5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель twin cam 24 valve 2500 nissan характеристики

Двигатель Nissan KA24E (2.4 л. SOHC)

NISSAN KA24E — это 2.4 л (2389 куб.см.) четырехцилиндровый, четырехтактный бензиновый двигатель от Nissan Ка-семейства. Мотор Nissan KA24E выпускался с 1988 по 1997 год.

Двигатель Nissan KA24E имеет конструкцию SOHC (один верхний распределительный вал) с 12 клапанами (по 3 на цилиндр). В двигателе использовался чугунный блок цилиндров и алюминиевая головка цилиндров. Двигатель оснащен системой электронного впрыска топлива Hitachi, системой контроля времени зажигания и системой рециркуляции отработавших газов.

Диаметр цилиндра 89 и ход поршня 96 мм обеспечивают рабочий объем двигателя 2 389 куб. Степень сжатия составляет 8,6: 1 или 9,1: 1 для Nissan 240SX начала 1989 года. Двигатель Nissan KA24E производит 143 л.с. (105 кВт; 140 л.с.) при 5600 лошадиных силах и 206 Нм (21,0 кг · м) при 4400 об/мин крутящего момента.

Разбивка кода двигателя выглядит следующим образом:

  • KA — семейство двигателей
  • 24 — 2,4 литра
  • SOHC
  • E — многоточечный впрыск топлива
Характеристики двигателя KA24E
Код двигателяKA24E
ВидЧетырехтактный Inline-4 (Straight-4)
Тип топливабензин
Годы производства1988-1997
Объём2,4 л, 2 389 см 3
Топливная системаЭлектронная система впрыска топлива
Турбина
Лошадиные силы136 л.с. (100 кВт; 134 л.с.) при 5200 об/мин 143 л.с. (105 кВт; 140 л.с.) при 5600 об/мин
Крутящий момент206 Нм (21,0 кг · м) при 4400 об/мин 209 Нм (21,3 кг · м) при 3600 об/мин
Порядок работы цилиндров1-3-4-2
Размеры (Д × В × Ш)
Вес

Технические характеристики ka24e

Макс. мощность140 или 134 л.с.
Степень сжатия8,6: 1 или 9,1: 1 (240SX)
Количество клапанов12
Диаметр цилиндра89 мм
Ход цилиндра96 мм
Максимальный крутящий момент152 фунт-фут (206 Нм) при 4400 об / мин (Navara / Hardbody (D21) 154 фунта · фут при 3600 об / мин)
Объем двигателя2388 куб.см
Расход топлива6,9-7,7 л

Характеристики двигателя Ниссан КА24

Технические характеристики ka24de

Макс. мощность155 или 143 л.с.
Степень сжатия9,5:1 или 9,2:1 (Navara / Frontier (D22), Xterra)
Количество клапанов16
Диаметр цилиндра89 мм
Ход цилиндра96 мм
Максимальный крутящий момент160 ft · lb (217 Нм) при 4400 об / мин (Navara / Frontier (D22) 208 Н · м при 3600 об / мин) 154 фунт-фут при 4400 об / мин (2000-2004 Nissan Xterra).
Объем двигателя2389 куб.см
Расход топлива9,8-12,4 л

Тюнинг двигателя Nissan KA24DE

Атмосферник

Замена распредвалов на стоковые, но более агрессивные большой прибавки не даст, можно не тратить время на их поиски. Максимум что можно снять на сток распредвалах 248/248, с холодным впуском, выпускным коллектором 4-2-1, прямоточным выхлопом на 63 мм трубе, легким маховиком, настроенным мозгом JWT, это около 20 лишних л.с. Чтобы снять около 200 л.с. на колесах, нужно купить впускной коллектор Xcessive, дроссельную заслонку 90 мм (VK45DE), распредвалы на 272/272 с пружинами, сделать портинг ГБЦ, купить легкие кованые поршни (степень сжатия

11) и шатуны, коренные и шатунные вкладыши, форсунки SR20DET 370 сс, коллектор 4-1, прямоточных выхлоп на 63 мм трубе. Снять чуть за 200 л.с. можно поставив дросселя от Suzuki GSXR 1000 и увеличив степень сжатия. Примерно похожее можно построить на базе КА24Е, но придется по максимуму дорабатывать ГБЦ и ставить увеличенные клапаны, в итоге все равно мощность будет несколько ниже, чем на KA24DE. Также есть строкер киты для KA24DE, с шатунами длинной 165 мм, коленвалом 102 мм и поршнями 90 мм, что дает объем 2.6 литра, но снижает максимальные обороты. Стоит такое счастье не мало, куда проще за эти деньги сделать KA24DET.

KA24DET

Наиболее правильным тюнингом КА24 является турбирование, тем более стоковая поршневая неплохо держит наддув. Для этого вам нужно купить T3/T04E 50 trim 0.63 A/R, турбо коллектор, даунпайп, интеркулер, пайпинги, маф Z32, широкополосный лямбда зонд, вестгейт, блоуофф, насос Walbro 255, форсунки 550 сс, коренные и шатунные вкладыши Clevite, металлическую прокладку ГБЦ, 76 мм выхлоп, JWT. Этого хватит, чтобы на 1.1 баре получить около 350 л.с. на колесах. Используя турбину от SR20DET, можно собрать более городскую конфигурацию на 250+ л.с. с колес. На больших турбинах можно в сток поршни надуть около 500 л.с., если повезет, но лучше не рисковать и для постройки действительно мощного КА24 использовать ковку под степень сжатия 8.5-9, дорабатывать ГБЦ, ставить распредвалы 264/264 с пружинами, менять клапаны, один блок останется в стоке.

РЕЙТИНГ ДВИГАТЕЛЯ: 4+

Отзывы на двигатели от Ниссан серии ka24 в большинстве своем положительные. Неоспорима надежность двс, которая с лихвой покрывает небольшую «прожорливость». Причем высокий расход топлива наблюдается не у каждого автомобиля и зачастую связан с конкретными факторами. Решение с расходом бензина в большинстве случаев находится при диагностике на СТО.

Даже неопытных автомобилистов не озадачит самостоятельная замена прокладки клапанной крышки. Операция, помогающая избавиться от запаха масла в салоне, проводится максимально просто. Крышка, позволяющая добраться до старой прокладки клапанной крышки и прокладок свечных колодцев, снимается без проблем. Найти самый дешевый вариант можно на китайских торговых площадках, введя запрос gasket.

Какое масло выбрать?

Кa24de/ka24e предпочитают только качественное масло со следующими маркировками: 5W-30, 5W-40, 10W-30, 10W-40. Владельцы автомобилей с подобными двигателями чаще всего отдают предпочтение маслу с вязкостью 5W-40. В таком случае двигатель получает не только необходимую защиту, но и промывку частей. Масло с вязкостью 10W-40 используется реже, так большинство пользователей утверждает, что жидкость не подходит по вязкости, повышается вероятность закоксовки. Необходимо в среднем 3-4 литра. При этом двигатель «жрет» его нещадно, поэтому стоит не забывать о доливе. Замена жидкости производится 1 раз в 15 тысяч километров.

Что касается выбора марок, то одна из наиболее популярных – Castrol (5W-40). Главное – не наткнуться на наглые подделки, когда в фирменную упаковку заливается откровенно некачественное сырье.

Блок цилиндров KA24E

Двигатель Nissan KA24E имеет чугунный блок цилиндров, литые стальные шатуны, коленчатый вал из кованой стали с половиной противовеса. Диаметр цилиндра двигателя KA24E составляет 89,0, ход поршня — 96 мм, степень сжатия составляет 8,6: 1 или 9,1: 1.

Блок цилиндров
СплавЧугун
Коэффициент сжатия8,6: 1 или 9,1: 1
Диаметр цилиндра89,0
Ход поршня96,0
Поршневые кольца: компрессия/масло2/1
Коренные подшипники5
Внутренний диаметр цилиндра89.000-89.010
Диаметр юбки поршня88,970-88,980
Боковой зазор поршневого кольцаверхний 0,040-0,080
второй 0,030-0,070
масло 0,065-0,135
Кольцевой зазор поршневого кольцаверхний 0,28-0,43
второй 0,45-0,60 — R или T 0,55-0,70 — N
масло 0,20-0,60
Диаметр шейки коленвала59,967-59,975
Диаметр шатуна49,968-49,974

Процедура затяжки болтов несущей балки и характеристики крутящего момента:

● 46-52 Нм; 4,7-5,3 кг · м в два-три этапа

После закрепления болтов крышки подшипника убедитесь, что коленчатый вал плавно вращается рукой.

Гайка шатуна

  • Шаг 1: 14-16 Нм; 1,4-1,6 кг · м
  • Шаг 2. Поверните гайки на 60-65 °.

Болт шкива коленчатого вала

● 118-157 Нм; 12-16 кг · м

Крепежные болты маховика (M / T) или приводной пластины (A / T)

Прямо-сдвоенный двигатель — Straight-twin engine

Прямой образный двигатель , также известный как встроенные-близнецы , вертикальный-двойник , или параллельно-твин представляет собой двухцилиндровый поршневой двигатель , где два цилиндра расположен в линии вдоль общий коленчатый вал.

Прямые двухместные двигатели в основном используются в мотоциклах; другие виды использования включают автомобили, морские суда, снегоходы, водные мотоциклы, вездеходы, тракторы и сверхлегкие самолеты.

Для двигателей с прямыми сдвоенными валами использовались различные конфигурации коленчатого вала, наиболее распространенными из которых являются 360 градусов, 180 градусов и 270 градусов.

СОДЕРЖАНИЕ

  • 1 Терминология
  • 2 Дизайн
    • 2.1 Угол поворота коленчатого вала
    • 2.2 Коренные подшипники
  • 3 Использование в мотоциклах
    • 3.1 История
    • 3.2 Модели с поперечным расположением двигателя
    • 3.3 Модели с продольным расположением двигателя
  • 4 Использование в автомобилях
  • 5 Использование на морских судах
  • 6 Другое использование
  • 7 См. Также
  • 8 ссылки
Читать еще:  Что такое форсированный пуск двигателя

Терминология

Прямо-сдвоенная компоновка также упоминается как «параллельная-двойная», «вертикальная-двойная» и «линейная-двойная». Некоторые из этих терминов изначально имели определенные значения, относящиеся к углу коленчатого вала или ориентации двигателя, однако они также часто используются как взаимозаменяемые.

В Соединенном Королевстве термин «параллельный твин» традиционно используется для двигателей с углом поворота коленчатого вала 360 градусов, поскольку два поршня расположены в одном направлении (т.е. параллельны друг другу). «Вертикальный-твин» использовался для описания двигателей с углом поворота коленчатого вала 180 градусов, который заставляет поршни двигаться в противоположных направлениях. Термины «прямой твин» и «рядный твин» использовались в более общем смысле для любого угла поворота коленчатого вала.

Для мотоциклов термин «рядный сдвоенный двигатель» иногда относился либо к продольной ориентации двигателя (т. Е. С коленчатым валом на одной линии с шасси), либо к U-образному двигателю ( тандемный сдвоенный двигатель ), где цилиндры расположены продольно в шасси (хотя два коленчатые валы реально ориентированы поперечно).

Дизайн

По сравнению с V-образными двухцилиндровыми двигателями и двухцилиндровыми двигателями , прямые двухцилиндровые двигатели более компактны, имеют более простую конструкцию и дешевле в производстве. Двигатели с прямым сдвоенным двигателем могут быть подвержены вибрации либо из-за неравномерного интервала зажигания в кривошипно-шатунных двигателях на 180 °, либо из-за большой массы, не встреченной возвратно-поступательного движения, в двигателях с кривошипом на 360 °. Рядные близнецы также больше страдают от реакций крутящего момента и вибрации.

Угол поворота коленчатого вала

Наиболее распространенные конфигурации коленчатого вала для прямолинейных спаренных двигателей — это 360 градусов, 180 градусов и 270 градусов.

В двигателе с коленчатым валом, повернутым на 360 градусов, оба поршня движутся вверх и вниз одновременно. Однако интервал зажигания смещен между цилиндрами, причем один цилиндр работает во время первого оборота коленчатого вала, а затем другой цилиндр при следующем вращении. В 360-градусных двигателях может использоваться одна система зажигания для обоих цилиндров с использованием отработанной системы искры .

Несовершенный первичный баланс соответствует одноцилиндровому двигателю эквивалентной возвратно-поступательной массы. Ранние двигатели пытались уменьшить вибрацию с помощью противовесов на коленчатом валу, однако более поздние методы также включали балансирные валы и отдельный утяжеленный шатун. По сравнению с одноцилиндровым двигателем более частый интервал зажигания (360 градусов по сравнению с 720 градусами) приводит к более плавным ходовым характеристикам, несмотря на аналогичный динамический дисбаланс.

С 1930-х годов в большинстве британских четырехтактных прямолинейных сдвоенных мотоциклетных двигателей использовался коленчатый вал на 360 градусов, так как это позволяло избежать неравномерной пульсации впуска, характерной для других конфигураций, тем самым предотвращая необходимость в сдвоенных карбюраторах. В 1960-х годах, хотя японские мотоциклы в основном использовали коленчатый вал 180 градусов для двигателей объемом от 250 до 500 куб.см, различные двигатели меньшего и большего размера продолжали использовать коленчатый вал на 360 градусов. Вибрация была менее важной проблемой для небольших двигателей, таких как 1965 Honda CB92 и 1979 Honda CM185 . В более крупных двигателях, таких как Yamaha XS 650 1969 года и Yamaha TX750 1972 года , часто использовались балансирные валы для уменьшения вибрации. В более поздних двигателях Honda CB250N / CB400N 1978-1984 годов также использовался коленчатый вал с углом поворота 360 градусов. Мотоциклы BMW F с параллельным сдвоенным двигателем 2008 года также используют коленчатые валы на 360 градусов, с третьим «рудиментарным» шатуном (действующим как противовес) и ограничением числа оборотов 9000 об / мин для уменьшения вибраций.

В двигателе с коленчатым валом, повернутым на 180 градусов, один поршень поднимается, а другой опускается. В четырехтактном двигателе интервал зажигания неравномерен: второй цилиндр работает на 180 градусов после первого, за которым следует зазор в 540 градусов, пока первый цилиндр не сработает снова. Неравномерный интервал зажигания вызывает вибрацию и приводит к «неровной» подаче мощности. Для двигателя 180 ° также требуется отдельная система зажигания для каждого цилиндра.

Идеальный первичный баланс возможен с прямым сдвоенным двигателем на 180 градусов, однако конструкция создает качающуюся пару, которая требует использования уравновешивающего вала для уменьшения вибрации. Прямой двухцилиндровый двигатель 180 градусов имеет вторичный дисбаланс (аналогичный рядному четырехцилиндровому двигателю), однако меньшая возвратно-поступательная масса означает, что это часто не требует лечения.

Двигатель с коленчатым валом 180 ° страдает меньшими насосными потерями, чем двухцилиндровый двигатель на 360 °, потому что смещение картера относительно не изменяется при перемещении поршней.

В 1960-х годах японские производители мотоциклов отдавали предпочтение использованию коленчатых валов с углом поворота 180 градусов, поскольку повышенная плавность хода позволяла увеличить число оборотов и, следовательно, более высокую выходную мощность. Например, двигатель Honda CB450 1966 года с коленчатым валом 180 градусов имеет такую ​​же выходную мощность, что и современные британские двигатели с коленчатым валом 360 градусов, несмотря на меньший рабочий объем 450 куб. См по сравнению с 650 куб. И Yamaha TX500 1973 года, и Suzuki GS400 1977 года имели коленчатый вал 180 градусов и балансирный вал. С 1993 года большинство двигателей Honda с прямыми сдвоенными двигателями для мотоциклов используют коленчатый вал 180 градусов.

В двухтактных двигателях обычно используется коленчатый вал на 180 градусов, так как это приводит к двум равномерно распределенным рабочим ходам на оборот. Основная частота колебаний вдвое больше , чем эквивалентный одноцилиндровый двигатель, однако уменьшается вдвое амплитуда. Двухтактные двигатели, которые не используют коленчатый вал на 180 градусов, включают Yankee 1972 года и военную версию Jawa 350 1964 года , в обоих из которых вместо этого используются коленчатые валы на 360 градусов.

В двигателе с коленчатым валом на 270 градусов один поршень следует на три четверти оборота за другим. Это приводит к неравномерному интервалу зажигания, когда второй цилиндр стреляет на 270 градусов после первого, за которым следует зазор в 450 градусов, пока первый цилиндр не сработает снова. Это та же картина, что и у 90-градусного V-образного двигателя , и в результате обе конфигурации имеют схожий «пульсирующий» звук выхлопа. Поршни в прямом двухцилиндровом двигателе на 270 градусов никогда не бывают неподвижными одновременно (как в двухцилиндровом двигателе на 90 градусов), тем самым уменьшая чистый обмен импульсом между кривошипом и поршнями во время полного вращения.

Несовершенный первичный баланс создается в прямом двухцилиндровом двигателе на 270 градусов из-за комбинации свободной силы и качающейся пары; для компенсации этого часто используется балансирный вал. Вторичный баланс двигателя на 270 градусов идеален, однако конфигурация действительно приводит к неуравновешенной качающейся паре.

Первые серийные 270-градусные двухцилиндровые мотоциклетные двигатели были установлены на Yamaha TRX850 и Yamaha TDM 1996 года . Более поздние примеры включают Triumph Thunderbird 2009 года , Norton Commando 961 2010 года , серию Honda NC700 2012 года , Yamaha MT-07 2014 года , Triumph Thruxton 1200 2016 года и Royal Enfield Interceptor 650 2018 года .

Основные подшипники

В двухцилиндровых двигателях с прямым приводом каждый цилиндр имеет отдельный шатун , в отличие от двигателей с V-образным сдвигом, в которых для обоих шатунов может использоваться общий шатун . Большинство старинных британских прямолинейных двухцилиндровых мотоциклетных двигателей (таких как Triumph, BSA, Norton и Royal Enfield) имели два основных подшипника . Начиная с конца 1950-х годов, большинство прямолинейных сдвоенных двигателей Honda имели четыре основных подшипника. Последующие прямые двухдвигательные двигатели имели четыре, а иногда и три основных подшипника.

Двигатель Nissan 2.0 VC-T: переменная степень сжатия по рецепту. НАМИ!

Будет ли серийный кроссовер Infiniti QX50 нового поколения похож на концепт-кар QX Sport Inspiration? Теперь это не столь важно: свое место в энциклопедиях Infiniti займет как первый автомобиль, оснащенный серийным двигателем с переменной степенью сжатия. Спроектированным по рецепту. НАМИ!

Таким концепт-кар Infiniti QX Sport Inspiration был показан этой весной на автосалоне в Пекине, серийный QX50 унаследует многие его черты

Читать еще:  Что является навесным оборудованием двигателя

На обычную рядную «четверку» мотор 2.0 VC-T (Variable Compression Turbo) похож лишь «до пояса», а ниже у него хитроумный рычажный механизм. Шатун каждого цилиндра соединен с коленвалом не напрямую, а через подвижное коромысло — траверсу, которая своим противоположным концом связана с тягой электроактуатора. Перемещение этой тяги меняет наклон траверсы и, соответственно, расстояние между поршнем и шатунной шейкой коленвала, варьируя положение верхней мертвой точки (ВМТ).

Что это дает? Чем выше поднимается поршень, тем меньше объем камеры сгорания над ним. Топливовоздушная смесь сжимается сильнее, а сгорая и расширяясь, совершает бо́льшую работу. Соотношение между объемом камеры сгорания и полным объемом цилиндра как раз и есть степень сжатия. Чем она выше, тем больше теоретически достижимая эффективность сгорания топ­лива. Однако попутно растет и риск возникновения взрывного сгорания, то есть детонации, — особенно при высоких нагрузках. Именно поэтому применение наддува заставляет не повышать, а наоборот, понижать степень сжатия.

Новый турбомотор 2.0 VC-T при крайнем верхнем положении траверсы способен достигать очень высокой степени сжатия 14,0:1 — как у атмосферных «четверок» Skyactiv компании Mazda. Но если маздовские моторы так работают во всех режимах, то двигатель Nissan — только на малых оборотах при небольших нагрузках. При их увеличении механизм переходит в промежуточные положения, понижая степень сжатия, а на высоких оборотах или под полным дросселем автоматика сдвигает ВМТ вниз — и степень сжатия падает до минимума: 8,0:1.

Мотор 2.0 VC-T ­немного крупнее и тяжелее обычных турбочетверок, но существенно компакт­нее двигателей V6, которые он должен заменить

Интересно, что двигатель по неофициальной информации выдает примерно 270 л.с. и 390 Нм крутящего момента — то есть форсирован на уровне обычных двухлитровых турбомоторов «заряженных» машин. Куда важнее, что агрегат 2.0 VC-T сулит сокращение расхода топлива на 27% по сравнению с атмосферной «шестеркой» Nissan 3.5 серии VQ, — которую, судя по всему, и призван заменить. А еще мотористы компании Nissan уверяют, что такие двигатели с изменяемой степенью сжатия станут альтернативой дизелям: ведь при схожей экономичности они требуют менее сложных систем очистки выхлопа и легче впишутся в строгие экологические нормативы.

Почему же раньше японцев никто не довел такие двигатели до серийного воплощения на легковушках? Ведь впервые эту идею еще в 20-х годах прошлого века предложил британский инженер Гарри Рикардо. Полвека назад в Америке выпускали «переменный» танковый дизель Continental AVCR-1100, а в конце 90-х аналогичные исследования вели Daimler, Volvo, Audi, Porsche, Honda, Ford, Suzuki, Peugeot и Citroen, Lotus, российский институт НАМИ, немецкая компания FEV.

Но за это время не появилось даже единого мнения, какой механизм считать наиболее эффективным. Вариант с раздвижными поршнями (как на дизеле AVCR-1100) грозит сложнос­тями со смазкой и не позволяет точно контролировать степень сжатия. Телескопичес­кие шатуны или щеки коленвала снижают надежность. Вспомогательные поршни, которые открывают дополнительные полости в стенках камеры сгорания, варьируя ее объем, ставят под угрозу герметичность. Эксцент­рики в нижних или верхних головках шатунов осложняют индивидуальное управление цилиндрами, а смещение коленвала относительно всего блока цилиндров требует еще и «переходников» в трансмиссии.

В ниссановском двигателе траверса (а) вращается вместе с коленвалом, а дополнительная система рычагов (б) с приводом от электроактуатора (в) контролирует ее наклон. Когда необходим переход на высокую степень сжатия, актуатор поворачивается по часовой стрелке, меняя положение эксцентрикового вала, который в свою очередь опускает правое плечо траверсы, а та своим противоположным плечом смещает поршень (г) и шатун вверх. При переходе на низкую степень сжатия механизм работает в обратной последовательности — и ВМТ уходит вниз

Ну а Saab 16 лет назад даже приглашал журналистов на тесты компрессорной «пятерки» 1.6 SVC (АР №21, 2000) с наклонным моноблоком, который смещался относительно коленвала. Мотор получился темпераментным (225 л.с.), но шумным и капризным на низах. А главное — дорогим и сложным. Поэтому до конвейера дело тоже не дошло.

Под конец 2000-х надежды подавал еще и французский двигатель ­MCE-5 для автомобилей Peugeot и Citroen: в нем поршень с «шатуном» были монолитны и толкали кривошип через зубчатую передачу и коромысло, положение которого корректировал сервопривод. Но все достоинства этого механизма нивелировала невозможность унифицировать такой мотор с традиционными двигателями.

А схему с траверсой и управляющей тягой, которую собирается применить Nissan, в конце 80-х запатентовали в. советском институте НАМИ! Самый же ранний патент компании Nissan датирован 2001 годом — и описывает очень похожий механизм, хотя и переосмысленный: с иной геометрией расположения элементов и нижним креплением управляющего рычага.

В саабовском двигателе SVC эксцент­риковый вал приподнимал или опускал опоры одной из сторон моноблока, в который были объединены блок цилиндров и его головка. Объем камеры сгорания менялся, но попутно менялось и положение верхней части двигателя под капотом, что требовало доработки впускной и выпускной систем. Интересно, что Saab тоже предлагал изменять степень сжатия в диапазоне от 8,0:1 до 14,0:1, однако при самой высокой степени мотор работал как атмосферник: муфта отключала привод компрессора

Кстати, еще раньше на работы ­НАМИ обратил внимание концерн Daimler: в 2002—2003 годах из России в Штутгарт были отправлены три «траверсных» мотора на основе мерседесовского дизеля OM611 (2,15 л) и бензиновой двухлитровой «четверки» М111. Российский механизм позволял менять степень сжатия в пределах от 7,5:1 до 14,0:1, но очень скоро Daimler и НАМИ обнаружили, что выгода от него весьма эфемерна: эффективность повышалась на 20% при переходе от минимальной степени сжатия к обычной (10,0:1), а дальнейшее повышение до 14,0:1 давало всего 3,5% выигрыша.

Почему же Nissan с оптимизмом смот­рит на серийную перспективу? Несмотря на сложность нового кривошипно-шатунного механизма с возросшими потерями на трение, на прибавку лишних десяти килограммов и на ограничения по унификации, в производство двигатели 2.0 VC-T должны пойти в конце 2017 года. Возможно, потому, что надежда на гибриды не оправдалась: в Америке за этот год продано всего 2,5 тысячи гибридомобилей Nissan и Infiniti. Делать ставку на дизели после скандала с концерном Volkswagen тоже не вариант. А «переменный» мотор поможет не только отказаться от закупки двухлитровых турбочетверок у концерна Daimler, но и прибавит козырей по части имиджевой рекламы. Ведь таких агрегатов действительно не делает никто в мире!

Кстати, мотор с переменной степенью сжатия как нельзя лучше подходит для ездового цикла по измерению расхода топлива. И это тоже козырь.

V-TWIN

  • Рабочий объем, см³: 688
  • Мощность, кВт (л.с.): 15.5 (20.8) при 3600 об/мин
  • Крутящий момент, Нм: 48.3 при 2500 об/мин

  • Рабочий объем, см³: 688
  • Мощность, кВт (л.с.): 15.5 (20.8) при 3600 об/мин
  • Крутящий момент, Нм: 48.3 при 2500 об/мин

  • Рабочий объем, см³: 688
  • Мощность, кВт (л.с.): 15.5 (20.8) при 3600 об/мин
  • Крутящий момент, Нм: 48.3 при 2500 об/мин

  • Рабочий объем, см³: 688
  • Мощность, кВт (л.с.): 16.5 (22.1) при 3600 об/мин
  • Крутящий момент, Нм: 48.3 при 2500 об/мин

  • Рабочий объем, см³: 688
  • Мощность, кВт (л.с.): 16.5 (22.1) при 3600 об/мин
  • Крутящий момент, Нм: 48.3 при 2500 об/мин

  • Рабочий объем, см³: 688
  • Мощность, кВт (л.с.): 16.5 (22.1) при 3600 об/мин
  • Крутящий момент, Нм: 48.3 при 2500 об/мин
Читать еще:  Горит перегрев двигателя на холодную

  • Рабочий объем, см³: 688
  • Мощность, кВт (л.с.): 15.5 (20.8) при 3600 об/мин
  • Крутящий момент, Нм: 48.3 при 2500 об/мин

  • Рабочий объем, см³: 688
  • Мощность, кВт (л.с.): 16.5 (22.1) при 3600 об/мин
  • Крутящий момент, Нм: 48.3 при 2500 об/мин

  • Рабочий объем, см³: 688
  • Мощность, кВт (л.с.): 16.5 (22.1) при 3600 об/мин
  • Крутящий момент, Нм: 48.3 при 2500 об/мин

  • Рабочий объем, см³: 779
  • Мощность, кВт (л.с.): 18.6 (24.9) при 3600 об/мин
  • Крутящий момент, Нм: 54,5 при 2500 об/мин

  • Рабочий объем, см³: 779
  • Мощность, кВт (л.с.): 18.6 (24.9) при 3600 об/мин
  • Крутящий момент, Нм: 54,5 при 2500 об/мин

  • Рабочий объем, см³: 779
  • Мощность, кВт (л.с.): 18.6 (24.9) при 3600 об/мин
  • Крутящий момент, Нм: 54,5 при 2500 об/мин

Новые модели Honda iGX и iGXV серии V-Twin

Компания Honda расширяет линейку двигателей V-Twin серии GX, представляя новые модели со впрыском топлива сразу в двух категориях — двигатели с вертикальным и горизонтальным валом.

Honda iGX700 и Honda iGX800 в горизонтальной конфигурации и Honda iGXV700 и Honda iGXV800 — в вертикальной.

Эти модели оснащены современной системой электронного впрыска топлива (EFI), которая обеспечивает дополнительные функции и надежность для требовательного коммерческого оборудования, включая строительное и силовое оборудование (резчики швов, затирочные машины, вибрационные катки, генераторы и т. д.), а садовое оборудование (тракторы, измельчители и т. д.).

В качестве отличительных особенностей новых моделей можно отметить:

Компактный дизайн, подобный существующим моделям V-Twin, позволяющий легко устанавливать новые двигатели на существующую технику

Интегрированная архитектура электронного блока управления ECU (позволяющая управлять ключевыми аспектами работы двигателя) расширяет существующую линейку Honda iGX (iGX270 и iGX390)

Самонастраивающийся регулятор управления дросселем (STR) — для поддержания стабильных оборотов двигателя в условиях изменяющейся нагрузки

Технология электронного впрыска (EFI) для экономии топлива

Автоматическая воздушная заслонка упрощает использование, уменьшая количество неисправностей карбюратора, связанных с некачественным топливом

Упрощенная диагностика для увеличения срока службы двигателя и сокращения времени простоя

Расширенные возможности связи и удаленного управления через шину CAN

Основные характеристики в деталях:

Подобно существующим двигателям Honda GX630/GXV630 и GX690/GXV690, новые двигатели отличаются компактной конструкцией, включающей полусферическую камеру сгорания, объединенный цилиндр и головку цилиндра и шатуны из кованой стали. Другие функции, которые по достоинству оценят пользователи, включают в себя цифровую систему зажигания, долговечный воздушный фильтр, автомобильный стартер и топливный насос высокого давления. Все эти элементы способствуют высокой эффективности работы, превосходному охлаждению, низкому уровню шума и вибрации, а также надежной работе.

Размеры корпусов двигателей GX630/GXV630 и GX690/GXV690 аналогичны iGX700/iGXV700 и iGX800/iGXV800, что позволяет производителям техники максимально гибко использовать имеющееся станочное оборудование и рамы.

Электронный блок управления (ECU) обеспечивает возможность дистанционного управления по проводам, что позволяет управлять ключевыми параметрами работы двигателя, а скорость вращения двигателя можно запрограммировать на основе требований к нагрузке и оборотам (например, эко-режим/режим полной мощности).

Самонастраивающийся регулятор управления дросселем (STR) минимизирует падение частоты оборотов двигателя, наблюдаемое в традиционных механических регуляторах, благодаря электронному регулированию дроссельной заслонки для поддержания стабильных оборотов двигателя даже в условиях изменяющейся нагрузки.

Технология EFI (электронный впрыск топлива) исключает карбюратор и позволяет топливному инжектору с электронным управлением выдавать необходимое количество топлива, таким образом обеспечивая ряд ключевых функций для новых моделей Honda, таких как:

Топливная эффективность, в частности, благодаря электронной системе управления, которая непрерывно контролирует и регулирует соотношение воздух/топливо в двигателе в соответствии с переменными условиями эксплуатации.

Повышенная надежность и меньший объем технического обслуживания из-за уменьшения проблем с карбюратором, связанных с некачественным топливом.

Улучшенный запуск благодаря постоянной оптимизации топливо-воздушной смеси.

Повышение комфорта пользователя за счет устранения ручного управления воздушной заслонкой и топливного отсечного клапана.

Более простая диагностика и связь между электронными блоками управления (ECU). Новые модели V-Twin оснащены цифровым счетчиком моточасов и светодиодным индикатором, который информирует пользователя о возможных неисправностях, таких как недостаточный уровень масла, ненормальное напряжение аккумулятора, проблемы с датчиками и т.д. Эти индикаторы предназначены для предупреждения оператора о необходимости каких-либо корректирующих действий. Новые модели V-Twin предлагают стандартизированный метод связи между электронными блоками управления (ECU), создавая уникальную ценность для производителей оборудования, предлагая расширенные возможности дистанционного управления, возможность подключения к “Интернету вещей” (IoT) и более простую диагностику.

Все модели соответствуют самым строгим мировым стандартам по выбросам выхлопных газов, в том числе «Евро 5», «EPA Phase 3» и «CARB Tier 3».

Распредвал: OHV, OHC, SOHC и DOHC в чем разница?

Разберемся с задачами распредвала автомобиля. Распределительный вал обеспечивает четырехтактному двигателю возможность для открытия и закрытия клапанов в головке блока цилиндров. Таким образом, происходит газообмен в двигателе любого автомобиля. Для этой цели на распредвале расположены, так называемые: «кулачки», равные числу клапанов. Кулачки преобразуют вращательное движение распределительного вала в возвратно — поступательное движение клапанов. Кулачок толкает клапан (через толкатели или коромысло) вниз. Распределительный вал вращается на половине скорости коленчатого вала. Связь между коленчатым валом и распределительным валом, как правило, происходит при помощью зубчатого ремня или металлической цепи, а также, в редких случаях — зубчатым редуктором.

Разница между OHV, OHC, SOHC и DOHC

OHV (Over Head Valve), что дословно означает как: «клапаны установлены в головке цилиндров». Часто термин «OHV» используется для описания конструкции двигателя, где распределительный вал установлен внутри блока цилиндров — внизу, а клапаны работают через подъемники, толкатели и коромысло. Стоит сказать, что эта конструкция OHV успешно используется на протяжении десятилетий, но уже считается достаточно устаревшей.

Основным недостатком конструкции OHV является то, что трудно точно контролировать фазу газораспределения на высоких оборотах. Причиной этого является более высокая инерция, вызванная большим количеством компонентов клапанной системы. Это означает, что конструкция OHV лучше подходит для двигателей с большими объемами, например V8 или еще более крупных, где большой объем мотора обеспечивает более высокий крутящий момент при более низких оборотах. Кроме того, технически сложнее установить больше чем 2 клапана на цилиндр — что можно легко сделать в двигателе DOHC.

OHC (Over Head Cam) и SOHC (Single Over Head Cam).
В двигателе SOHC распределительный вал установлен в головке цилиндров, а клапаны управляются либо коромыслами, либо непосредственно через подъемники.

Основным преимуществом конструкции OHC является то, что клапаны работают почти непосредственно с помощью распределительного вала, что упрощает сохранение точного времени при более высоких оборотах. Также есть возможность для установки трех или четырёх клапанов на цилиндр.

DOHC (Double OverHead Cam), или иногда его еще называют «Twin Cam» или «Double Cam». Большинство современных автомобилей имеют двигатели DOHC. Типичный двигатель DOHC имеет два распределительных вала и 4 клапана на цилиндр. Один распределительный вал управляет впускными клапанами, которые установлены с одной стороны, а другой распределительный вал управляет выпускными клапанами на противоположной стороне. Помните, раньше еще висел «шильдик» на крышке багажника многих автомобилей, говоря о том, что мотор данного авто достаточно современный?

Благодаря конструкции DOHC распределительные валы могут быть установлены отдельно друг от друга. Это позволяет впускным клапанам находиться под большим углом от выпускных клапанов, что приводит к более прямому потоку воздуха через двигатель с меньшим сопротивлением. Другими словами, двигатель DOHC может «дышать» лучше и, следовательно, дает больше лошадиных сил из меньшего объема двигателя.

Правда, и у этой системы есть свои недостатки. Технологии DOHC включают более крупную и более сложную конструкцию, с дополнительными ременными или цепными передачами.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector