько типов впрыска. Так, в обычном режиме используется фазированный впрыск, но в случае перехода на аварийное функционирование (к примеру, один из датчиков отказал), инжекторный двигатель переходит на парный впрыск.

    Устройство инжекторного двигателя

    Простейший инжектор состоит из следующих компонентов:

    • ЭБУ (электронный блок управления),
    • электрический бензонасос,
    • топливная рампа и датчик давления топлива,
    • электронные форсунки,
    • впускной коллектор с дроссельной заслонкой,
    • датчики: температуры ОЖ, детонации, расхода воздуха, положения дросселя, положения коленчатого вала, наличия кислорода в выпускном коллекторе.

    Как вышеуказанные компоненты взаимодействуют между собой, на примере запуска двигателя: при повороте ключа в замке зажигания включается бортовая сеть, электробензонасос начинает подкачку топлива.

    После следующего поворота срабатывает датчик положения коленвала, чтобы поджечь своевременно смесь. Топливо через рампу попадает в форсунки. Отношение топлива к воздуху, угол зажигания и момент подачи топлива определяется блоком управления, который основывается на данных датчиков температуры ОЖ, ДМРВ и ДПДЗ.

    Во время работы инжекторного двигателя все датчики фиксируют изменения в двигателе, о чем постоянно сообщают блоку управления.

    В программе блока управления «зашита» целая сетка, называемая топливной картой. Топливная карта позволяет корректировать смесь по следующим параметрам:

    1. момент открытия форсунки;
    2. время, при котором игла форсунки открыта;
    3. количество топлива;
    4. угол зажигания.

    Под каждый режим работы (запуск, холостой ход, слабые нагрузки, средний режим, и режим максимальных оборотов) запрограммированы свои параметры, указанные выше. Это одно из главных отличий от карбюратора, так как имеется возможность широкой настройки топливной системы программируемым способом.

    Single Point fuel Injection

    Одноточечный тип впрыска, более известный как моновпрыск, является переходной технологией, которая позволила многим автопроизводителям задешево перейти от карбюраторной системы питания к инжектору.

    Иными словами, вместо карбюратора над впускным коллектором начал устанавливаться агрегат центрального впрыска топлива. Система имела ряд преимуществ, поскольку ЭБУ позволял более точно дозировать бензин.


    Принцип работы инжектора построен на следующих элементах:

    1. – топливный бак с расположенным в нем топливным насосом;
    2. – фильтрующий элемент для очистки топлива;
    3. – центральный агрегат впрыска. 3а – датчик положения дроссельной заслонки (ДПДЗ); 3б – регулятор, отвечающий за давление топлива; 3с – форсунка инжектора; 3д – датчик температуры воздуха, поступающего во впускной коллектор; 3е – регулятор положения дроссельной заслонки (в простейших вариантах конструкции привод заслонки был связан с педалью акселератора тросовым приводом);
    4. – датчик температуры охлаждающей жидкости (ДТОЖ);
    5. – лямбда-зонд (кислородный датчик);
    6. – электронный блок управления двигателем.
    Принцип работы

    На схеме не показан один элемент, без которого работа механизма была бы невозможной, – датчик положения коленчатого вала. Именно ДПКВ позволяет ЭБУ рассчитывать количество воздуха, поступающего в двигатель. Напомним, что количество подаваемого топлива всецело зависит от массы воздуха, поступающего в цилиндры, иначе регулировать состав топливовоздушной смеси (ТПВС) для нормальной работы бензинового двигателя невозможно. На этапе создания двигателя конструкторами рассчитывается, сколько воздуха проходит при определенной нагрузке, то есть степени открытия дросселя, и на определенных оборотах двигателя. Данные заносятся в топливную карту двигателя, которая будет записана в ЭБУ. Впоследствии при работе двигателя блок управления фиксирует обороты с помощью ДПКВ, нагрузка определяется потенциометром дроссельной заслонки, что позволяет взять из топливной карты значение, соответствующее необходимому количеству топлива. Но система идеально может работать только в лабораторных условиях, поскольку на практике атмосферное давление зависит не только от положения над уровнем моря, но и от температуры, воздушный фильтр со временем забивается, пропуская через себя меньше воздуха, засоряется и сам дроссельный узел. Для коррекции используется датчик температуры воздуха, но роль его невелика. По-настоящему на состав смеси влияет лямбда-зонд, измеряющий количество кислорода в выхлопных газах. Если кислорода слишком много, ЭБУ понимает, что смесь необходимо обогатить, и наоборот.

    Характеристика

    Главное преимущество одноточечного впрыска – дешевизна реализации. Недостатки:

    • неравномерное наполнение цилиндров, что обусловлено месторасположением форсунки;
    • «мокрый» коллектор. При открытии форсунки бензин преодолевает долгий путь до камеры сгорания. Когда коллектор холодный, топливо не испаряется, а оседает на стенках, вследствие чего смесь необходимо сильно богатить;
    • лямбда-зонд хоть и позволяет корректировать ТПВС, но способ измерения массы воздуха в целом неэффективен.

    Достоинства и недостатки двигателя с электронным впрыском

    Из плюсов можно выделить:

    • широкие возможности настройки двигателя под свои потребности (максимальная мощность, или максимальная экономичность),
    • весь процесс работы двигателя управляется электроникой,
    • компьютерная диагностика,
    • экологичность.
    • стоимость ремонта и обслуживания,
    • уязвимость электроники,
    • зависимость от стабильного напряжения бортовой сети.

    Основные неисправности

    Из-за того, что инжектор – это цепочка сложных электронных систем, некоторые из деталей имеют свойство изнашиваться, а именно:

    Электронные датчики, такие как ДМРВ, лямбда-зонд (датчик выявления кислорода в выхлопной трубе), датчик температуры охлаждающей жидкости — часто выходят из строя в силу своей работ в агрессивной среде

    Топливные форсунки, особенно непосредственного впрыска, уязвимы к загрязнению, вследствие чего мотор начинает троить. Но чистка форсунок требуется не так часто, как чистка карбюратора

    Выход из строя форсунки из-за западания иглы, что приводит к гидроудару (несжимаемая жидкость в виде топлива не сгорает, из-за чего поршень давит на шатун, когда тот стремится вверх, результат — пробитие блока цилиндров).

    Рекомендации по эксплуатации инжекторного двигателя

    Инжекторная система питания долговечна, но требуется соблюдать следующие меры:

    • Раз в год производить чистку форсунок (добавкой моющей присадки в топливо),
    • Каждые 10 000 км менять топливный фильтр,
    • Сократить на 30-50% диапазон замены воздушного фильтра,
    • Обрабатывать средством для контактов провода датчиков двигателя,
    • Обеспечить герметизацию ЭБУ.

    А также раз в 20 000 км надо чистить дроссельную заслонку, регулятор холостого хода и впускной коллектор.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector