0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Экономичность работы двигателя это

Экономичность работы двигателя это

Главное меню

  • Главная
  • Паровые машины
  • Двигатели внутреннего сгорания
  • Электродвигатели
  • Автоматическое регулирование двигателей
    • Автоматические регуляторы непрямого действия
    • Автоматические регуляторы прямого действия
    • Автоматическое регулирование
    • Двигатель как регулируемый объект
      • Угол опережения впрыска топлива в двигателе
      • Автоматическое регулирование температуры в системах охлаждения и смазки двигателя
      • Регулируемый наддув в двигателе
      • Установка автоматического регулятора угловой скорости в двигателе
      • Установка на двигателях автоматических регуляторов и устройств
      • Дифференциальное уравнение дизеля без наддува
      • Дифференциальное уравнение дизеля с автономным газотурбинным наддувом
      • Расчет циклов подачи топлива
      • Дифференциальное уравнение выпускного коллектора
      • Дифференциальное уравнение впускного коллектора
      • Дифференциальное уравнение турбокомпрессора
      • Передаточная функция двигателя
      • Дифференциальное уравнение двигателя
      • Переходные процессы в работе двигателя
      • Неустановившиеся режимы работы двигателей
      • Устойчивость режимов работы двигателей
      • Выработка энергии двигателем для потребителей
      • Статические характеристики двигателя
      • Режимы работы двигателя
      • Схема комбинированного двигателя
      • Особенности двигателя как регулируемого объекта
    • Двухимпульсные автоматические регуляторы
    • Динамические свойства элементов системы двигателя
    • Компоновка регулятора с двигателем
    • Параллельная работа двигателя
    • Переходные процессы в системах авто. регулирования
    • Синтез систем автоматического регулирования
    • Системы автоматического регулирования двигателей
    • Устойчивость систем автоматического регулирования
  • Восстановление и ремонт двигателей СМД
  • Топливо для двигателей
  • Карта сайта

Судовые двигатели

  • Судовые двигатели внутреннего сгорания
    • Общие сведения о двигателях внутреннеого сгорания
    • Основные части двигателя
    • Газораспределение в двигателях
    • Топлива и масла для двигателей
    • Смесеобразование и топливная аппаратура в дизелях
    • Система и устройство двигателя
    • Примеры и описания судовых двигателей
    • Идеальные циклы и тепловые процессы в двигателях
    • Мощность и экономичность двигателя
      • Сравнение термических коэффициентов полезного действия различных циклов
      • Общие положения и порядок теплового расчета
      • Выпуск и продувка в двухтактных двигателях
      • Способы повышения мощности дизелей
      • Определение основных размеров цилиндра
      • Тепловой баланс двигателя
      • Характеристики двигателей
      • Удельный расход топлива и к. п. д.
      • Среднее индикаторное давление газа. Индикаторная и эффективная мощность двигателя
      • Пневмообмывающее судовое устройство
      • Индикаторная мощность двухтактного двигателя
      • Эффективная мощность двухтактного двигателя
      • Механический коэффициент полезного действия
      • Индикаторный коэффициент полезного действия двигателя
      • Эффективный коэффициент полезного действия двигателя
      • Удельный расход топлива, поступающий в цилиндр двигателя
      • Уравнение мощности двигателя
      • Тепловая нагрузка стенок цилиндра
      • Температура внутренней поверхности цилиндра
      • Анализ параметров, влияющих на повышение мощности двигателя
      • Наддув в четырехтактных двигателей
      • Наддув двухтактных двигателей
      • Определение основных параметров газотурбонагнетателя
      • Судовые установки со свободнопоршневыми генераторами газа
      • Цикл свободнопоршневого генератора газа
    • Кинематика и динамика двигателя
    • Расчет на прочность основных деталей двигателей
    • Испытания и эксплуатация судовых двигателей
  • Судовые паровые турбины
  • Судовые газовые турбины
  • Судовые дизельные установки

Количество используемой теплоты для получения эффективной работы (работы на коленчатом валу) определяется эффективным к. п. д. ? е , кото­рый равен отношению количества тепла, превращенного в эффективную ра­боту, к количеству тепла, затраченному на совершение этой работы. Таким образом, ? е учитывает все потери двигателя, т. е. как тепловые, так и механические. Если ? i характеризует собой совершенство индикатор­ного процесса двигателя, т. е. совершенство рабочего цикла, то ? е является показателем экономичности работы двигателя и характеризует совершенство рабочего цикла и конструкции двигателя.

Выражение (150) позволяет сделать заключение, что эффективный к. п. д., так же, как и индикаторный к. п. д., в основном зависит от ? и p i , кроме того, от механического к. п. д. ? т .

Значения ? е и g e у выполненных двигателей при номинальной мощно­сти и числе оборотов составляют:

Наибольшие удельные расходы топлива и соответственно наименьшие значения эффективного к. п. д. как для четырехтактных, так и для двухтакт­ных дизелей относятся к быстроходным типам двигателя. Приведенные зна­чения ? m , ? i и ? е , а соответственно g i и g e , имеют двигатели при нормаль­ном техническом состоянии. При длительной работе двигателя, вследствие изнашивания трущихся деталей и увеличения зазоров, происходит сниже­ние параметров конца процесса сжатия, ухудшение условий смазки, ухуд­шение качества смесеобразования и др. Все это приводит к снижению тепло-

использования в двигателе, а следовательно, к уменьшению ц е и повышению стоимости эксплуатации двигателя. Для предотвращения этого двигатели подвергаются, согласно инструкции по обслуживанию, профилактическому ремонту и периодическим контрольным теплотехническим испытаниям.

Как качество топлива влияет на экономичность двигателя.

Вы наверно обратили внимание, что в последнее время все авто любители жалуются на очень большой перерасход Бензина? Причем жалуются даже владельцы новых автомобилей, которые только выехав из автосалона начинают потреблять бензина больше указанных заводом изготовителем значений. Давайте разбираться почему это происходит.

Топливо воспламеняется и горит в камере сгорания неравномерно: быстрее всего горит топливо, находящееся ближе к поверхности раскалённого металла камеры сгорания. Скорость горения топлива по металлу в камере сгорания в 3 раза быстрее, чем в остальном объёме. Поэтому, часть топлива в объёме сгорать не успевает (до 25%) и на такте выпуска с выхлопными газами выходит в атмосферу. А это и есть перерасход топлива (до 25%) из-за того, что топливная смесь сгорает не полностью.

Из-за неравномерности горения возникают следующие проблемы:

— повышенное нагарообразование, коксовые и смольные отложения на деталях цилиндропоршневой группы.

— закоксовка поршневых колец

— повышенная детонация; прогар выпускных клапанов;

— низкий КПД двигателя и повышенный расход топлива;

— повышенный температурный режим, ведущий к перегреву металла камеры сгорания и, как следствие, ускоренный износ.

Что влияет на полноту сгорания топлива ?

Различие химического состава топлива оказывает существенное влияние на процессы смесеобразования и сгорания бензовоздушных смесей в двигателе и тем самым определяет параметры мощности, топливной экономичности и токсичности отработавших газов.

Исследования проведенные кафедрой ДВС СПбГПУ показали, что для топлив с одинаковыми октановым числами, изменение химического состава топлив может дать весьма значительную разницу в выходных показателях бензинового ДВС. По мощности различие может составить до 6 % , а по эффективному КПД до 9%.

Особенно велико различие в показателях токсичности. Так, по компонентам СН и NОx оно может составлять до 20…25 % .

Влияние химического состава топлива на параметры работы двигателя внутреннего сгорания проявляется через изменение следующих показателей топлива:

Во-первых, с изменением состава топлива изменяется его теплотворная способность. Особенно заметно понижение теплотворной способности топлив на бензинах с высоким содержанием таких октаноповышающих присадок как МТБЭ. Сейчас Технологический Регламент (ТР ТС 013/ 2011) разрешает содержание МТБЭ в бензинах до 15%.. но при превышении его содержания более 7% значительно снижается теплотворная способность бензина. Изменение теплотворной способности наиболее значимо влияет на параметры мощности и топливной экономичности бензинового двигателя.

Читать еще:  Bmw m20 обороты двигателя

В-вторых, состав топлива существенно меняет скорость и полноту сгорания топлива. Наименьшими скоростями сгорания обладают топлива с высоким содержанием полициклических ароматических углеводородов (ПАУ). Наличие в бензинах связанного кислорода повышает скорость и полноту сгорания. Эти параметры определяют изменение как экономических характеристик двигателя, так и содержания токсичных компонент, особенно остаточных углеводородов СН и оксидов азота NOx при использовании различных бензинов. К сожалению, сейчас Технологический Регламент (ТР ТС 013/ 2011) не нормирует содержание в бензинах полициклических ароматических углеводородов (ПАУ).

В-третьих, бензины различного химического состава могут существенно отличаться по плотности. Этот параметр ранее действующими ГОСТами нормировался и должен был находиться в диапазоне 720…775 кг/м3. Однако в новом Техническом регламенте эта норма отсутствует. А ведь плотность топлива для реального двигателя имеет принципиальное значение. Все дозирующие элементы системы топливоподачи настроены на объемные расходы топлива. Значит масса топлива поданного в камеру сгорания на одних и тех же режимах для разных бензинов будет отличаться в зависимости от плотности топлива. Это в свою очередь меняет состав топливовоздушной смеси, причем в достаточно широком диапазоне, чтобы оказать существенное влияние на работу двигателя, особенно на высоких нагрузках.

В-четвертых, от химического состава топлива существенно зависит его фракционный состав, что в свою очередь влияет на его испаряемость, что в свою очередь влияет на легкость запуска двигателя, особенно в холода..

В-пятых, химический состав топлив оказывает значительное влияние на фактическую детонационную стойкость бензинов. Проведенные исследования показывают, что даже при весьма близких значениях октановых чисел, пределы детонации в реальных условиях сильно зависят от состава топлив, метода получения заданного октанового числа, наличия или отсутствия оксигенатов.

Так, при испытаниях разных бензинов имеющих одинаковое октановое число-92 было отмечено различие в нагрузке на двигатель, при которой фиксировались детонационные стуки, на 12…17 % в зависимости от состава бензина и скоростного режима работы двигателя. Этот эффект особенно влияет на характеристики впрысковых ДВС, где фактор детонации является одним из сигналов для системы управления, которая меняет алгоритм работы системы зажигания.

Из основных параметров состава бензинов влияние на выходные показатели двигателя в большей степени оказывают содержание ароматических углеводородов и оксигенатов, а также наличие или отсутствие моющих присадок.

Максимальную мощность и экономичность получают при содержания ароматических углеводородов порядка 40 %, т. е. в зоне бензинов класса К-3 (“Евро-3”). Минимум токсичности отработавших газов наблюдается при уменьшении содержания ароматики до уровня 30…32 %, т. е. в зоне бензинов класса К-4 (“Евро-4”). Дальнейшее снижение содержания ароматических углеводородов не приводит к существенному улучшению экологических показателей двигателя, но значительно ухудшает мощностные.

Кроме того, топлива с низким содержанием ароматических углеводородов (менее 30 %) и оксигенатов чаще всего характеризуются низкой плотностью, что существенно меняет состав топливовоздушной смеси, уводя его в зону неэффективных регулировок. Повышенные же концентрации ароматических углеводородов (более 45 %) существенно снижают скорость и полноту сгорания топлива.

Что поможет экономить топливо?

Активатор Топлива «Моторесурс» повышает полноту сгорания топлива, что приводит к его экономии (до 15%).

Активатор Топлива «Моторесурс» — это препарат новейшего поколения, относящийся к классу катализаторов горения.

Попадая в топливо Активатор Топлива «Моторесурс» связывает воду, которая находится в топливе (напр. конденсатная вода) и превращает молекулу воды в активного участника процесса горения топлива. Это позволяет обеспечить плавно нарастающее давление на поршень, исключая ударные нагрузки, что увеличивает ресурс двигателя. Образованные радикалы Н+, Н-, ОН-, О -, О+, и т.д. «заряжают» топливо и способствуют его предокислению (повышается октановое, цетановое число). В самом топливе катализаторы Активатора Топлива «Моторесурс» разрушают бензольные кольца ароматических углеводородов – происходит более полное сгорание топлива, что повышает мощность и КПД двигателя, снижает расход топлива и токсичность выхлопных газов. Сера, находящаяся в топливе, полностью сгорает, не создавая соединений, которые откладывались бы на стенках камеры сгорания. При применении Активатора Топлива «Моторесурс» повышается мощность, двигатель становится менее чувствительным к качеству топлива, увеличивается ресурс топливной аппаратуры и двигателя в целом.

С целью экономии топлива и снижения нагарообразования в двигателе мы рекомендует использовать Активатор Топлива «Моторесурс» при каждой заправке

.Используя Активатор Топлива «Моторесурс» Вы не тратите деньги, Вы их экономите, ведь экономия топлива существенно превышает цену самого Активатора Топлива. А если учесть, что Активатор Топлива защищает двигатель от суррогатного топлива, то польза от его применения несомненна!

НАУЧНАЯ БИБЛИОТЕКА — РЕФЕРАТЫ — Двигатель внутреннего сгорания

Реферат на тему

Двигатель внутреннего сгорания

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ

Области применения теплового расширения

ПОРШНЕВЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ

Основы устройства поршневых ДВС

Принцип действия четырехтактного карбюраторного двигателя

Принцип действия четырехтактного дизеля

Принцип действия двухтактного двигателя

Рабочий цикл четырехтактных карбюраторных и дизельных двигателей

Рабочий цикл четырехтактного двигателя

Рабочие циклы двухтактных двигателей

ПОКАЗАТЕЛИ, ХАРАКТЕРИЗУЮЩИЕ РАБОТУ ДВИГАТЕЛЕЙ

Среднее индикаторное давление и индикаторная мощность

Эффективная мощность и средние эффективные давления

Индикаторный КПД и удельный индикаторный расход топлива

Эффективный КПД и удельный эффективный расход топлива

Тепловой баланс двигателя

Значительный рост всех отраслей народного хозяйства требует перемещения

большого количества грузов и пассажиров. Высокая маневренность,

проходимость и приспособленность для работы в различных условиях делает

автомобиль одним из основных средств перевозки грузов и пассажиров.

Важную роль играет автомобильный транспорт в освоении восточных и

нечерноземных районов нашей страны. Отсутствие развитой сети железных дорог

и ограничение возможностей использования рек для судоходства делают

автомобиль главным средством передвижения в этих районах.

Автомобильный транспорт в России обслуживает все отрасли народного

Читать еще:  Kia cerato холодный двигатель

хозяйства и занимает одно из ведущих мест в единой транспортной системе

страны. На долю автомобильного транспорта приходится свыше 80% грузов,

перевозимых всеми видами транспорта вместе взятыми, и более 70%

Автомобильный транспорт создан в результате развития новой отрасли

народного хозяйства — автомобильной промышленности, которая на современном

этапе является одним из основных звеньев отечественного машиностроения .

Начало создания автомобиля было положено более двухсот лет назад

(название «автомобиль» происходит от греческого слова autos — «сам» и

латинского mobilis — «подвижный»), когда стали изготовлять «самодвижущиеся»

повозки. Впервые они появились в России. В 1752 г. русский механик-самоучка

крестьянин Л.Шамшуренков создал довольно совершенную для своего времени

«самобеглую коляску», приводимого в движение силой двух человек. Позднее

русский изобретатель И.П.Кулибин создал «самокатную тележку» с педальным

приводом. С появлением паровой машины создание самодвижущихся повозок

быстро продвинулось вперед. В 1869-1870 гг. Ж.Кюньо во Франции, а через

несколько лет и в Англии были построены паровые автомобили. Широкое

распространение автомобиля как транспортного средства начинается с

появлением быстроходного двигателя внутреннего сгорания. В 1885 г.

Г.Даймлер (Германия) построил мотоцикл с бензиновым двигателем, а в 1886 г.

К.Бенц — трехколесную повозку. Примерно в это же время в индустриально

развитых странах (Франция, Великобритания, США) создаются автомобили с

двигателями внутреннего сгорания.

В конце XIX века в ряде стран возникла автомобильная промышленность. В

царской России неоднократно делались попытки организовать собственное

машиностроение. В 1908 г. производство автомобилей было организовано на

Русско-Балтийском вагоностроительном заводе в Риге. В течение шести лет

здесь выпускались автомобили, собранные в основном из импортных частей.

Всего завод построил 451 легковой автомобиль и небольшое количество

грузовых автомобилей. В 1913 г. автомобильный парк в России составлял около

9000 автомобилей, из них большая часть — зарубежного производства.

После Великой Октябрьской социалистической революции практически заново

пришлось создавать отечественную автомобильную промышленность. Начало

развития российского автомобилестроения относится к 1924 году, когда в

Москве на заводе АМО были построены первые грузовые автомобили АМО-Ф-15.

В период 1931-1941 гг. создается крупносерийное и массовое производство

автомобилей. В 1931 г. на заводе АМО началось массовое производство

грузовых автомобилей. В 1932 г. вошел в строй завод ГАЗ.

В 1940 г. начал производство малолитражных автомобилей Московский завод

малолитражных автомобилей. Несколько позже был создан Уральский

автомобильный завод. За годы послевоенных пятилеток вступили в строй

Кутаисский, Кременчугский, Ульяновский, Минский автомобильные заводы.

Начиная с конца 60-х гг., развитие автомобилестроения характеризуется особо

быстрыми темпами. В 1971 г. вступил в строй Волжский автомобильный завод

им. 50-летия СССР.

За последние годы заводами автомобильной промышленности освоены многие

образцы модернизированной и новой автомобильной техники, в том числе для

сельского хозяйства, строительства, торговли, нефтегазовой и лесной

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ

В настоящее время существует большое количество устройств, использующих

тепловое расширение газов. К таким устройствам относится карбюраторный

двигатель, дизели, турбореактивные двигатели и т.д.

Тепловые двигатели могут быть разделены на две основные группы. 1.

Двигатели с внешним сгоранием — паровые машины, паровые турбины, двигатели

Стирлинга и т.д. 2. Двигатели внутреннего сгорания. В качестве

энергетических установок автомобилей наибольшее распространение получили

двигатели внутреннего сгорания, в которых процесс сгорания топлива с

выделением теплоты и превращением ее в механическую работу происходит

непосредственно в цилиндрах. На большинстве современных автомобилей

установлены двигатели внутреннего сгорания.

Наиболее экономичными являются поршневые и комбинированные двигатели

внутреннего сгорания. Они имеют достаточно большой срок службы,

сравнительно небольшие габаритные размеры и массу. Основным недостатком

этих двигателей следует считать возвратно-поступательное движение поршня,

связанное с наличием криво шатунного механизма, усложняющего конструкцию и

ограничивающего возможность повышения частоты вращения, особенно при

значительных размерах двигателя.

А теперь немного о первых ДВС. Первый двигатель внутреннего сгорания

(ДВС) был создан в 1860 г. французским инженером Этвеном Ленуаром, но эта

машина была еще весьма несовершенной. В 1862 г. французский изобретатель Бо

де Роша предложил использовать в двигателе внутреннего сгорания

четырехтактный цикл: 1)всасывание; 2) сжатие; 3) горение и расширение; 4)

выхлоп. Эта идея была использована немецким изобретателем Н.Отто,

построившим в 1878 г. первый четырехтактный двигатель внутреннего сгорания.

двигателя достигал 22%, что превосходило значения, полученные при

использовании двигателей всех предшествующих типов.

Быстрое распространение ДВС в промышленности, на транспорте, в сельском

хозяйстве и стационарной энергетике была обусловлена рядом их положительных

Осуществление рабочего цикла ДВС в одном цилиндре с малыми потерями

значительным перепадом температур между источником теплоты и холодильником

обеспечивает высокую экономичность этих двигателей. Высокая экономичность —

одно из положительных качеств ДВС. Среди ДВС дизель в настоящее время

является таким двигателем, который преобразует химическую энергию топлива в

механическую работу с

наиболее высоким КПД в широком диапазоне изменения мощности. Это качество

дизелей особенно важно, если учесть, что запасы нефтяных топлив ограничены.

К положительным особенностям ДВС стоит отнести также то, что они могут

быть соединены практически с любым потребителем энергии. Это объясняется

широкими возможностями получения соответствующих характеристик изменения

мощности и крутящего момента этих двигателей.

Рассматриваемые двигатели успешно используются на автомобилях тракторах

, сельскохозяйственных машинах, тепловозах, судах ,электростанциях и т.д.,

т.е. ДВС отличаются хорошей приспособляемостью к потребителю.

Сравнительно невысокая начальная стоимость, компактность и малая масса

ДВС позволили широко использовать их на силовых установках, находящих

широкое применение и имеющих небольшие размеров моторного отделения.

Установки с ДВС обладают большой автономностью. Даже самолеты с ДВС

могут летать десятки часов без пополнения горючего. Важным положительным

качеством ДВС является возможность их быстрого пуска в обычных условиях.

Двигатели, работающие при низких температурах, снабжаются специальными

устройствами для облегчения и ускорения пуска. После пуска двигатели

сравнительно быстро могут принимать полную нагрузку. ДВС обладают

значительным тормозным моментом, что очень важно при использовании их на

Положительным качеством дизелей является способность одного двигателя

Читать еще:  Что такое мощноть двигателя

работать на многих топливах. Так известны конструкции автомобильных

многотопливных двигателей, а также судовых двигателей большой мощности,

которые работают на различных топливах – от дизельного до котельного

мазута. Но наряду с положительными качествами ДВС обладают рядом

недостатков. Среди них ограниченное по сравнению, например с паровыми и

газовыми турбинами агрегатная мощность. Высокий уровень шума, относительно

большая частота вращения коленчатого вала при пуске и невозможность

непосредственного соединения его с ведущими колесами потребителя,

Токсичность выхлопных газов, возвратно-поступательное движение поршня,

ограничивающие частоту вращения и являющиеся причиной появлений не

уравновешенных сил инерции и моментов от них. Но невозможно было бы

создание двигателей внутреннего сгорания, их развития и применения, если бы

не эффект теплового расширения. Ведь в процессе теплового расширения

нагретые до высокой температуры газы совершают полезную работу. Вследствие

быстрого сгорания смеси в цилиндре двигателя внутреннего сгорания, резко

повышается давление, под воздействием которого происходит перемещение

поршня в цилиндре. А это-то и есть та самая нужная технологическая функция,

т.е. силовое воздействие, создание больших давлений, которую выполняет

тепловое расширение, и ради которой это явление применяют в различных

технологиях и в частности в ДВС. Именно этому явлению я хочу уделить

внимание в следующей главе.

Тепловое расширение — изменение размеров тела в процессе его

изобарического нагревания (при постоянном давлении). Количественно тепловое

расширение характеризуется температурным коэффициентом объемного расширения

B=(1/V)*(dV/dT)p, где V — объем, T — температура, p — давление. Для

большинства тел B>0 (исключением является, например, вода, у которой в

Экономичность работы двигателя это

Уравнения показывают,что удельные расходы топлива зависят от параметров свежего заряда,поступающего во впускную системур0,коэффициентанаполненияiv,количества свежегозаряда а/0 и среднего эффективного рр или индикаторногоpiдавления.

Из уравнения видно, что при постоянном числе оборотов эффективная мощность Neдвигателя зависит только от среднего эффективного давления ре. Так, при ре = 0 и Nе — 0; максимальная мощность у карбюраторного двигателя достигается при полностью открытой дроссельной заслонке, а у дизеля — при положении рейки топливного насоса, соответствующем такой цикловой додаче топлива, при которой достигается наибольшая мощность при бездымном выпуске. Следовательно, среднее эффективное давление ре (и соответственно pt) характеризует нагрузку двигателя.

Следует отметить, что нельзя рассматривать отдельно влияние каждого из указанных факторов на экономичность двигателя, поскольку с изменением одного из факторов меняются и другие. Эти изменения происходят по-разному в двигателях с искровым зажиганием и в дизеле.

На рис. 70 показан характер изменения основных показателей карбюраторного двигателя в зависимости от нагрузки при постоянном числе оборотов коленчатого вала (п = const) и неизменных условиях окружающей среды (р0 = const).

При среднем эффективном давлении ре = 0 (j>i= pM) и положении дроссельной заслонки, соответствующем холостому ходу, коэффициент наполнения т]у имеет наименьшее значение. По мере увеличения открытия дроссельной заслонки коэффициент наполнения растет, достигая наибольшего значения при наибольшем среднем эффективном давлении ре (дроссельная заслонка открыта полностью). Вследствие этого коэффициент остаточных газов Тост с уменьшением нагрузки растет, а условия воспламенения топлива ухудшаются. Для достижения условий, при которых возможно воспламенение горючей смеси в случае прикрытия дроссельной заслонки, необходимо смесь обогащать, что достигается специальной регулировкой карбюратора. Как видно из рис. 70, коэффициент избытка воздуха при холостом ходе меньше единицы. При увеличении нагрузки до некоторого значения ре1 коэффициент избытка воздуха возрастает и достигает наибольшего значения на режиме наилучшей экономичности. При необходимости дальнейшего увеличения нагрузки двигателя одновременно с открытием дроссельной заслонки включается экономайзер и горючая смесь обогащается.

Механический к.п.д. гм, как было показано (см. рис. 68), при увеличении нагрузки возрастает от нуля до максимума при полной нагрузке. Поскольку эффективный к.п.д. ге = %т]и, то при холостом ходе он равен нулю. С увеличением нагрузки до ре1 вследствие обеднения смеси, при котором к.п.д. vtувеличивается, и одновременного повышения к.п.д. гт эффективный к.п.д. це растет. При дальнейшем увеличении нагрузки, связанном с обогащением смеси, неполное использование теплоты топлива не компенсируется увеличением механического к.п.д. гм в результате чего эффективный к.п.д. ге уменьшается. Соответственно такому изменению г^ меняется удельный эффективный расход топлива.

—, то на холостом ходу, когда гм = 0, gравен бесконечности. Наименьший удельный расход топлива будет при максимальном эффективном к.п.д. С уменьшением нагрузки г< и гт понижаются, вследствие чего удельный эффективный расход топливарезковозрастает.

Следует отметить, что резкое ухудшение экономичности при снижении нагрузки является недостатком карбюраторного автомобильного двигателя. В эксплуатации автомобильный двигатель большую часть времени работает с прикрытой дроссельной заслонкой при нагрузках, меньших ре1, когда удельный индикаторный расход giрастет.

Экономичность двигателя при нагрузках, меньших ре1, можно улучшить (как показано на рис. 70 штриховыми линиями), если обеспечить при этих условиях удовлетворительное протекание процесса сгорания обедненной горючей смеси (а>1). Сгорание обедненной смеси можно улучшить, применяя факельное зажигание.

Коэффициент избытка воздуха при этом растет, так как количество впрыскиваемого топлива уменьшается. Процесс сгорания при уменьшении нагрузки заканчивается ближе к в.м.т., и большая часть топлива сгорает при почти постоянном объеме, что улучшает теплоис-пользование. В результате этого в дизеле при снижении нагрузки индикаторный к.п.д. rjjрастет, а индикаторный удельный расход giсоответственно уменьшается.

Эффективный к.п.д. це и удельный расход geдизеля, как и для карбюраторного двигателя, при некоторой нагрузке, соответствующей ре1 (0,80—0,85 от полной), имеют оптимальныезначения.

При дальнейшем увеличении нагрузки процесс сгорания ухудшается из-за несовершенного смесеобразования. В результате этого индикаторный к.п.д. уменьшается более резко и это уменьшение его не компенсируется ростом механического к.п.д., что приводит к увеличению удельного расхода топлива. Пределом увеличения нагрузки является появление дыма в отработавших газах. Работа дизеля на таком режиме недопустима. В отличие от карбюраторного двигателя в дизеле увеличение эффективного удельного расхода топлива geпри нагрузках, меньших ре1, происходит более полого, что является преимуществом дизеля (меньший расход топлива на этих режимах).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector