5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель брауна своими руками

Набор для превращения любого автомобиля в гибридный

Студенты из Middle Tennessee State University под руководством доктора Чарльза Перри с 2008 года работают над комплектом, который позволит превратить практически любой автомобиль в гибридный.

Проблем с современными электрическими или гибридными автомобилями немало. Конструкция привода требует переработки, это требует затрат, которые сказываются на конечной стоимости авто.
Плюс к тому никто не предлагает переделать ваш автомобиль в гибридный — если уж вы решили его опробовать, придётся продавать старую лошадку и покупать новую.
Такими темпами совершенно непонятно, когда хотя бы половина автомобилей будет ездить при помощи электричества — очень уж вяло новинка проникает в жизнь.

А Чарльз Перри со товарищи предлагают совершенно другой вариант.

Из обычных комплектующих, без всяких дорогих инноваций, они собирают комплект, который можно установить почти на любой автомобиль.

В багажник ставятся аккумуляторы и контроллер этого устройства с охлаждением.
Инновация состоит только в размещении тяги. Сами трёхфазные безщёточные электромоторы постоянного тока размещаются в задних колёсах на свободном месте, которое там уже есть — вокруг тормозов.
Электромагниты статоров размещены по кругу, а вращающийся диск, к которому крепится колесо, оснащён постоянными магнитами. Электромагниты управляются контроллером, и когда система включается, колесо превращается в электромотор.

Таким образом, никакие агрегаты автомобиля не модифицируются и не затрагиваются — тормоза, подвеска, подшипники остаются без изменений.

Система создаётся как вспомогательная для мотора внутреннего сгорания, и рассчитана на движение по городу — скорости до 40-45 mph (до 60-70 км/ч). Контроллер работает совершенно прозрачно — если водитель не знает об этой установке, он её может и не почувствовать. Как только при разгоне водитель давит на газ, система автоматически включается и помогает разгоняться и ехать.

При достижении большой скорости система также автоматически отключается.
Др. Перри утверждает, что по их тестам выходит 50% экономия топлива, то есть при движении в городских условиях на том же количестве бензина можно проехать в два раза большее расстояние.

На видео аккумуляторы с контроллером выглядят довольно объёмно, но др. Перри утверждает, что это установка для тестов, поэтому она немного больше той, на которую они рассчитывают выйти в результате.

Возможно, скоро наступит время, когда любой желающий сможет купить для себя такой набор и сделать апгрейд своей ласточке — так же, как сейчас можно купить электрический набор для велосипеда.

Как работает водородный двигатель

С экранов телевизоров нам заявляют, что количество нефти стремительно уменьшается, и вскоре бензиновые машины отойдут в далёкое прошлое. Вот только это не совсем верно.

Действительно, количество разведанных запасов нефти не очень велико. В зависимости от степени потребления их может хватить на период от 50 до 200 лет. Но в этой статистике не учитываются до сих пор неразведанные места нефтедобычи.

В действительности нефти на нашей планете более чем достаточно. Другой вопрос, что сложность её добычи постоянно возрастает, а значит, растёт и цена. К тому же нельзя списывать со счетов экологический фактор. Выхлопные газы сильно загрязняют среду и с этим нужно что-то делать.

Современная наука создала множество альтернативных источников энергии вплоть до двигателя ядерного распада в ваших машинах. Но большинство из этих технологий пока что представляют собой концепты без возможности реального применения. По крайней мере, так было до недавнего времени.

С каждым годом машиностроительные компании выпускают всё больше машин, работающих на альтернативных источниках питания. Одним из самых эффективных решений в данном контексте является водородный двигатель от бренда «Тойота». Он позволяет полностью забыть про бензин, делая автомобиль экологичным и дешёвым транспортом.

Водородные двигатели

Типы водородных двигателей и их описание

Наука непрерывно развивается. Каждый день придумываются новые концепты. Но только лучшие из них воплощаются в жизнь. Сейчас существует всего два типа водородных двигателей, которые могут быть рентабельными и производительными.

Первый тип водородного двигателя работает на топливных элементах. К сожалению, водородные двигатели данного типа до сих пор имеют высокую стоимость. Дело в том, что в конструкции содержаться дорогие материалы вроде платины.

Ко второму типу относятся водородные двигатели внутреннего сгорания. Принцип работы таких устройств сильно напоминает пропановые модели. Именно поэтому их часто перенастраивают для работы под водород. К сожалению, КПД подобных устройств на порядок ниже тех, что функционируют на топливных элементах.

На данный момент тяжело сказать, какая из двух технологий по созданию водородных двигателей победит. У каждой есть свои плюсы и минусы. В любом случае работы в данном направлении не прекращаются. Поэтому, вполне возможно, что к 2030 году машину с водородным двигателем можно будет купить в любом автосалоне.

Принцип работы

Водородный двигатель работает на основе принципа электролиза. Данный процесс происходит в воде под воздействием специального катализатора. В результате выделяется гидроген. Его химическая формула следующая — ННО. Газ не обладает взрывоопасными качествами.

В состав генератора входит электролизер и резервуар. За процесс генерации газа отвечает модулятор тока. Для обеспечения наилучших результатов в инжекторных водородных двигателях устанавливается оптимизатор. Это устройство отвечает за регулирование соотношения топливно-воздушной смеси и газа Брауна.

Характеристики катализаторов

Катализаторы, используемые для создания нужной реакции в водородном двигателе, могут быть трёх видов:

  1. Цилиндрические банки. Это самая простая конструкция, работающая на довольно примитивной системе управления. Производительность водородного двигателя, работающего с данным катализатором, не превышает 0,7 литра газа в минуту. Такие системы могут использоваться на машинах с водородным двигателем объёмом до полутора литра. Увеличение числа банок позволяет превысить данный лимит.
  2. Раздельные ячейки. Считается, что именно такой тип катализатора является наиболее эффективным. Производительность системы составляет более двух литров газа в минуту, КПД — максимальный.
  3. Открытые пластины или сухой катализатор. Данная система рассчитана на длительный срок работы. Производительность колеблется в диапазоне от одного до двух литров газа в минуту. Открытое расположение обеспечивает максимально эффективное охлаждение.
Читать еще:  Датчик температуры двигателя газ 2705

Эффективность водородных двигателей с каждым годом растёт. Сейчас начинают вводиться в эксплуатации гибридные устройства, функционирующие на водороде и бензине. В свою очередь, конструкторы не прекращают искать наиболее эффективной модели катализатора, обеспечивающей ещё большую производительность.

Водородный двигатель своими руками

Генератор

Чтобы создать эффективный водородный двигатель для автомобиля своими руками, нужно начать с генератора. Самый простой самодельный генератор — это герметичная ёмкость с жидкостью, в которую погружаются электроды. Для такого устройства достаточно источника питания в 12 В.

Штуцер устанавливается на крышке конструкции. Он отводит смесь водорода с кислородом. Собственно, это и есть основа генератора для водородного двигателя, которая подключается к ДВС.

Чтобы создать полноценную систему также понадобится дополнительный накопитель и аккумулятор. В качестве корпуса лучше всего использовать водопроводный фильтр или же можно купить специальную установку. В последней применяются цилиндрические электроды повышенной производительности.

Как видите, выделить нужный газ для реакции не так-то уж и сложно. Намного сложнее произвести его в нужном для водородного двигателя количестве. Чтоб повысить эффективность необходимо использовать электроды из меди. В крайнем случае подойдёт и нержавейка.

В ходе реакции ток должен подаваться с разной силой. Поэтому без электронного блока не обойтись. К тому же в резервуаре всегда должно быть определённое количество воды, чтобы реакция проходила в нормальных условиях. Система автоматической подпитки в водородном двигателе решает эту проблему. Интенсивность электролиза обеспечивает достаточное количество соли.

Чтобы сделать воду для водородного двигателя необходимо взять 10 литров жидкости и добавить столовую ложку гидроксида.

Устройство водородного двигателя

В первую очередь нужно позаботиться о дополнительных резервуарах и трубопроводе. Водородный двигатель нуждается в датчике уровня воды, который устанавливается в середине крышки. Это предотвратит ложное срабатывание при движении вверх-вниз. Именно он будет давать команду системе автоматической подпитки, когда это понадобится.

Особую роль играет датчик давления. Он включается на показателе в 40 psi. Как только внутреннее давление достигнет показателя в 45 psi, подкачка отключается. При превышении 50 psi сработает предохранитель.

Предохранитель водородного двигателя должен состоять из двух частей: вентиля аварийного сброса и разрывного диска. Разрывной диск активируется, когда давление достигает 60 psi, не нанося никакого вреда системе.

Для отвода тепла нужно использовать самую холодную свечу. Не подходят свечи с платиновыми наконечниками. Платина — отличный катализатор для реакции водорода и кислорода.

Электрическая часть

Важную роль в электрической схеме водородного двигателя играет таймер 555. Он выполняет роль импульсного генератора. Мало того, с его помощью можно регулировать частоту и ширину импульса.

В плате водородного двигателя должно быть два импульсных таймера 555. При этом первый должен иметь конденсаторы большей ёмкости. Выход с ноги 3 поступает на второй генератор. Он его собственно и включает.

Третий выход второго таймера импульсного водородного генератора подключается к резисторам на 220 и 820 Ом. Транзистор усиливает ток до нужной величины. За его защиту отвечает диод 1N4007. Это обеспечивает нормальную работу всей системы.

Итоги

Сейчас водородный двигатель уже не плод фантазии учёных, а вполне реальная разработка, которую можно сделать самостоятельно. Конечно, по характеристикам подобный агрегат будет уступать заводской модели. Но экономия для ДВС всё равно будет заметной.

Водородные двигатели не просто помогают сократить потребление бензина, но и являются полностью безопасными для окружающей среды. Именно поэтому уже в первом квартале продажи водородного автомобиля марки «Тойота» побили все рекорды в Японии.

Газ брауна для отопления дома своими руками

Особенности газа Брауна и принцип работы

Генератор газа Брауна при желании и наличии умений можно сделать своими силами из подручных материалов. Используют конструкцию для разных целей, не только для отопления. Принцип работы устройства основывается на разложении воды в электролизере. В итоге получается газ Брауна с побочным продуктом – водяным паром.

Преимущества газа Брауна:

  1. Материал для переработки (вода) является доступным и недорогим сырьем.
  2. При переработке жидкости создается конденсат. Пар снова превращается в воду и топливо возобновляется.
  3. Газовый генератор является экологически безопасным устройством. Во время переработки воды не создается вредных веществ.
  4. Не пересушивает воздух. За счет выделенного пара наоборот увлажняет.

Но создания отопительной системы достаточно затрудненное по ряду причин. Главная проблема заключается в выгодности использования прибора. Для работы конструкции необходима электроэнергия. Придется рассчитать, насколько рентабельно использовать устройство.

Сомнения в рентабельности газа Брауна касаются и стоимости самой установки. Это дорогое оборудование, которое требует определенных затрат на обслуживание. Но при желании можно оборудовать гидролизер своими руками, опираясь на чертежи и схемы.

Что такое газ Брауна?

Формула горючего газа для отопления

Химическая формула этого соединения – HHO. Получают газ из воды методом электролиза или резонанса. Второе, более известное название – гремучий газ. Связано это с тем, что в составе газа Брауна и кислород, и водород находятся в одноатомном состоянии и при сгорании выделяется почти в 4 раза больше тепла по сравнению с горением молекулярного водорода.

Впервые экспериментальным путем газ получили химики Стэнли Миллер и Юлл Браун. Последний в 1974 году запатентовал установку, которая вырабатывала кислородно-водородную смесь в соотношении 2:1. И именно в честь него новый вид топлива и получил свое название.

В наши дни все активнее предпринимаются попытки использовать газ Брауна для отопления дома. Для того чтобы эта разновидность топлива получила широкое распространение, необходимо решить вопрос получения газа Брауна в бытовых условиях.

Методика получения газа Брауна своими руками дома

ННО газ – настоящие ноу-хау в отоплении получил свое название благодаря физику Брауну. Он вывел новую формулу воду с определенными свойствами. Эти свойства подтвердили и последующие эксперименты.

Газ Брауна – это смесь водорода с кислородом. Вещество без запаха и цвета.

Можно найти много информации о получении газа в домашних условиях. Достаточно самостоятельно соорудить специальную установку. Эффективность таких генераторов подтверждена численными положительными отзывами.

Читать еще:  Шевроле вива характеристики двигателя

Части устройства для получения газа:

  • Химическая представлена электролизером;
  • Электрическая – источник питания.

Электролизер имеет простую конструкцию, состоящую из двух пластин или трубок, погруженных в воду. Материалом для трубок может служить нержавеющая сталь. При соединении приборов следует создать разные потенциалы. Так и будет разделяться вода, и выделяться необходимый газ.

Для работы электролизера потребуется ток. Выполнить это требования можно с помощью добавок в воду: сода, соль, калий. Но это неэффективно. Поэтому лучше сделать генератор импульсов.

Получение гремучего газа

Существует специальное устройство — генератор газа Брауна. Применение этого генератора дало возможность сделать производство водорода более экономичным, а также позволило снизить объем вредных выбросов в ходе получения газа.

Технология получения гремучего газа состоит в расщеплении воды (с помощью переменного тока) на два компонента: пару атомов водорода и один атом кислорода. Данная методика именуется электролизом воды. В конечном счете, результатом электролиза является газ, химическая формула которого — HHO.

Для расщепления по электролизному методу потребуются определенные затраты — чуть больше 442 ккал/моль. В результате, из литра воды выход более 1866 литров оксигидрогена. Основной довод в пользу использования этого газа — возврат энергии конечным продуктом в 3,8 раза превышает энергетические затраты на его получение.

Прогрессивный газ Брауна своими руками: схема и чертежи

На рынке представлены готовые генераторы. Но оборудования дорогостоящее, а КПД при этом низкое. При желании можно сделать установку своими руками.

Схема генератора на воде:

  • Трубки или пластинки разного диаметра из нержавеющей стали;
  • Регулятор мощности нагревательного элемента;
  • Тара, служащая осушителем;
  • Источник тока на 12 Вольт.

Наглядный пример конструкции можно разобрать на чертеже. Частота подачи тока определяет эффективность выработки газа. Импульсы подаются на трубки, где и вырабатывается топливо. Затем газ движется в осушительную емкость, а затем в контур подачи теплоносителя. За счет отсутствия процесса горения данный вариант обогрева считается экологически безопасным. Газ создается за счет химической реакции. В итоге получается пар, который выступает теплоносителем.

Создание генератора газа Брауна своими руками: этапы выполнения

Внешне конструкция генератора представляет собой тару с водой. В нее помещены две трубки. Именно благодаря им создается оксиводород.

Материалы для создания генератора в домашних условиях:

  • Пластины из нержавеющей стали толщиной полсантиметра;
  • Лист из оргстекла;
  • Трубы из резины;
  • Резина бензомаслостойкая толщиной 3 мм;
  • Источник тока.

Нержавеющую сталь потребуется нарезать на прямоугольники. Уголки потребуется срезать, чтобы закрепить конструкцию болтами. В каждом листе следует проделать отверстия диаметром полсантиметра, соблюдая интервал 3 см от низа листа. Также потребуется припаять провод для подачи импульса.

Из резины потребуется выполнить несколько колец с внешним диаметром 20 см. Также выполняют две пластины из оргстекла размером 20х20 см. Толщина листов составляет 2 см. Заранее в заготовке выполняют отверстия для болтов.

После подготовки материалов выполняют сборку. Для начала размещают первую пластину. Дальше устанавливают резиновое кольцо, которое обрабатывают герметичным веществом с обеих сторон. Дальше опять кладут пластину. Затем конструкция стягивается болтами и пластинами из оргстекла. В пластинах предусматриваются дыры для подвода воды и отвода газа. В отверстия вставляются штуцеры и трубки.

Чтобы предотвратить обратный ход газа на пути от конструкции к горелке устанавливают водяной затвор. Лучше будет сделать два таких предохранителя.

Водяной затвор представляет собой тару с жидкостью. Со стороны устройства трубка опущена в воду, а вторая, которая направляется к горелке, находится выше уровня жидкости. Если гремучий газ попадет обратно в конструкцию, то устройство может взорваться. Именно поэтому не рекомендуется использовать прибор без водяного затвора.

В электролизере при подаче электрических импульсов начинает вырабатываться газ. По первой трубке он движется к первому затвору. Благодаря конструкции установки исключается обратный ход горючего. Такая система соблюдается благодаря разной плотности воды. Затем по второй трубке газ направляется ко второму затвору. Это защитная мера, если первый затвор окажется нерабочим.

Инструкция: как сделать водородный генератор своими руками

Для изготовления топливной ячейки возьмём наиболее совершенную «сухую» схему электролизёра с использованием электродов в виде пластин из нержавеющей стали. Представленная ниже инструкция демонстрирует процесс создания водородного генератора от «А» до «Я», поэтому лучше придерживаться очерёдности действий.

Схема топливной ячейки «сухого» типа

  1. Изготовление корпуса топливной ячейки. В качестве боковых стенок каркаса выступают пластины оргалита или оргстекла, нарезанные по размеру будущего генератора. Надо понимать, что размер аппарата напрямую влияет на его производительность, однако, и затраты на получение HHO будут выше. Для изготовления топливной ячейки оптимальными будут габариты устройства от 150х150 мм до 250х250 мм.
  2. В каждой из пластин просверливают отверстие под входной (выходной) штуцер для воды. Кроме того, потребуется сверление в боковой стенке для выхода газа и четыре отверстия по углам для соединения элементов реактора между собой.
    Изготовление боковых стенок
  3. Воспользовавшись угловой шлифовальной машиной, из листа нержавеющей стали марки 316L вырезают пластины электродов. Их размеры должны быть меньше габаритов боковых стенок на 10 – 20 мм. Кроме того, изготавливая каждую деталь, необходимо оставлять небольшую контактную площадку в одном из углов. Это понадобится для соединения отрицательных и положительных электродов в группы перед их подключением к питающему напряжению.
  4. Для того чтобы получать достаточное количество HHO, нержавейку надо обработать мелкой наждачной бумагой с обеих сторон.
  5. В каждой из пластин сверлят два отверстия: сверлом диаметром 6 — 7 мм — для подачи воды в пространство между электродами и толщиной 8 — 10 мм — для отвода газа Брауна. Точки сверлений рассчитывают с учётом мест установки соответствующих подводящих и выходного патрубков.
    Вот такой комплект деталей необходимо подготовить перед сборкой топливной ячейки
  6. Начинают сборку генератора. Для этого в оргалитовые стенки устанавливают штуцеры подачи воды и отбора газа. Места их присоединений тщательно герметизируют при помощи автомобильного или сантехнического герметика.
  7. После этого в одну из прозрачных корпусных деталей устанавливают шпильки, после чего начинают укладку электродов.
    Укладку электродов начинают с уплотняющего кольца

Обратите внимание: плоскость пластинчатых электродов должна быть ровной, иначе элементы с разноимёнными зарядами будут касаться, вызывая короткое замыкание!

Для получения газа Брауна в количестве, достаточном для отопления или приготовления пищи, устанавливают несколько генераторов водорода, работающих параллельно.

Видео: Сборка устройства

Видео: Работа конструкции «сухого» типа

Рекомендации к использованию газа Брауна для отопления дома

Эффективная работа установки возможна путем соблюдения определенных правил. Если не повысить КПД, то использование генератора будет невыгодным. Но в любом случае водородная установка экологически чистая.

Правила эксплуатации водяной установки:

  1. Самодельный прибор следует делать из нержавеющей стали. Материал не будет окисляться.
  2. Можно применять обычную воду из под крана. Но большую эффективность можно обеспечить за счет гидроксида натрия и дистиллированной жидкости.
  3. Перед началом работы пластины следует обработать мыльным раствором и протереть спиртом.
  4. Любые загрязнения при эксплуатации можно устранять наждачной бумагой.

Благодаря простым правилам можно оборудовать установку для обогрева частных домов. Данный вариант не может выполнять роль основного источника отопления. Но такие самодельные приборы пригодятся для авто или небольших комнат.

Левитация и эффект Бифельда-Брауна, ионный ветер — как это работает

Алюминиевая пищевая фольга и тончайшая медная проволочка, а между ними — лишь 3 сантиметра воздуха. Фольга и проволочка закреплены на квадратном диэлектрическом каркасе из легких пластиковых палочек. Конструкция покоится на столе, и как на любой предмет, на нее действует сила тяжести со стороны Земли. Но стоит создать между фольгой и проволочкой разность потенциалов в несколько тысяч вольт, подав на нее высокое постоянное напряжение порядка 30000 вольт от маломощного источника питания, как конструкция, словно по волшебству, взлетает.

Речь здесь не идет о взлетающем конденсаторе, ведь обкладки, если их вообще можно так назвать, почти не перекрывают друг друга по сколь-нибудь значимой доле своих площадей, а значит практически никакого накопления энергии в диэлектрике между «обкладками» не происходит.

Если бы конструкцию не удерживали на столе тончайшие крепкие ниточки, она продолжила бы свое поступательное движение в направлении электрода из тонкой проволоки, но поскольку ниточки крепко держат изделие, оно просто зависает в воздухе над столом и как-бы левитирует над ним.

Этот эксперимент — наглядная демонстрация так называемого эффекта Бифельда-Брауна, известного многим экспериментаторам, любителям «лифтеров» (от англ. Lifter), чьи поделки в огромном разнообразии можно наблюдать на ютубе.

Эффект Бифельда-Брауна — это один из тех немногих физических эффектов, которые не так то просто однозначно объяснить и внятно описать даже сегодня. Фактически возле электрода-проволочки малой площади напряженность электрического поля в десятки раз превышает напряженность возле электрода-фольги большой площади.

Это значит, что на окружающее пространство данные «обкладки» воздействуют по-разному. В пространстве между электродами и около них имеет место сильно несимметричная картина постоянной во времени напряженности электрического поля.

Здесь есть, конечно, в качестве одной из составляющих, так называемый «ионный ветер», вклад которого, однако, в движение конструкции очень и очень мал, на «ионный ветер» приходится менее сотой доли всей тяги — менее 1% подъемной силы.

Ионного ветра хватает разве что на то, чтобы немного отклонить язычок пламени, как в школьном эксперименте с высоким напряжением на кончике иглы, поднесенной к зажженной свече. Это совсем мизерная сила, она не сможет даже приподнять фольгу от стола, не говоря уже о том, чтобы удерживать в подвешенном состоянии на натянутых нитях изделие весом в десятки и сотни грамм. Из 100 грамм тяги «ионный ветер» создает максимум 1 грамм.

Кроме того, 40% тяги при работе не в вакууме создает движение потока воздуха, возникающее вследствие эффекта коронного разряда на резкой грани в электрическом поле. На этом принципе уже сегодня работают электростатические безлопастные вентиляторы.

Возле тонкого электрода атомы воздуха ионизируются, и начинают двигаться в направлении широкого электрода, по пути они сталкиваются с другими молекулами воздуха, отдают им долю собственной кинетической энергии, или опять же ионизируют, и те поэтому ускоряются.

Так создается поток воздуха от тонкого электрода — к широкому. Этого потока воздуха достаточно чтобы поднять очень легкие модели по принципу реактивного движения с отбросом массы (масса молекул воздуха). Но в контексте того о чем будет сказано ниже, даже эта крупная составляющая эффекта Бифельда-Брауна является всего лишь паразитной компонентой, зависящей от величины тока (на самом деле — тока утечки).

Вся соль эффекта в том, что около 49% тяги, как говорят ученые, имеют здесь неизвестную природу, то есть практически половина общей подъемной силы как-то связана с действием несимметричного электрического поля на окружающее пространство, и вообще не связана с величиной тока, создаваемого потоком ионов воздуха.

По всей вероятности речь идет о воздействии этой заряженной конструкции на гравитационное поле над электродом малой площади. Если убрать ниточки, которые удерживают изделие на столе, оно будет все время стремиться вверх — в сторону электрода малой площади.

На этом принципе, как предполагают российские ученые Эмиль Бикташев и Михаил Лавриненко, можно попробовать построить очень эффективный двигатель для космического аппарата. Эксперимент в вакууме подтвердил принципиальную возможность данной затеи.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector