0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатели с числом оборотов 10000

Моторы Формулы-1

  • Пилоты
    • Победители ГП
    • Чемпионы
  • Конструкторы
    • Победители ГП
    • Чемпионы
  • Сезоны
  • Гран-при
  • Трассы
    • Race Promoters’ Trophy winners
  • Система начисления очков
  • Номера пилотов
  • Моторы
  • Национальные цвета
  • Спонсоры
  • Гоночные флаги
  • Фатальные аварии
  • Гонщики, не участвовавшие в гонке
  • Гран-при, остановленные красным флагом
  • Международная автомобильная федерация
  • Всемирный совет по автоспорту
  • Ассоциация конструкторов Формулы-1
  • Ассоциация команд Формулы-1
  • Ассоциация гонщиков Формулы-1

С момента возникновения в 1949 году в Формуле-1 применялись различные двигатели.

Содержание

  • 1 История
    • 1.1 1949—1953
    • 1.2 1954—1960
    • 1.3 1961—1965
    • 1.4 1966—1986
    • 1.5 1987—1988
    • 1.6 1989—1994
    • 1.7 1995—2004
    • 1.8 2005
    • 1.9 2006
    • 1.10 2007—2008
    • 1.11 2009
    • 1.12 2010
    • 1.13 2011
    • 1.14 2012
    • 1.15 2013
    • 1.16 2014

История [ править | править код ]

1949—1953 [ править | править код ]

В этот период команды могли использовать атмосферные двигатели объёмом 4,5 л, либо двигатели с нагнетателем объёмом до 1,5 литров. Мощность достигала 425 л.с. (317 кВт).

  • Alta Р4 1,5 л (с механическим нагнетателем)
  • Alfa-Romeo Р8 1,5 л (с механическим нагнетателем)
  • Bristol Р6 2,0 L
  • BRM V16 1,5 л (с механическим нагнетателем)
  • ERA Р6 1,5 л (с турбонагнетателем)
  • Ferrari Р4 2,0 л (F2), V12 1,5 л (с механическим нагнетателем), V12 2,0 л (F2) и V12 4,5 л
  • Lea-Francis Р4 2,0 л (F2)
  • Maserati Р4 1,5 л (с механическим нагнетателем) and Р6 2,0 л (F2)
  • O.S.C.A. V12 4,5 л
  • Simca-Gordini Р4 1,5 л (с механическим нагнетателем)
  • Talbot-Lago Р6 4,5 л

1954—1960 [ править | править код ]

Объём двигателей был понижен до 2,5 л для атмосферных и до 750 см³ для компрессорных. Но ни одна из команд не стала использовать двигатели с нагнетателем. В Формуле-2 тогда использовались 2-литровые двигатели. Это давало возможность не проектировать новые двигатели, а просто увеличить объём старых моторов.

  • Alta Р4 2,5 л
  • Aston Martin Р6 2,5 л
  • BRM Р4 2,5 л
  • Coventry Climax Р4 2,0 л и Р4 2,5 л
  • Ferrari Р4 2,5 л и V6 2,5 л
  • Lancia V8 2,5 л (после ухода Lancia из Формулы-1 эти двигатели использовали в Ferrari)
  • Maserati Р4 2,5 л,Р6 2,5 л и V12 2,5 л
  • Mercedes Р4 2,5 л
  • Offenhauser Р4 1,7 л
  • Scarab Р4 2,5 л (разработан Offenhauser)
  • Vanwall Р4 2,5 л

1961—1965 [ править | править код ]

В 1961 были вновь изменены требования к двигателям. Теперь можно было использовать только атмосферные двигатели объёмом 1,5 литра. Мощность колебалась от 150 до 225 л.с.

  • ATS V8 1,5 л
  • BRM V8 1,5 л
  • Coventry Climax Р4 1,5 л, V8 1,5 л и H16 1,5 л (никогда не участвовал в гонках)
  • Ford Р4 1,5 л
  • Ferrari V6 1,5 л, V8 1,5 л и H12 1,5 л
  • Honda V12 1,5 л
  • Porsche H4 1,5 л и H8 1,5 л (оба воздушного охлаждения)
  • Maserati Р4 1,5 л и V12 1,5 л (никогда не участвовал в гонках)

1966—1986 [ править | править код ]

В 1966 вступили в силу новые правила. Объём двигателей увеличили до 3,0 л для атмосферных и 1,5 л для двигателей с нагнетателем. Это вызвало недовольство многих команд. В 1966 Coventry Climax, чьи 1,5 литровые моторы использовали многие команды была куплена компанией Jaguar. Поставки двигателей для команд Формулы-1 были прекращены. Командам пришлось искать новых поставщиков. Так Cooper перешли на двигатели Maserati, устаревшей конструкции. Brabham обратились к австралийской Repco, а Lotus заключили договор с BRM о поставках двигателя BRM-75. В 1967 появился серийно выпускаемый Cosworth DFV, что позволило принять участие в чемпионате мира небольшим производителям. В 1977 появился турбированный двигатель Renault-Gordini V6 Turbo. Мощность двигателей была от 390 до 500 л.с., а для турбированных от 500 до 900 л.с. в гонке и до 1000 л.с. во время квалификации. Также регламент 1966 года допускал роторно-поршневые и газотурбинные двигатели, с любыми параметрами. Роторно-поршневые так и не появились, а газотурбинный турбовальный двигатель стоял на Lotus 56B, но показал свою несостоятельность из-за высокого расхода топлива и турболага.

  • Alfa Romeo V8 1,5 л Turbo, V8 3,0 л, Оппозитный-12 3,0 л и V12 3,0 л
  • BMW M12 Р4 1,5 л Turbo
  • BRM H16 3,0 л и V12 3,0 л
  • Coventry Climax V8 3,0 л
  • Ferrari V6 1,5 л Turbo, V12 3,0 л and H12 3,0 л
  • Ford V6 1,5 л Turbo и V8 3,0 л
  • FordCosworth DFV V8 3,0 л и DFY V8 3,0 л
  • Hart Р4 1,5 л Turbo
  • Honda V12 3,0 л, V8 3,0 л воздушного охлаждения и V6 1,5 л Turbo
  • Maserati V12 3,0 л
  • Matra V12 3,0 л
  • Motori Moderni V6 1,5 л Turbo
  • Repco V8 3,0 л
  • Renault Gordini V8 (никогда не участвовал в гонках) 3,0 л and Gordini V6 1,5 л Turbo
  • Serenissima V8 3,0 л
  • TAG-Porsche V6 1,5 л Turbo
  • Tecno H12 3,0 л
  • Weslake V12 3,0 л
  • Zakspeed Р4 1,5 л Turbo

1987—1988 [ править | править код ]

Мощности турбомоторов постоянно росли, снижая безопасность гонок. Поэтому FIA приняла решение ограничить давление наддува до 4 атм в квалификации и увеличить максимальный объём атмосферных двигателей до 3,5 литров. Команды March, Lola, Tyrrell, AGF и Coloni использовали атмосферный двигатель Ford Cosworth DFZ 3,5 L V8 мощностью 575 л.с. В 1988 году давление наддува снизили до 2,5 атм, но доминирование турбомоторов продолжилось.

  • Alfa-Romeo 890T V8 1,5 л Turbo 700 л.с., 415/85T V8 1,5 л Turbo
  • BMW M12/13 Р4 Turbo 1,5 л 850 л.с.
  • FerrariV12
  • FordCosworth TEC-F1 Ford GBA V6 1,5 л Turbo 850—1000 л.с., DFZ V8 3,5 л 575 л.с. (1987) и 858 л.с. (1988), DFR V8 3,5 л 585 л.с.
  • Honda RA 167 E V6 1,5 л Turbo 850/1000 л.с., RA 168 E V6 1,5 л Turbo 650 л.с.
  • Judd CV V8 3,5 л 600 л.с.
  • Megatron M12/13 Р4 Turbo 1,5 л 920 л.с. (1987) и 650 л.с. (1988)
  • Motori ModerniV6 1,5 л Turbo 800 л.с.
  • TAG-Porsche TTE-P01 V6 1,5 л Turbo 850 л.с.
  • ZakspeedР4 Turbo 1,5 л 800 л.с.

1989—1994 [ править | править код ]

В 1989 турбированные двигатели полностью запретили. Конец турбоэры позволил прийти в Формулу-1 новым поставщикам двигателей таким, как Yamaha и Lamborghini. После двухлетнего отсутствия вернулись Renault.

  • Ferrari 65° V12 620—715 л.с.
  • FordCosworth DFR 90° V8 595 (1989) и 620 л.с. (1990), HB V8 615—730 л.с., Zetec-R ECA V8 750 л.с.
  • Hart 1035 V10
  • Honda RA 675—710 л.с.
  • Ilmor 72° V10 680—765 л.с.
  • Judd EV 72° V8 640 л.с. при 12500 об/мин и GV 72° V10 750 л.с. при 13500 об/мин
  • Lamborghini L3512 80° V12 700 л.с.
  • Life F35 60° W12 650 л.с. при 12500 об/мин
  • Mugen-Honda MF V10
  • Peugeot V10 A4 700 л.с. и A6 760 л.с.
  • Porsche V12 3,5 680 л.с. при 13000 об/мин
  • Renault RS V10 600—790 л.с.
  • Subaru F12 (никогда не участвовал в гонках)
  • Yamaha OX V8 (1989), OX 99 72° V10 660 л.с. и OX 10A 72° V10 до 750 л.с.
Читать еще:  Evo x какой двигатель

1995—2004 [ править | править код ]

С 1995 по 1997 моторы Renault трижды выиграли кубок конструкторов и чемпионат мира. В 1995-м максимальный объём двигателя сократили с 3,5-х литров до 3-х. В 1998 и 1999 чемпионом мира стал Мика Хаккинен на McLaren с мотором Mercedes. С 1999 по 2004 кубок конструкторов завоёвывали только Ferrari. С 2000 года Williams перешли на двигатели BMW. После 2000-го года в регламенте появился пункт, разрешающий использовать только моторы конфигурации V10, из-за чего на год отложился дебют команды Тойота, планировавших дебютировать с двигателем V12.

  • Acer 90° V10 800 л.с. при 16200 об/мин
  • Arrows C 72° V10 700 л.с. при 15000 об/мин (1998), A20E 72° V10 715 л.с. при 15000 об/мин (1999)
  • Asiatech V10 001 (2001) и AT02 (2002) 800 л.с.
  • BMW V10 800—900 л.с.
  • European 72° V10 790 л.с. при 16200 об/мин
  • Ferrari 65°,Tipo V12 750 л.с.
  • Ferrari Tipo V10 600—880 л.с.
  • Fondmetal RV10 770 л.с. при 15800 об/мин
  • FordCosworth ED V8 630—705 л.с. (1995—1998), Zetec-R V10 790 л.с. (1996—1999), CR V10 700—840 л.с.
  • Hart 830 V8 (1995—1996), 830 AV 7 680 л.с. при 13100 об/мин (1997)
  • Honda RA 675—710 л.с.
  • Mecachrome GC37-01 (Renault RS9) 71° V10 775 л.с. при 15600 об/мин (1998)
  • Mercedes FO 110 690—870 л.с.
  • Mugen-Honda MF-301 V10 600—770 л.с.
  • Peugeot V10 760—800 л.с.
  • Petronas V10 760—870 л.с.
  • Playlife V10 750—780 л.с.
  • Renault RS V10 750—820 л.с.
  • Supertec V10 FB01 (1999) и FB02 (2000) 780 л.с.
  • Toyota RVX 90° V10 830—880 л.с.
  • Yamaha OX 10C 72° V10 680 л.с. (1995), OX 11A 72° V10 690 и 700 л.с. (1996 и 1997)

2005 [ править | править код ]

В 2005 году команды должны были использовать двигатели V10 объёмом 3 литра, имеющие не более 5 клапанов на цилиндр.

  • BMW P84/5 935 л.с.
  • Cosworth TJ 2005 900 л.с. при 18300 об/мин
  • Ferrari Tipo 053 880 л.с. и 055
  • Honda RA 005 E 900 л.с. при 18500 об/мин
  • Mercedes FO 110R 920 л.с.
  • Petronas 05A (Ferrari Tipo 053)
  • Renault RS25 950 л.с.
  • Toyota RVX-05 90° 900 л.с. при 19000 об/мин

2006 [ править | править код ]

В 2006 объём двигателя снизили до 2,4 литра, а количество цилиндров до 8. Диаметр цилиндра должен был быть не более 98 мм, а ход поршня не менее 37 мм. Системы предварительного охлаждения воздуха запрещены. Также запрещено подавать в двигатель что-либо, кроме воздуха и горючего. Впуск и выпуск изменяемой геометрии также запрещены. Каждый цилиндр может иметь только одну форсунку для впрыска топлива и только одну свечу зажигания. Естественно двигатель должен был быть атмосферным и иметь вес не менее 95 кг. Также для команд разрешили на 2006 и 2007 год использовать старые двигатели V10 с ограничением числа оборотов. Блок цилиндров и картер двигателя должны быть выполнены из сплавов алюминия. Коленвал и распредвалы должны быть сделаны из стали или чугуна. Толкатели клапанов должны быть выполнены из сплавов алюминия, а сами клапаны — из сплавов на основе железа, никеля, кобальта или титана. Использование карбона и композитных материалов при производстве блока цилиндров, головки блока и клапанов запрещено. Это привело к снижению мощности по сравнению с 3-литровыми двигателями на 20%.

  • BMW P86 760 л.с.
  • Cosworth TJ 2006 V10 ограничение 16700 об/мин и CA 2006 V8
  • Ferrari Tipo 056 735 л.с.
  • Honda RA 806 E 760 л.с. при 19000 об/мин
  • Mercedes FO 128S 760 л.с.
  • Renault RS26 735 л.с. (750 л.с. в версии B)
  • Toyota RVX-06 760 л.с. при 19000 об/мин

2007—2008 [ править | править код ]

Чтобы снизить затраты команд в 2007 и 2008 году регламент не стали менять. Было только введено ограничение числа оборотов до 19000.

2009 [ править | править код ]

В 2009 разрешено использовать такие же двигатели 2008 с ограничением по числу оборотов 18000. Также командам разрешено использовать систему KERS.

2010 [ править | править код ]

В 2010 в формулу-1 вернулась компания Cosworth.

2011 [ править | править код ]

В 2011 произошли небольшие изменения в поставщиках моторов для команд. От услуг Cosworth отказалась Team Lotus. Также со следующего сезона моторы Renault RS27 будет использовать и AT&T WilliamsF1.

2012 [ править | править код ]

  • Cosworth CA2012 V8 (HRT F1 Team, Marussia F1 Team)
  • Ferrari Tipo 056 (Scuderia FerrariMarlboro, Scuderia Toro Rosso, Sauber F1 Team)
  • Mercedes FO 108Y (VodafoneMcLarenMercedes, Mercedes GPPetronas, Force India F1 Team)
  • Renault RS27-2012 (Lotus F1 Team, Red Bull Racing, Caterham F1 Team, AT&TWilliamsF1)

2013 [ править | править код ]

  • Cosworth CA2013 2,4 V8 (Marussia F1 Team)
  • Ferrari 056 2,4 V8 (Scuderia Ferrari, Scuderia Toro Rosso, Sauber F1 Team)
  • Mercedes FO 108F 2,4 V8 (VodafoneMcLarenMercedes, Mercedes AMGPetronas, Force India F1 Team)
  • Renault RS27 V8 (Lotus F1 Team, Red Bull Racing, Caterham F1 Team, AT&TWilliamsF1)

2014 [ править | править код ]

2014 год стал первым сезоном, в котором используются 1,6-литровые турбированные двигатели V6 с максимумом 15000 оборотов в минуту. Мощность снижена до 600 л.с.

Электродвигатели высоковольтные 6-10кВ

Асинхронный электродвигатель — это электрический агрегат с вращающимся ротором, скорость которого отлична от скорости вращения магнитного поля статора.
Перед тем как купить асинхронный электродвигатель необходимо обязательно оценить параметры двигателя. Различия агрегатов могут быть как для однофазных, так и трехфазных асинхронных электродвигателей.

Основными характеристиками асинхронных двигателей являются:
Пусковой момент, ток.
Регулировка скорости вращения ротора. Самые распространенные:
Регулируется напряжение и частота, применением преобразователей.
Изменяется количество полюсных пар. Добавляется дополнительная обмотка с режимом переключения.
Рабочие характеристики определяются зависимостью частоты вращения, полезного момента на роторе, коэффициента мощности, тока статора, от полезной мощности.
Тормозные режимы:
Рекуперативные.
Противовключение.
Динамические.

Читать еще:  Двигатель f23a схема двигателя

Компания «ВП-АЛЬЯНС» поставляет только сертифицированное оборудование с гарантией до 5 лет. При потребности заказчика, выполняется выезд мастера на объект, монтаж, пусконаладочные работы, диагностика и ремонт электротехнического оборудования.

Купить электродвигатель для насоса, вентиляции, градирни или др. механизма Вы можете оставив заявку на нашей почте info@vp-alliance.ru или связавшись с нашими менеджерами по телефону (800) 500-06-98.

Виды электродвигателей:

Двигатели А4 с короткозамкнутым ротором, предназначены для электроприводов в устройствах, механизмах, машинах, где не регулируется частота вращения.
Асинхронные серии ВАСО, взрывозащищенные вертикального исполнения с короткозамкнутым ротором применяются в приводах воздушного охлаждения. Редукторы не предусмотрены, эксплуатируются в средах, способных образовать взрывоопасные смеси.
Асинхронные электродвигатели трехфазные с короткозамкнутым ротором, серии ДАЗО используются в приводах, где не регулируется частота вращения. Работают в сетях переменного тока частотой 50 Гц. Питающее напряжение – 3 000, 6 000, 10 000 В..
Серия ВАО2 относится к асинхронным, взрывозащищенным с короткозамкнутым ротором, применяются в приводах, работающих в условиях повышенной концентрации газа, пыли.Используются для работы в средах, образующих взрывоопасные смеси (газы, пары и пыль с воздухом).
Двигатели взрывозащищенные, обдуваемые ВАО4 пригодны к эксплуатации в опасных условиях. Шахты, опасные по газу и пыли, взрывоопасные зоны помещений, установок.

О двигателях LADA 2110 1 поколение (1995 — н.в.)

Автомобиль ВАЗ 2110 (Lada 110), называемый в народе десяткой, является переднеприводным седаном, при конструировании которого использовали узлы и агрегаты ВАЗ 2108. С ВАЗ 2110 началось новое, десятое семейство ВАЗ. В частности семейство представлено универсалом ВАЗ 2111 и хэтчбеком ВАЗ 2112. До 2007 года ВАЗ 2110 выпускали на производственных мощностях АвтоВАЗа, затем выпуск перенесли на другие заводы, где автомобиль собирали до 2014.

В сравнении со своими предшественниками, ВАЗ 2110 имеет более современный внешний вид и дизайн, и обладает большим комфортом. В данной статье мы рассмотрим устанавливаемые на ВАЗ 2110 двигатели, их характеристики и наиболее распространенные неисправности.

ДВИГАТЕЛЬ ВАЗ 11183/21114

Движок 21114, имеющий второй индекс 11183, является развитием идей, заложенных силовым агрегатом 2111 1,5 л. и непосредственно, 083 мотором. Движок имеет более высокий блок цилиндров, увеличенный ход поршня, и объем 1,6 л. Двигатель обладает повышенными экологическими показателями, и большей надежности. По сравнению с двигателями ВАЗ 2111 агрегат ВАЗ 11183 он менее капризен, более эластичен и тяговит. Если сравнивать эти два движка, необходимо отметить, что собираются они хоть и на одном заводе, но на разных линиях.

Это рядный движок инжекторного типа, с четырьмя цилиндрами, имеющий верхнее расположение распредвала. В приводе ГРМ используется ремень. При его обрыве двигатель клапана не гнет, однако при наличии спортивного злого распредвала риск проблемного исхода возможен.

Двигатель имеет следующие слабые стороны. Необходимость своевременно регулировать клапана. Двигатель может шуметь и дизелить, вообще следует отметить, что движок довольно шумный, разнообразные посторонние звуки и стуки для него, это норма. Наконец для двигателя характерны троение, перегрев или напротив проблемы с прогревом до рабочего состояния.

ДВИГАТЕЛЬ ВАЗ 2112

Движок ВАЗ 2112(21103) можно назвать качественной эволюцией силового агрегата ВАЗ 2111. Он имеет 16 клапанов а не 8 как у предшественников. Основная особенность движка 2112 по сравнению 2111 это 4 клапана на цилиндр и 2 распредвала, за счет этого за один раз подается большее количество топливной смеси, и скорее отводятся отработанные газы. Кроме того в сравнении с 2111 рассматриваемый двигатель имеет меньший расход топлива.

Движок ВАЗ 2112 является рядным, инжекторного типа с четырьмя цилиндрами, и имеет верхнее расположение распредвала, а также ременной привод ГРМ. При обрыве ремня двигатель может гнуть клапана, поэтому необходимо следить за тем в каком состоянии находится ремень. Как вариант можно поставить поршни с 124-го двигателя.

Движок ВАЗ 2112 нередко троит, поэтому придется мерить компрессию. Если причина не выявлена, следует проверить модуль зажигания, высоковольтные провода и свечи. Есть проблемы с оборотами. Следует проверить дроссельную заслонку, регулятор холостого хода, датчик положения коленвала, датчик положения дроссельной заслонки и ДМРВ.

Двигатель может глохнуть на холостых, скорее всего, виновата загрязненная дроссельная заслонка, либо регулятор холостого хода. Если двигатель перестал заводиться, нужно смотреть стартер и АКБ, либо системы зажигания и питания. Из-за проблем с термостатом двигатель может плохо прогреваться или вовсе не прогреваться до рабочих температур. Шумы и стуки двигателя могут говорить о проблемах с гидрокомпенсаторами, шатунными или коренными подшипниками, поршнями.

ДВИГАТЕЛЬ ВАЗ 21124

АвтоВАЗ в рамках развития 16 клапанных двигателей в 2004 году заменил движок ВАЗ 2112 на 124 силовой агрегат. На нем применили более высокий блок от Калины, ход поршня тоже увеличили, получив рабочий объем 1,6 л. Адаптировав 124 двигатель до норм Евро-3 повысили его экологические показатели. Кроме того теперь есть тяга на низах, и отмечается более спокойная работа двигателя.

Двигатель 21124 1,6 л., является рядным движком, инжекторного типа с четырьмя цилиндрами и имеет верхнее расположение распредвала. В приводе ГРМ используется ремень. При его обрыве двигатель не гнет клапана, благодаря специальным лункам. По официальным данным движок 21124 обладает ресурсом 150 тыс. км, тогда как практически он достигает 200-250 тыс.км.

В первую очередь необходимо отметить требование регулярно подтягивать ремень газораспределительного механизма. Кроме того для двигателя характерны троение, стуки и шумы во время работы. Также движок подвержен перегреву. Несмотря на эти недостатки, по отзывам владельцев, движок ВАЗ 21124 можно назвать одним из лучших силовых агрегатов от ВАЗ.

ДВИГАТЕЛЬ ВАЗ 21128

Изначально 128 движок создавали на основе силового агрегата ВАЗ 21124. В отличие от последнего ВАЗ 21128 получил расточенные на 0,5 мм цилиндры, коленвал с ходом 84 мм, шатун 129 мм, облегченные поршни. В приводе ГРМ используется ремень, при обрыве которого движок рвет клапана. ГБЦ аналогична 124 двигателю, слегка модифицированы камеры сгорания. Движок ВАЗ 21128 1,8 л. является рядным, инжекторного типа, имеет четыре цилиндра и верхнее расположение распредвалов.

Основной претензией к двигателю можно назвать отмечаемый пользователями, низкий практический ресурс. Кроме того движок подвержен значительному износу. Двигатель довольно прожорлив в отношении масла. Движок ВАЗ 21128 довольно быстро достигает состояния, при котором ему требуется капитальный ремонт. Кроме того для двигателя характерны троение, стуки и шумы во время работы. Также движок подвержен перегреву. И в целом отзывы владельцев о данном двигателе отрицательные.

Двигатели с числом оборотов 10000

Мелкосерийное литье изделий из пластика на термопластавтоматах
Узнать цену!

Читать еще:  Чем вредно торможение двигателем

Вентильный электропривод: шанс для российских производителей

О дним из проявлений общемировой тенденции развития производства высокотехнологичной электротехнической продукции являются определенные успехи в области создания нового поколения регулируемых электроприводов с использованием вентильных электродвигателей.

В ыпуск таких электроприводов осваивают в настоящее время практически все ведущие электротехнические компании. Предложение на рынке вентильных электродвигателей характеризуется широким мощностным диапазоном — от единиц ватт до сотен киловатт, которые могут использоваться в самых различных отраслях промышленности, в том числе и аэрокосмической.

О достоинствах и недостатках

С пециалисты считают, что вентильные двигатели с возбуждением от высокоэнергетических постоянных магнитов Nd-Fе-В в настоящее время остаются наиболее перспективными из всех типов электродвигателей, применяемых в современных регулируемых электроприводах малой и средней мощности. Это объясняется целым рядом конструктивных и технико-эксплуатационных преимуществ двигателя по сравнению с существующими типами электрических машин, к числу которых можно отнести:

  • бесконтактность и отсутствие узлов, требующих обслуживания. Отсутствие у вентильных электродвигателей скользящих электрических контактов существенно повышает их ресурс и надежность по сравнение с электрическими двигателями постоянного тока или асинхронными двигателями с явно выраженной обмоткой на роторе;
  • большая перегрузочная способность по моменту (кратковременно кратность максимального момента равна 5 и более);
  • высокое быстродействие;
  • наивысшие энергетические показатели (кпд и соs). Показатели кпд вентильных двигателей превышают 90% и очень мало меняются при изменении нагрузки двигателя по мощности и при колебаниях напряжения питающей сети, в то время как у асинхронных электродвигателей максимальный кпд составляет не более 86% и зависит от изменений нагрузки;
  • минимальное значение токов холостого хода и рабочих токов, что позволяет достаточно точно измерять нагрузку на привод и оптимизировать режим работы;
  • имеют практически неограниченный диапазон регулирования частоты вращения (1:10000 и более) и возможность регулирования частоты вращения по различным законам;
  • у вентильных двигателей более простая схема преобразователя по сравнению с асинхронным частотно регулируемым электроприводом;
  • низкий перегрев вентильного электродвигателя увеличивает срок службы электропривода, поскольку увеличивается ресурс изоляционных материалов, работающих при более низких температурах. Этот же фактор позволяет электроприводу работать в нестандартных режимах с возможными перегрузками;
  • минимальные массогабаритные показатели при прочих равных условиях;
  • значительный срок службы (наработка на отказ составляет 10000 ч и более), надежность. Ресурс электродвигателя и всего агрегата увеличивается также за счет возможности оптимизации режимов работы по скорости и нагрузке.

О днако у вентильных двигателей есть и недостатки. До недавнего времени одним из основных недостатков, препятствующих широкому распространению вентильных электроприводов в оборудовании, где электродвигатель и станция управления им находятся на значительном расстоянии (например, в нефтедобыче) или в оборудовании, которое подвергается значительным механическим воздействиям вибрационного и ударного характера, считалась необходимость введения дополнительных слаботочных каналов управления подключением тех фаз электродвигателя, которые создают максимальный момент с полюсами ротора, т. е. другими словами, необходимость наличия специального датчика положения ротора. Но эта проблема вполне решаема. Российскими специалистами запатентован способ управления вентильными электроприводами мощностью до 160 кВт без датчика положения ротора.

З а последние десять лет вентильные электродвигатели заняли прочное положение в производственных программах ведущих зарубежных электромашиностроительных компаний («Сименс», «Бош Рексрот», «Дженерал Электрик», «Ансальдо», «Фанук» и др.). В большинстве каталогов готовой продукции этих компаний вентильные двигатели с редкоземельными постоянными магнитами представлены на первом месте.

З атянувшийся промышленный кризис в России и странах СНГ привел к значительному отставанию отечественного электромашиностроения в данной области, хотя определенные успехи все-таки были. Например, в 80-х годах прошлого столетия была разработана и освоена в опытном производстве отечественная серия вентильных двигателей (2ДВМ) в двух габаритах по диаметру присоединительных размеров фланцев: 115 и 85 мм. При этом двигатели большего габарита представляли собой бескорпусные машины, продольная жесткость которых обеспечивалась сварными швами по внешней поверхности и стяжными шпильками в углах листов статора. Как показал опыт эксплуатации этих ВД, жесткость такой конструкции недостаточная, особенно для двигателей с длиной пакета 140 мм. Двигатели меньшего габарита были лишены этого недостатка, так как имели литой алюминиевый корпус. Однако те и другие двигатели оснащались магнитоэлектрическими тормозами, располагавшимися в переднем щите электродвигателя, что приводило к некоторому увеличению осевой длины машины и ее массы.

Т ем не менее жесткие условия рыночной экономики, диктующие стремление производить конкурентоспособную продукцию, обеспечивающую относительно более стабильное положение на рынке, заставляют отдельные электротехнические предприятия изыскивать средства для разработки и освоения производства вентильных двигателей. Так, содружеством электротехнических предприятий, среди которых головным выступает Чебоксарский электроаппаратный завод (ОАО «ЧЭАЗ») спроектированы современные отечественные вентильные двигатели (серии 5ДВМ ), в которых учтены недостатки двигателей предыдущего поколения. Все габариты двигателей этой серии имеют корпусное исполнение, что позволяет значительно повысить их продольную жесткость. Кроме того, для этих двигателей применяются новые малогабаритные тормоза, расположенные на валу в пространстве под лобовыми частями обмоток статора. Принятые новые конструктивные решения позволяют сократить габаритную длину двигателей в основных исполнениях до 5% и снизить массу до 20%, а также получить экономию электротехнической стали и унифицировать передние щиты для всех типоисполнений двигателей.

В двигателях новой серии применены более термостабильные отечественные постоянные магниты из материала «железо-неодим-бор» со специальными легирующими добавками, которые способствуют повышению коэрцитивной силы и сохранению работоспособности магнитов при нагреве до +170 °С и пятикратном от номинального кратковременном значении момента и тока якоря. Последнее обстоятельство также способствует снижению расхода дорогостоящих магнитных материалов (уменьшение толщины магнитов в 1,5 раза) и улучшению массогабаритных показателей.

В се типоисполнения двигателей 5ДВМ имеют класс изоляции Р, снабжены датчиками температурной защиты (терморезисторы в лобовых частях обмотки), имеют встроенные бесконтактные тахогенераторы и фотоэлектрические датчики положения ротора за исключением двигателя 5ДВМ55, в котором отсутствует исполнение с тормозом, нет тахогенератора, а датчик положения ротора выполнен на магнито-чувствительных микросхемах, расположенных в заднем щите электродвигателя. Показатель надежности — средняя наработка на отказ — 1000 часов. Средний уровень шума в режиме холостого хода не превышает 82 дБ для двигателей 5ДВМ115 и 72 дБ — для меньших габаритов.

В таблицах 1 и 2 представлены некоторые технические параметры отечественных вентильных двигателей и лучших образцов зарубежных аппаратов. По мнению целого ряда специалистов, с которыми нам доводилось беседовать, продукция отечественной электротехнической промышленности в этом сегменте по ряду показателей оказывается вполне конкурентоспособной.

Таблица 1
Основные характеристики вентильных двигателей 5ДВМ

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector