Давление в конце сжатия на двигателях формула
Давление в конце сжатия на двигателях формула
Для понимания принципов повышения мощности и эффективности двигателя внутреннего сгорания необходимо знать, что такое степень сжатия, компрессия и октановое число. Причем, не на уровне рассуждений, что 98-ой бензин более качественный чем 95-ый. Нужно понимать, что октановое число само по себе не самоцель, а лишь один из факторов достижения наилучших эксплуатационных характеристик ДВС.
Прежде всего давайте сразу внесем ясность и оговорим, что компрессия и степень сжатия — это совершенно разные вещи. Степень сжатия — это отношение между максимальным объемом цилиндра и минимальным. Или, другими словами, отношение полного объема цилиндра (то есть объема цилиндра плюс объема камеры сгорания) к объему одной лишь камеры сгорания, , то есть это величина математическая
Поскольку это отношение, называемое степенью сжатия, грубо говоря, есть отношение объема, который занимает смесь при ее подаче в циллиндр, к объему, при котором смесь воспламеняется, то давление, при котором воспламеняется топливо, пропорционально этой величине. То есть чем больше степень сжатия, тем больше давление воспламеняемой смеси.
Для лучшего понимания стоит отметить, что поскольку давление зависит не только от степени сжатия, но и от, например, давления на фазе впуска, то давление воспламеняемой смеси может быть меньше у двигателя с большей степенью сжатия. Как? Например, у турбированных двигателей степень сжатия обычно меньше чем у атмосферных (почему так делают — станет понятно ниже), при этом давление у них на всех фазах существенно выше, поскольку уже на впуск смесь подается в сжатом состоянии (в чем, собственно, и состоит их природа).
Компрессия — это, кстати, давление в конце фазы сжатия — величина уже не математическая, а физическая. То есть она почти равна тому самому давлению воспламеняемой смеси. Почему почти? Потому что смесь воспламеняется всегда чуть позже или чуть раньше того момента, когда давление максимально.
Это «почти» определяется углом зажигания, о котором мы, правда, сегодня говорить не будем. Достаточно лишь отметить, что он также нужен для борьбы с детонацией, о которой ниже.
Возвращаясь к степени сжатия, посмотрим, почему же она нам важна в контексте эффективности и мощности двигателя. А вот почему. Работа в двигателе внутренного сгорания совершается за счет расширения рабочего тела, в качестве которого в бензиновых двигателях выступает топливо-воздушная смесь. Как в школе учили: горящая смесь расширяется, толкая при этом поршень, поступательное движение которого превращается во вращательное движение коленвала. Соответственно, при большей степени сжатия ход поршня, в рамках которого смесь может реализовать свой энергетический потенциал, оказывается больше, а следовательно совершается больше полезной работы. На самом деле это лишь один из факторов, все вместе же они определяют термический КПД — показатель эффективности расширения рабочего тела в момент сгорания. Для него даже формула есть:
Термический КПД = 1 — (1 / степень сжатия) ^ гамма — 1
Где гамма — значения некоей дискретной функции, зависящей от температуры, давления и объема востпламеняемой смеси. Проще говоря, набор констант. Итак мы видим, что чем больше степень сжатия, тем больше термический КПД. Также понятно, что это некоторое упрощение, поскольку для получения его максимального значения нужно подбирать массу параметров, где степень сжатия лишь один из многих, хоть и важный. Как говорил владелец одного из автосервисов: «Не зря двигаетли придумывают люди с двумя высшими образованиями». И правда, не зря.
Ну здорово, вроде разобрались: чем больше степень сжатия, тем лучше. Так давайте просто избавимся от камеры сгорания, подняв степень сжатия до небес, и будет нам счастье. А счастья не будет, и вот почему. Дело в том, что при повышении давления и температуры возникает два неприятных явления: детонация и преждевременное воспламенение. Для того, чтобы в полной мере их понять, нужно осознать один удивительный факт: топливная смесь в ДВС не взрывается — она горит. Причем та самая гамма, которую мы упоминали выше, зависит и от скорости горения и от формы фронта воспламенения и от температуры пламени. Скорость горения должна соотвествовать скорости движения поршня. Фронт воспламенения должен быть однородным и распространяться ровно по ходу поступательного движения. Чем меньше температура горения, тем меньше потери на тепловыделение. Это все упрощенные заявления, но общую суть явлений передают.
Вернемся к детонации и преждевременному воспламенению. Преждевременное воспламенение происходит, когда при увеличении давления в смеси она самопроизвольно воспламеняется. При этом получается, что часть работы затрачивается не на то, чтобы толкать поршень, а на то чтобы помешать завершить ему ход фазы сжатия, а та энергия расширения, которая еще останется (если останется), будет использована крайне неэффективно из-за нерассчетного профиля фронта горения.
Детонация же — это еще более неприятный эффект, когда воспламененная смесь взрывается. То есть после короткого момента, когда горение распространяется со скоростью, измеряемой дестяками сантиметров в секунду, она вдруг увеличивается в разы. Происходит это под влиянием и температуры и давления, а сам эффект обеспечивается наличием определенного количества одного из продуктов горения. Эффекты от детонации: вместо фронта горения получаем ударную волну (в принципе то же самое, но только в разы больше скорость и температура), как следствие — резкое падение термического КПД и ударные нагрузки на поршневую группу. А теперь на секундочку представьте, что происходит, если детонация возникает не после поджига смеси свечой, а после самовоспламенения — все то же самое, но только против хода поршня.
Вот и получается, что степень сжатия можно увеличивать только до тех пор, пока не начнут проявляться описанные эффекты. И тут мы приходим к следующему понятию — октановому числу. Оказываетя, у разных видов топлива стойкость к преждевременному воспламенению и детонации различается (все вместо это называют детонационной стойкостью). Октановое число как раз и является показателем этой стойкости. Чем оно выше, тем выше и стойкость. Важно при этом отметить, что в большинстве случаев количество энергии, которую можно высвободить из литра топлива, от октанового числа не зависит.
Но давайте от теоретических моментов, которыми можно заполнить несколько томов, обратимся к вопросам практическим и рассмотрим описываемые явления через призму повседневности.
Первый распространенный вопрос: прогорят ли клапаны, если залить бензин с большим октановым числом?
Действительно, в некоторых случаях использование бензина с большим октановым числом может привести к прогоранию выпускных клапанов:
При этом считается, что происходит это из-за большей температуры горения смеси с более высоким октановым числом. На самом деле все наоборот. Топливо с большим октановым числом обычно горит с меньшей температурой и медленнее. Из-за скорости горения ниже рассчетной может получиться так, что на фазе выпуска через клапан вместо отработанных газов будет выпущена еще горящая смесь. Горящая смесь может оказаться и в выпускном коллекторе — тогда пострадает и он. На практике же конструкция многих двигателей позволяет реализовать потенциал топлива с более высоким октановым числом без ущерба для ресурса.
В любом случае, если вы льете бензин, отличный от рекомендованного производителем, вы должны четко понимать физику работы именно вашего мотора — тому, что говорят в сервисах, верить можно далеко не всегда.
Вопрос номер два: почему при использовании бензина с большим октановым числом на свечах образуется нагар?
Первая причина является следствием того, что в России высокооктановые бензины получают исключительно методом добавления присадок. При этом часто получается так, что для получения 95-ого бензина присадки используются менее качественные, чем для 98-ого. Так что заправившись 95-ым после 92-ого можно получить более ровную работу мотора и нагар на свечах в одном флаконе. Понятно, что тут все зависит от конкретной АЗС.
Вторая причина — угол опережения зажигания. Если в вашем двигателе нет системы, которая автоматически регулирует угол зажигания, то залив высокооктановое топливо можно опять же загадить свечи и потерять часть мощности. Как упоминалось выше, высокооктановое топливо горит медленнее, а следовательно для правильного и полного сгорания смеси ее поджиг должен осуществляться раньше.
Все про компрессию и степень сжатия дизельного двигателя
Двигатель любого транспортного средства, в том числе и дизельный, представляет собой довольно сложное устройство, состоящее из механизмов и систем.
Взаимодействие этих систем и механизмов между собой позволяет преобразовывать энергию, генерируемую при сгорании топливовоздушной смеси, во вращательное движение кривошипно-шатунного механизма с дальнейшей передачей вращения на коробку передач.
Основная работа по преобразованию энергии происходит внутри цилиндро-поршневой группы, то есть в цилиндрах.
Преобразование энергии зависит от многих факторов, включая компрессию двигателя. Эти критерии особенно важны в случае дизельных двигателей, поскольку воспламенение горючей смеси в цилиндрах этих двигателей происходит в результате ее нагрева за счет сжатия.
Понятие степени сжатия
Эти термины часто путают или объединяют в один термин. На самом деле это два разных термина, и они по-разному характеризуются.
Для начала разберем все, что касается степени сжатия дизельных двигателей.
Отношение объема цилиндра двигателя, когда поршень достигает нижней мертвой точки (ВМТ), к объему камеры сгорания, когда поршень достигает верхней мертвой точки, является степенью сжатия двигателя.
Этот коэффициент указывает на перепад давления, который возникает в цилиндре двигателя, когда топливо поступает в цилиндр.
В технической документации, прилагаемой к дизельному двигателю, степень сжатия указывается в виде математического отношения, например 18: 1.
Для дизельного двигателя оптимальная степень сжатия составляет от 18: 1 до 22: 1. Именно при этих передаточных числах двигатель достигает максимальной эффективности.
Как все работает
В случае дизельного двигателя во время такта сжатия, когда поршень достигает ВМТ, объем в цилиндре резко уменьшается. На данный момент в камере сгорания находится только воздух, и именно он сжимается; этот процесс называется тактом сжатия.
Когда поршень достигает ВМТ, воздух сжимается до степени сжатия, указанной в документации, и топливо под давлением подается в камеру сгорания.
Топливно-воздушная смесь воспламеняется под действием высокого давления, что значительно увеличивает давление в камере, и поршень затем переходит в состояние ВМТ.
Высокое давление горючей смеси увеличивает давление на головку поршня, заставляя его двигаться в сторону ВМТ.
Скользящее движение поршня преобразуется шатуном во вращательное движение коленчатого вала.
В этом случае давление, создаваемое воспламенением смеси, заставляет поршень двигаться в сторону NTM, это называется ходом. Ход — это один из рабочих ходов цилиндро-поршневой группы.
Степень сжатия — вот что важно во время такта сжатия. Чем он выше, тем легче воспламенить горючую смесь и тем полнее она горит, обеспечивая большее давление.
Благодаря хорошей степени сжатия дизельный двигатель обеспечивает большую мощность при меньшем расходе топлива.
Однако системы с дизельным приводом имеют диапазон степени сжатия, который не следует превышать по какой-либо причине.
Степень сжатия менее 18: 1 снижает мощность системы и увеличивает расход топлива.
Слишком высокая степень сжатия также отрицательно сказывается на двигателе, особенно на дизельных двигателях. Повышенные напряжения в цилиндрах и поршневых группах быстро сокращают срок их службы.
Повышенное сжатие может привести к изгибу поршней и изгибу шатунов.
В некоторых случаях увеличение степени сжатия может привести к взрыву электростанции без восстановления.
ВАЖНО: степень сжатия в водородных двигателях намного выше.
Возможность замера степени сжатия
Проверить степень сжатия дизельного двигателя в автомастерской практически невозможно. Так как некоторые замеры необходимо произвести, что сделать очень сложно.
Одним из таких измерений является определение объема цилиндра, когда поршень находится в точке ВМТ.
такженеобходимо знать некоторые параметры силовой установки, часть из которых можно найти в технической документации, а часть установить довольно сложно.
Для расчета степени сжатия необходимо знать объем камеры сгорания, так как прокладка находится между блоком цилиндров, необходимо знать ее толщину и диаметр отверстия поршня в нем, ход поршня и диаметр цилиндра. .
Имея все эти данные, а также коэффициент сжатия, можно математически рассчитать, измерив объем в цилиндре.
Способы повышения показателя
Степень сжатия в дизельном двигателе измерить сложно, но можно изменить в лучшую сторону.
Есть несколько способов увеличить степень сжатия дизельного двигателя.
Уменьшение камеры сгорания двигателя.
Самый простой способ увеличить этот показатель — уменьшить камеру сгорания.
Поскольку степень сжатия — это отношение объема цилиндра к объему камеры сгорания, изменение объема одного из них может изменить саму степень.
Объем камеры сгорания можно уменьшить несколькими способами.
Первое, что вы можете сделать, это заменить прокладку между блоком и головкой блока цилиндров на более тонкую, что изменит объем камеры сгорания.
Дополнительно головка блока цилиндров может быть вложенной. В этом случае с головки блока цилиндров снимается слой металла, так что камера сгорания уменьшается.
Второй способ изменить это значение — увеличить давление в камере сгорания.
Использование турбонагнетателя, также известного как турбонаддув, позволяет увеличить степень сжатия.
В дизельных двигателях, которые не имеют турбонагнетателя, воздух, необходимый для сжигания смеси, подается за счет отрицательного давления в цилиндре, которое создается во время такта впуска.
При таком типе подачи воздуха невозможно достичь высокого давления в такте сжатия, поскольку количество воздуха ограничено.
В случае турбокомпрессора воздух нагнетается в цилиндры. Это создает больше воздуха и, следовательно, большее давление в цилиндре по мере продвижения такта сжатия.
Часто в дизелях помимо наддува используется еще одно устройство — интеркулер. Он также позволяет увеличить давление в цилиндре, но на несколько иной основе, чем наддув.
Задача интеркулера — охлаждать воздух перед его поступлением в цилиндры. В результате плотность воздуха увеличивается по мере его охлаждения, и, следовательно, давление в цилиндре выше.
Это основная информация о степени сжатия. Теперь перейдем к сжатию.
Понятие компрессии
Компрессия — это мера давления в цилиндрах двигателя. Этот показатель может быть измерен в нескольких значениях — кг / см2, барах, атмосферах, паскалях.
Особого внимания заслуживает компрессия дизельного двигателя, так как этот размер очень важен для дизельных двигателей. В дизельных двигателях компрессия должна быть около 22 Атм, хотя в различных двигателях она может быть выше и значительно.
В цилиндрах дизельных двигателей необходимо обеспечить высокую степень сжатия, поскольку горючая смесь воспламеняется именно благодаря высокому давлению.
Если заданный показатель на дизельном двигателе существенно ниже нормы, запустить двигатель затруднительно или невозможно.
Сжатие в цилиндре дизельного двигателя достигается за счет сжатия воздуха через поршень во время такта сжатия. Однако добиться полной герметичности внутри цилиндра просто невозможно, утечки воздуха будут всегда.
Воздух может частично проникать в изношенные компрессионные кольца, когда они больше не могут должным образом прилегать к цилиндру, некоторая масса воздуха может выходить из цилиндра из-за неплотной посадки клапанов на седлах.
В общем, величина компрессии указывает на состояние двигателя.
Большая Энциклопедия Нефти и Газа
Давление — конец — сжатие
Однако потери трения и мертвый объем, а следовательно, температура конца сжатия у компрессоров с катящимся ротором ниже, они могут работать при большей степени сжатия. Давление конца сжатия в пластинчатых компрессорах определяется размерами машины, при понижении температуры конденсации оно не снижается и компрессор работает менее экономично. [31]
Для карбюраторных двигателей со степенями сжатия, равными 7 — — 8, давление конца сжатия близко или несколько превышает 14 кес / см2 при работе двигателя с полностью открытой дроссельной заслонкой. При дросселировании давление конца сжатия понижается примерно пропорционально давлению впуска. На рис. 51 показано изменение давления в конце процесса сжатия карбюраторного двигателя ( примерно за 30 до прихода поршня в в. [32]
Большое влияние на показания компрессометра ока-зывает температура двигателя, суммарное количество оборотов двигателя при замере, величина открытия дроссельной заслонки. При проверке компрессометром давление конца сжатия может быть даже высоким при изношенных поршневых канавках и кольцах за счет большого расхода масла. На величину давления в конце сжатия основное влияние оказывает не износ цилиндров, а негерметичность клапанов. [34]
Рассмотренное устройство пуска генератора газа GS-34 работает надежно, обеспечивая пуск СПГГ с первого раза. В табл. 49 приведены давления конца сжатия в кг / см2 в цилиндре дизеля при различном давлении пускового воздуха. [35]
В двигателях с искровым зажиганием, работающих на жидком топливе, при сжатии продолжаются испарение топлива и перемешивание его паров с воздухом. Пределы значений температуры и давления конца сжатия лимитируются условиями возникновения детонации. При наличии в камере сгорания чрезмерно перегретых деталей или отложений нагара может возникнуть преждевременное воспламенение смеси. [36]
В двигателях с принудительным зажиганием температуры и давления конца сжатия не обеспечивают самовоспламенения рабочей смеси. Зажигание рабочей смеси осуществляется с помощью электрической искры, причем зажигание происходит до того, как поршень придет в в. Опережение зажигания необходимо для того, чтобы, имея в виду конечную продолжительность сгорания, получить максимальную площадь индикаторной диаграммы, соответствующую полезной работе за период рабочего цикла. [37]
В пластинчатом ротационном компрессоре ( рис. 5, е) сжатие происходит в объеме между двумя смежными пластинами. В большинстве конструкций нагнетательного и всасывающего клапанов нет, давление конца сжатия определяется размерами При понижении температуры конденсации давление нетания может оказаться выше, чем это нужно. В этом слу-компрессор будет работать менее экономично. Ротационные компрессоры могут быть компактней и лучше уравновешены, чем поршневые, но они чувствительнее к износу и сложнее в ремонте. Их используют преимущественно в домащ-них холодильниках, но в значительно меньшем масштабе, чем обычные поршневые компрессоры. [38]
Поршень сжимает воздух, заполнивший цилиндр. Вследствие большой степени сжатия ( е 14 — 20) давление конца сжатия достигает 30 — 50 кгс / сма, а температура — 500 — 700 С. [39]
Это связано с изменением потери давления в седле. При возрастании скорости от 20 до 40 м / сек давление конца сжатия , как показывает расчет, увеличивается на 0 14 атм. Но производительность компрессора при этом увеличилась примерно на 5 %, а потери трения и потери в электродвигателе остались без изменения, поэтому в общем итоге удельная холодопроизводительность увеличилась. [40]
Образование горючей смеси в дизелях происходит следующим образом. Топливо в цилиндр дизеля вводится через форсунку под давлением, в 5 — 10 раз превышающим давление конца сжатия , поэтому скорость струи топлива достигает 150 — 400 м / сек. Вследствие трения быстродвижущейся струи топлива о воздух происходит ее разрушение на мельчайшие капельки диаметром 2 — 3 мкм с образованием факела сравнительно большого объема. [41]
При увеличении нагрузки повышается температура стенок цилиндра. С увеличением числа оборотов уменьшаются утечки газа через неплотности между поршнем и цилиндром, что также влияет на некоторое повышение температуры и давления конца сжатия , возрастает интенсивность вихревых движений газов в цилиндре и увеличивается давление впрыскиваемого топлива, что способствует улучшению качества распыливания и смесеобразования. Но вместе с тем нужно иметь в виду, что при этом сокращается время, отводимое для сгорания топлива. Поэтому с увеличением числа оборотов свыше определенных допустимых величин качество сгорания обычно начинает несколько ухудшаться. [42]
Степень сжатия ротационного компрессора определяется отношением объема ячейки в начале сжатия к ее объему в конце этого процесса и характеризуется углом aob. В отличие от компрессора с возвратно-поступательным движением поршня, в ротационном компрессоре угол сжатия а, следовательно и степень сжатия постоянны, вследствие чего давление конца сжатия может быть больше или меньше давления сосуда, в который нагнетается газ. В компрессоре с возвратно-поступательным движением поршня давление конца сжатия ( если пренебречь сопротивлением в нагнетательном трубопроводе) равно давлению сборника, принимающего сжатый газ. [43]
Во время такта сжатия ( рис. 34 — 2, б; впускной и выпускной клапаны закрыты, поршень движется от н.м.т. к в.м.т.) горючая смесь сжимается и по мере уменьшения ее объема давление и температура в цилиндре повышаются. Частицы топлива и воздуха при сжатии приходят в тесное соприкосновение и происходит подготовка топлива к сгоранию. Давление конца сжатия находится в пределах 500 — 700 кн / м2, температура достигает 250 — 300 С. [44]
При этом возможно получение близких показателей работы двигателя на дизельном и газовом топливах. Однако при этом сокращается срок службы свечей зажигания. При давлении конца сжатия более 3 МПа напряжение пробоя должно превышать 25 кВ, что понижает долговечность свечи и требует разработки специальных свечей. [45]
Давление в конце сжатия на двигателях формула
Газовый двигатель априори имеет меньшую мощность и худшую топливную экономичность по сравнению с базовым дизелем. Снижение мощности газового двигателя объясняется уменьшением наполнения цилиндров топливовоздушной смесью за счет замещения части воздуха газом, имеющим больший объем по сравнению с жидким топливом. Для компенсации снижения мощности применяют наддув, что требует дополнительного снижения степени сжатия. При этом уменьшается индикаторный КПД двигателя, сопровождающийся ухудшением топливной экономичности.
В качестве базового двигателя для конвертации на газ был выбран дизель семейства ЯМЗ-536 (6ЧН10,5/12,8) с геометрической степенью сжатия ε=17,5 и номинальной мощностью 180 кВт при частоте вращения коленчатого вала 2300 мин -1 .
Рис.1. Зависимость максимальной мощности газового двигателя от степени сжатия (граница детонации).
На рисунке 1 приведена зависимость максимальной мощности газового двигателя от степени сжатия (граница детонации). В конвертированном двигателе при стандартных фазах газораспределения заданная номинальная мощность 180 кВт без детонации может быть обеспечена только при значительном снижении геометрической степени сжатия с 17,5 до 10, вызывающем ощутимое уменьшение индикаторного КПД.
Избежать детонации без снижения или при минимальном снижении геометрической степени сжатия, а значит и минимальном уменьшении индикаторного КПД позволяет реализация цикла с ранним закрытием впускного клапана. В этом цикле впускной клапан закрывается до прихода поршня к НМТ. После закрытия впускного клапана при движении поршня к НМТ газовоздушная смесь сначала расширяется и охлаждается и только после прохождения поршнем НМТ и его движения к ВМТ начинает сжиматься. Потери наполнения цилиндров компенсируются за счет повышения давления наддува.
Основными задачами исследований являлось выявление возможности конвертации современного дизеля в газовый двигатель с внешним смесеобразованием и количественным регулированием с сохранением высоких мощности и топливной экономичности базового дизеля. Рассмотрим некоторые ключевые моменты подходов к решению поставленных задач.
Геометрическая и фактическая степени сжатия
Начало процесса сжатия совпадает с моментом закрытия впускного клапана φa. Если это происходит в НМТ, то фактическая степень сжатия εф равна геометрической степени сжатия ε. При традиционной организации рабочего процесса впускной клапан с целью улучшения наполнения за счет дозарядки закрывается через 20-40° после НМТ. При реализации цикла с укороченным впуском впускной клапан закрывается до НМТ. Поэтому в реальных двигателях фактическая степень сжатия всегда меньше геометрической степени сжатия.
Закрытие впускного клапана на одинаковую величину либо до, либо после НМТ вызывает одинаковое уменьшение фактической степени сжатия по сравнению с геометрической степенью сжатия. Так, например, при изменении φa на 30° до или после НМТ фактическая степень сжатия уменьшается приблизительно на 5% [4].
Изменение параметров рабочего тела в процессе наполнения
При проведении исследований были сохранены стандартные фазы выпуска, а фазы впуска менялись за счет вариации угла закрытия впускного клапана φa. В этом случае при раннем закрытии впускного клапана (до НМТ) и сохранении стандартной продолжительности впуска (Δφвп =230°) впускной клапан пришлось бы открывать задолго до ВМТ, что вследствие большого перекрытия клапанов неизбежно привело бы к чрезмерному росту коэффициента остаточных газов и нарушениям в протекании рабочего процесса. Поэтому раннее закрытие впускного клапана потребовало значительного уменьшения продолжительности впуска до 180°.
На рисунке 2 приведена диаграмма давления заряда в процессе наполнения в зависимости от угла закрытия впускного клапана до НМТ. Давление в конце наполнения pa ниже давления во впускном трубопроводе, причем понижение давления тем больше, чем раньше до НМТ закрывается впускной клапан.
При закрытии впускного клапана в ВМТ температура заряда в конце наполнения Ta несколько выше температуры во впускном трубопроводе Tk. При более раннем закрытии впускного клапана температуры сближаются, и при φa>35. 40° ПКВ заряд в ходе наполнения не нагревается, а охлаждается.
Рис.2.Влияние угла закрытия впускного клапана на изменение давления в процессе наполнения.
Оптимизация фазы впуска на режиме номинальной мощности
При прочих равных условиях наддув или повышение степени сжатия в двигателях с внешним смесеобразованием ограничиваются одним и тем же явлением — возникновением детонации. Очевидно, что при одинаковом коэффициенте избытка воздуха и одинаковых углах опережения зажигания условия возникновения детонации соответствуют определенным значениям давления pc и температуры Tc заряда в конце сжатия, зависящим от фактической степени сжатия [5].
При одинаковой геометрической степени сжатия и, следовательно, одинаковом объеме сжатия отношение pc/Tc однозначно определяет количество свежего заряда в цилиндре. Отношение давления рабочего тела к его температуре пропорционально плотности. Поэтому фактическая степень сжатия показывает, на сколько увеличивается плотность рабочего тела в процессе сжатия. На параметры рабочего тела в конце сжатия, кроме фактической степени сжатия, существенное влияние оказывают давление и температура заряда в конце наполнения, определяемые протеканием процессов газообмена, в первую очередь процесса наполнения.
Рассмотрим варианты двигателя с одинаковой геометрической степенью сжатия и одинаковой величиной среднего индикаторного давления, один из которых имеет стандартную продолжительность впуска (Δφвп=230°), а в другом впуск укорочен (Δφвп=180°), параметры которых представлены в таблице 1. В первом варианте впускной клапан закрывается через 30° после ВМТ, а во втором варианте впускной клапан закрывается за 30° до ВМТ. Поэтому фактическая степень сжатия εф у двух вариантов с поздним и ранним закрытием впускного клапана одинакова.
Параметры рабочего тела в конце наполнения для стандартного и укороченного впуска