0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Эквивалентная схема асинхронного двигателя

Схема замещения, статические характеристики и режимы работы асинхронного двигателя

Трехфазный АД имеет обмотку статора, подключаемую к трех­фазной сети переменного тока с напряжением U1 и частотой f1 и обмотку ротора, которая может быть выполнена в двух вариантах.

Первый вариант предусматривает выполнение обмотки ротора аналогично обмотки статора из проводников с выводами на три контактных кольца. Такая конструкция соответствует АД с фазным ротором (рис. 62, а), что позволяет включать в роторную цепь различные электротехнические элементы, например резисторы для регулирования скорости, тока и мо­мента ЭП, и создавать специальные схемы включения АД.

Рис. 62. Схема включения асинхронного двигателя с фазным ротором (а) и с короткозамкнутым ротором (б)

Второй вариант — это выполнение обмотки ротора путем заливки расплавленного алюминия в пазы сердечника магнитопровода ротора, в результате чего образуется конструкция обмотки, известная под названи­ем «беличья клетка». Схема АД с та­кой обмоткой ротора, не имеющей внешних выводов и получившей название короткозамкнутой, представлена на рис. 62, б.

В асинхронном двигателе (АД) электрическая мощность Р1, потребляемая от сети переменного тока, преобразуется в механическую мощность Р2, отдаваемую нагрузке на валу двигателя. Под действием приложенного к обмотке статора АД переменного напряжения Ul по ней протекает ток I1, реактивная составляющая которого Iμ создает вращающийся магнитный поток Ф. Этот поток наводит в короткозамкнутой обмотке ротора ЭДС Е2, обусловливающую в ней ток I2. Взаимодействие тока в обмотке ротора I2 с потоком Ф создает вращающий момент, направленный в сторону вращения поля:

где См — постоянный коэффициент, зависящий от параметров АД; ψ2 — фазовый сдвиг между векторами ЭДС Е2 и током I2.

Угловая скорость вращения ротора АД Ω определяется по формуле

где ω1=2πf1/pп — угловая скорость вращения магнитного поля, созданного током Iµ;

s= (ω1— Ω)/ ω1 — скольжение АД; (176)

f1 — частота питающего на­пряжения;

рп — число пар полюсов АД.

Для получения выражений электромеханической и механичес­кой характеристик АД используется его схема замещения, на кото­рой цепи статора и ротора представлены своими активными и ин­дуктивными сопротивлениями. Особенность схемы замещения АД состоит в том, что в ней ток, ЭДС и параметры цепи ротора пере­считаны (приведены) к цепи статора, что и позволяет изобразить эти две цепи на схеме соединенными электрически, хотя в действи­тельности связь между ними осуществляется через электромагнит­ное поле.

Электромагнитные процессы в АД, если к двигателю приложено симметричное синусоидальное напряжение, описываются следующими уравнениями:

(177)

где приняты следующие обозначения:

Ul — действующее значение фазного напряжения сети;

I1, Iμ, I2′ — соответ­ственно фазные токи статора, намагничивания и при­веденный ток ротора;

x1, х2′ — соответственно индуктивные сопро­тивления от потоков рассеяния фазы обмотки статора и приведен­ное фазы ротора;

хμ — индуктивное сопротивление контура на­магничивания;

r1, R, R1 = r1+R — соответственно активные фаз­ные сопротивления обмотки статора, добавочного резистора цепи обмотки статора и суммарное, R1, сопротивление фазы статора;

R2′, R , Rр= R2′+ R — соответственно активные сопротивления, приведенные к обмотке статора, фазные сопротивления обмотки ротора, добавочного резистора цепи обмотки ротора и сум­марное, Rр, сопротивление фазы ротора.

Приведение параметров осуществляется с помощью коэффициента приведения k:

где Е1 и Е — фазные ЭДС статора и ротора при неподвижном роторе.

Расчетные формулы приведения параметров обмотки ротора имеют вид

где штрихом обозначены значения параметров обмотки ротора, приведенные к обмотке статора.

В теории электрических машин разработаны и применяются две основные схемы замещения АД: более точная Т — образная и упро­щенная Г-образная. На рис. 63 приведена Т – образная схема замещения АД, а на рис.64 приведена Г-образная схема за­мещения АД, которая в дальнейшем и используется при выводе фор­мул для характеристик АД.

Т- образная схема замещения АД построена по формулам (177).

Рис.63. Т — образная схема замещения асинхронного двигателя

Рис.64. Упрощенная Г- образная схема замещения асинхронного двигателя

Параметр с1 в Г-образной схеме замещения АД учитывает перемещение

контура намагничивания (xμ) на вход схемы замещения

Отношение x1/xμ составляет, как правило, не более 0,04, поэтому часто с целью упрощения расчетов принимают значение с1=1.

Дата добавления: 2019-02-08 ; просмотров: 605 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Расчет параметров схемы замещения асинхронного двигателя

При расчете необходимо обратить особое внимание на то, что схема замещения на рис. 3.1 приведена для фазы асинхронного двигателя, поэтому расчетные значения токов и напряжений являются фазными.

Рис. 3.1. Схема замещения фазы асинхронного двигателя

при частотном управлении

1. Номинальный ток фазы статора

А.

2. Активное сопротивление фазы статора

Ом,

3. Номинальная угловая скорость магнитного поля статора двигателя

с -1 .

4. Номинальная угловая скорость вала двигателя

с -1 .

5. Номинальный момент двигателя

Нм.

6. Максимальный момент двигателя

Нм.

7. Индуктивное сопротивление короткого замыкания

Ом.

8. Индуктивные сопротивления статора и приведенное ротора Ом.

9. Приведенное к обмотке статора активное сопротивление фазы ротора

Ом.

10. Номинальный приведенный ток ротора

А.

11. Номинальный коэффициент мощности роторной цепи

,

тогда .

12. Номинальный ток намагничивающей цепи

А.

13. Номинальная ЭДС фазы статора

В.

14. Индуктивное сопротивление намагничивающей цепи

Ом.

15. Коэффициенты рассеяния обмоток статора и ротора

.

16. Общий коэффициент рассеяния

.

17. Определяются коэффициенты:

;

Ом;

;

.

Расчет статических характеристик асинхронного двигателя с частотным управлением при вентиляторном виде

Статической нагрузки

В курсовом проекте рассматривается электродвигатель ВРМ200L2 мощностью 50 кВт для вентилятора местного проветривания ВМ-8М. Вентиляторный агрегат оснащен преобразователем частоты с автономным инвертором напряжения. Для вентиляторного характера статической нагрузки в расчетах используется закон частотного регулирования .

Читать еще:  Вибрация при работе двигателя дизель

4.1. Электромеханические и механические характеристики частотно-регулируемого электропривода зависят от относительной частоты тока и параметра абсолютного скольжения . Так как вентиляторные установки могут работать с подачами выше номинального значения до ,то принимаем верхний предел регулирования частоты 75 Гц, т.е. . Поэтому для расчета семейства статических характеристик задаемся .

4.2. Для расчета статических характеристик необходимо задаваться параметром абсолютного скольжения. Расчет производится для рабочей части механической характеристики. Поэтому задаемся , при этом необходимо задавать для контроля номинальных значений тока и напряжения статора в процессе вычисления, а также ряд промежуточных значений параметра абсолютного скольжения.

4.3. Параметр критического абсолютного скольжения

.

Задаемся относительной величиной частоты тока и вычисленные значения параметра критического абсолютного скольжения приводим в табл. 4.1.

Зависимость параметра критического абсолютного скольжения

от относительной частоты тока

0,250,50,751,01,251,5
0.10.1050.10530.10540.105430.10545

4.4. Определяются коэффициенты:

=

.

Задаемся значением параметра абсолютного скольжения для разных частот тока и вычисленные значения коэффициентов приводим в табл. 4.2.

Зависимости коэффициентов и от параметра

4.5. Расчет электромеханических и механических характеристик для частот 50 Гц и меньше

;

.

Расчет электромеханических и механических характеристик для частот свыше 50 Гц ( )

;

.

Для расчета задаемся такими же значениями параметра абсолютного скольжения, как и в табл. 4.2, используя данные этой таблицы по величинам и . Переход от параметра абсолютного скольжения к угловой скорости производится в соответствии с формулой . Данные расчетов приведены в табл. 4.3.

4.6. Проверка выполненных вычислений производится по контрольным точкам естественной характеристики ( ):

— номинальному параметру абсолютному скольжению должны соответствовать номинальные значения тока статора и момента ;

— критическому параметру абсолютного скольжения должен соответствовать максимальный момент .

Анализ данных табл. 4.3 показывает, что погрешность вычислений составляет: тока статора – 5,0%; момента по номинальному значению – 9,7%; момента по максимальной величине – 0,9%. Для инженерных расчетов данные показатели являются удовлетворительными. Погрешность вычислений даже по одному из показателей свыше 15% свидетельствует о допущенных ошибках. Обычно ошибки возникают при вычислении параметров схемы замещения асинхронного двигателя. Типичная ошибка заключается в том, что вместо фазных величин напряжений и токов используют их линейные значения.

4.7. Для расчета механических характеристик вентилятора определяется номинальный момент вентилятора

Нм.

Расчетные данные электромеханических и механических характеристик частотно-регулируемого электропривода

Момент трения принимаем в размере 5% от номинального момента вентилятора

Нм.

Последнее изменение этой страницы: 2019-04-19; Просмотров: 302; Нарушение авторского права страницы

Схема замещения и механическая характеристика асинхронного двигателя

Реактивное сопротивление цепи ротора Х2s зависит от частоты f2 и равно Х2s= 2πf2L2 = 2πf1sL2 = sX2, где Х2= 2πf1L2, и L2 – соответственно, индуктивное сопротивление и эквивалентное значение индуктивности неподвижного (заторможенного) ротора. Схема замещения на рис.27.6, а соответствует уравнению

.

Рис.27.6.Схемы замещения роторной цепи

Разделив обе части на s, получим уравнение

,

которому соответствует цепь на рис. 27.6, б. В этой цепи ЭДС Е2 имеет частоту f1, т. е. цепь эквивалентна режиму заторможенного ротора. Мощность эквивалентного сопротивления R2å/s равна электромагнитной мощности, поступающей в ротор:

.

Полная схема замещения АД аналогична Т-образной схеме замещения трансформатора, однако чаще пользуются упрощенной Г-образной схемой замещения одной фазы (рис.26.7 ), где R1, X1 – сопротивления статорной цепи; R, X – приведенные к статору сопротивления роторной цепи; R, X – сопротивления ветви намагничивания; I – ток холостого хода. Из-за воздушного зазора между статором и ротором ток холостого хода I АД значительно выше тока холостого трансформатора и составляет (0,2¸0,5)I1ном.

Рис.27.7.Приведенная схема замещения АД

Зависимость частоты вращения от вращающего момента (n = f(M)) в установившемся режиме называют механической характеристикой двигателя.

Рис.27.8. Механическая характеристика АД

Из схемы находим : . Подставив в формулу момента находим М:

где Хк реактивное сопротивление при критическом моменте(XК = X1 + X).

Формула совместно с подстановкой s = 1 – определяет механическую характеристику АД. Связь s и n учитывают совмещением осей s и n. Механическая характеристика показана на рис.27.8 , где оси n и s направлены навстречу друг другу и n = 0 соответствует s = 1, а n = n1 соответствует s = 0 (значения n указаны справа от оси, s – слева). Анализ формулы (3.40) с помощью dM/ds = 0 дает два экстремума:

;

где «+» соответствует двигательному режиму (квадрант I); «–» – генераторному (квадрант II). Скольжение s = sКи момент М = MК = Mmax называют критическими.

27.5. Анализ механической характеристики
асинхронного двигателя

Рассмотрим детальнее механическую характеристику в двигательном режиме (рис.27.8), для которого sК > 0.

Уравнение механической характеристики можно преобразовать к виду (уточненная формула Клосса):

,

где a = R1/R.

Рис.27.9. Механическая характеристика двигателя

На рис. 27.9 представлены статические механические характеристики некоторых механизмов. Характеристика I (ее называют вентиляторной) типична для вентиляторов, центрифуг, гребных винтов, насосов.

Рис.27.10.Механические характеристики рабочих механизмов

Характеристикой II обладают механизмы постоянной мощности (бетономешалки, шаровые мельницы). Характеристика III обычна для грузоподъемных механизмов (краны, лебедки). Эти механизмы создают активный постоянный момент сопротивления.

Статичность характеристик на рисунках означает, что каждой их точке соответствует установившаяся частота вращения n = const. Из уравнения динамики вращательного

,

где J – приведенный к валу двигателя момент инерции всех вращающихся частей, следует, что установившийся режим (dn/dt = 0) соответствует балансу вращающего М и тормозного (момента сопротивления) MC моментов (М = MC) на валу и может быть найден как точка пересечения характеристик АД и рабочего механизма.

На рис.27.9 в качестве нагрузки выступает механизм вентиляторного типа с установившимся режимом, который соответствует точке н. На практике АД подбирают так, чтобы установившийся режим соответствовал номинальному режиму (n = nном, М = Мном), задаваемому заводом-изготовителем. В паспорте двигателя приводятся следующие данные: тип, Рном, Uном, Iном, nном, ηном, λМ = Мmax/Мном, cosφном. Для АД с короткозамкнутым ротором дополнительно даются λп = Мп/Мном (Мп – пусковой момент) и отношение пускового тока к номинальному Iп/Iном. По паспортным данным определяется Мном = 9,55Рном/nном.

Читать еще:  Экономика что такое двигатель прогресса

Точка n1 соответствует режиму идеального холостого хода (n1; М = 0). В точке s = sК (критический режим)АД развивает максимальный вращающий момент МК. Точка п характеризует пуск АД. В этой точке n = 0 и М = Мп – пусковой момент двигателя. Участок n1nК характеристики устойчив, т. е. при нарушении баланса моментов М = МС (изменение нагрузки или питающего напряжения) происходит изменение частоты вращения, приводящее к новому балансу моментов (при МС

Однофазные и двухфазные асинхронные двигатели

Однофазные асинхронные двигатели — машины небольшой мощности, которые по конструктивному исполнению напоминают аналогичные трехфазные электродвигатели с короткозамкнутым ротором.

Однофазные асинхронные двигатели отличаются от трехфазных двигателей устройством статора, где в пазах магнитопровода находится двухфазная обмотка, состоящая из основной, или рабочей, фазы с фазной зоной 120 эл. град и выводами к зажимам с обозначениями С1 и С2, и вспомогательной, или пусковой, фазы с фазной зоной 60 эл. град и выводами к зажимам с обозначениями В1 и В2 (рис. 1).

Магнитные оси этих фаз обмотки смещены относительно друг друга па угол 0 = 90 эл. град. Одна рабочая фаза, присоединенная к питающей сети переменного напряжения, не может вызвать вращения ротора, так как ток ее возбуждает переменное магнитное поле с неподвижной осью симметрии, характеризуемое гармонически изменяющейся во времени магнитной индукцией.

Рис. 1. Схема включения однофазного асинхронного двигателя с короткозамкнутым ротором.

Это поле можно представить двумя составляющими — одинаковыми круговыми магнитными полями прямой и обратной последовательностей, вращающимися с магнитными индукциями, вращающимися в противоположные стороны с одной и той же скоростью. Однако при предварительном разгоне ротора в необходимом направлении он при включенной рабочей фазе продолжает вращаться в том же направлении.

По этой причине пуск однофазного двигателя начинают с разгона ротора путем нажатия пусковой кнопки, вызывающего возбуждение токов в обеих фазах обмотки статора, которые сдвинуты по фазе на величину, зависящую от параметров фазосдвигающего устройства Z, выполненного в виде резистора, индуктивной катушки или конденсатора, и элементов электрических цепей, в которые входят рабочая и пусковая фазы обмотки статора. Эти токи побуждают в машине вращающееся магнитное поле с магнитной индукцией в воздушном зазоре, которая периодически и монотонно изменяется в пределах максимального и минимального значений, а конец ее вектора описывает эллипс.

Это. эллиптическое вращающееся магнитное поле находит в проводниках короткозамкнутой обмотки ротора ЭДС и токи, которые, взаимодействуя с этим полем, обеспечивают разгон ротора однофазного двигателя в направлении вращения поля, и он в.течение нескольких секунд достигает почти номинальной скорости.

Отпускание пусковой кнопки переводит электродвигатель с двухфазного режима на однофазный, поддерживаемый в дальнейшем соответствующей составляющей переменного магнитного поля, которая при своем вращении несколько опережает вращающийся ротор из-за скольжения.

Своевременное отключение пусковой фазы обмотки статора однофазного асинхронного двигателя от питающей сети необходимо в связи с ее конструктивным исполнением, предусматривающим кратковременный режим работы — обычно до 3 с, что исключает длительное пребывание ее под нагрузкой в связи с недопустимым перегревом, сгоранием изоляции и выходом из строя.

Повышение надежности эксплуатации однофазных асинхронных двигателей обеспечивают встраиванием в корпус машин центробежного выключателя с размыкающими контактами, присоединенными к зажимам с обозначениями ВЦ и В2, и теплового реле с аналогичными контактами, имеющими выводы с обозначениями РТ и С1 (рис. 2, в, г).

Центробежный выключатель автоматически отключает пусковую фазу обмотки статора, присоединенную к зажимам с обозначениями В1 и В2 при достижении ротором скорости, близкой к номинальной, а тепловое реле — обе фазы обмотки статора от питающей сети, когда нагрев их окажется выше допустимого.

Перемена направления вращения ротора достигается изменением направления тока в одной из фаз обмотки статора при пуске путем переключения пусковой кнопки и перестановки металлической пластины на зажимах электродвигателя (рис. 2, а, б) или только перестановкой двух аналогичных пластин (рис. 2, в, г).

Рис. 2. Маркировка зажимов фаз обмотки статора однофазного асинхронного двигателя с короткозамкнутым ротором и их соединение для вращения ротора: а, в — правого, б, г — левого.

Сравнение технических характеристик однофазных и трехфазных асинхронных двигателей

Однофазные асинхронные двигатели отличаются от аналогичных по номинальной мощности трехфазных машин пониженной кратностью начального пускового момента k п = M п / M ном и повышенной кратностью пускового тока ki = Mi / M ном которые для однофазных электродвигателей с пусковой фазой обмотки статора, имеющей повышенное сопротивление постоянному току и. меньшую индуктивность, чем рабочая фаза, имеют значения k п — 1,0 — 1,5 и ki = 5 — 9.

Пусковые характеристики однофазных асинхронных двигателей хуже аналогичных характеристик трехфазных асинхронных двигателей в связи с тем, что возбуждаемое при пуске однофазных машин с пусковой фазой обмотки статора эллиптическое вращающееся магнитное поле, эквивалентное двум неодинаковым круговым вращающимся магнитным полям — прямому и обратному, вызывает появление тормозного эффекта.

Подбором параметров элементов электрических цепей рабочей и пусковой фаз обмотки статора можно обеспечить при пуске возбуждение кругового вращающегося магнитного поля, что возможно при фазосдвигающем элементе, выполненном в виде конденсатора соответствующей емкости.

Так как разгон ротора вызывает изменение параметров цепей машины, вращающееся магнитное поле из кругового переходит в эллиптическое, ухудшая этим пусковые характеристики двигателя. Поэтому при скорости около 0,8 номинальной пусковую фазу обмотки статора электродвигателя отключают вручную или автоматически, в результате чего двигатель переходит на однофазный режим работы.

Читать еще:  Шумит двигатель приоры причины

Однофазные асинхронные двигатели с пусковым конденсатором имеют кратность начального пускового момента kп = 1,7 — 2,4 и кратность начального пускового тока ki = 3 — 5.

Двухфазные асинхронные двигатели

В двухфазных асинхронных двигателях обе фазы обмотки статора с фазными зонами по 90 эл. град являются рабочими. Они расположены в пазах магнитопровода статора так, что их магнитные оси образуют угол 90 эл. град. Эти фазы обмотки статора отличаются друг от друга не только числом витков, но и номинальными напряжениями и токами, хотя при номинальном режиме двигателя полные мощности их одинаковы.

В одной из фаз обмотки статора постоянно находится конденсатор Ср (рис. 3, а), который в условиях номинального режима двигателя обеспечивает возбуждение кругового вращающегося магнитного поля. Емкость этого конденсатора определяют по формуле:

C р = I1 sinφ1 / 2πfUn 2

где I1 и φ1 — соответственно ток и сдвиг фаз между напряжением и током цепи фазы обмотки статора без конденсатора при круговом вращающемся магнитном поле, I и U — соответственно частота переменного тока и напряжение питающей сети, n — коэффициент трансформации — отношение эффективных чисел витков фаз обмотки статора соответственно с конденсатором и без него, определяемое по формуле

n = k об2 w 2 / k об1 w 1

где k об2 и k об1 — обмоточные коэффициенты соответствующих фаз обмотки статора с числом витков w 2 и w1.

Напряжение на зажимах конденсатора Uc, включенного последовательно с фазой обмотки статора двухфазного асинхронного двигателя, при круговом вращающемся магнитном поле выше напряжения сети U и определяется так:

Переход к нагрузке двигателя, отличной от номинальной, сопровождается изменением вращающегося магнитного поля, которое вместо кругового становится эллиптическим. Это ухудшает рабочие свойства двигателя, а при пуске снижает начальный пусковой момент до Мп M ном, ограничивая этим применение двигателей с постоянно включенным конденсатором только в установках с легкими условиями пуска.

Для повышения начального пускового момента параллельно рабочему конденсатору Ср включают пусковой конденсатор Сп (рис. 3, б), емкость которого намного больше емкости рабочего конденсатора и зависит от кратности начального пускового момента, которая может быть доведена до двух и более.

Рис. 3. Схемы включения двухфазных асинхронных двигателей с короткозамкнутым ротором: а — спостоянно присоединенным конденсатором, б — с рабочим и пусковым конденсаторами.

После разгона ротора до скорости 0,6 — 0,7 номинальной пусковой конденсатор отключают для избежания перехода кругового вращающегося магнитного поля в эллиптическое, ухудшающее рабочие характеристики двигателя.

Пусковой режим таких конденсаторных двигателей характеризуется такими показателями: k п = 1,7 — 2,4 и k i = 4 — 6.

Конденсаторные двигатели отличаются лучшими энергетическими показателями, чем однофазные двигатели с пусковой фатой обмотки статора, я коэффициент мощности их, благодаря применению конденсаторов, выше, чем у трехфазных двигателей одинаковой мощности.

Универсальные асинхронные двигатели

В установках автоматического управления применяют универсальные асинхронные двигатели — трехфазные машины малой мощности, которые присоединяют к трехфазной или однофазной сети. При питании от однофазной сети пусковое и рабочие характеристики двигателей несколько хуже, чем при использовании их в трехфазном режиме.

Универсальные асинхронные двигатели серии УАД изготовляют двух- и четырехполюсными, которые при трехфазном режиме имеют номинальную мощность от 1,5 до 70 Вт, а при однофазном режиме — от 1 до 55 Вт и работают от сети переменного напряжения частотой 50 Гц с кпд η = 0,09 — 0.65.

Однофазные асинхронные двигатели с расщепленными или экранированными полюсами

В однофазных асинхронных двигателях с расщепленными или экранированными полюсами, каждый полюс расщеплен глубоким пазом па две неравные части и несет на себе однофазную обмотку, охватывающую весь магнитопровод полюса, и короткозамкнутые витки, расположенные на его меньшей части.

Ротор у этих двигателей имеет короткозамкнутую обмотку. Включение обмотки статора на синусоидальное напряжение сопровождается установлением в ней тока и возбуждением переменного магнитного поля с неподвижной осью симметрии, которое наводит в короткозамкнутых витках соответствующие эдс и токи.

Под влиянием токов короткозамкнутых витков соответствующая им м. д. с, возбуждает магнитное поле, препятствующее усилению и ослаблению основного магнитного поля в экранированных частых полюсов. Магнитные поля экранированных и неэкранированных частей полюсов не совпадают по фазе во времени и, будучи смещенными в пространстве, образуют результирующее эллиптическое вращающееся магнитное поле, перемещающее в направлении от магнитной оси неэранированной части полюса к магнитной оси его экранированной части.

Взаимодействие этого поля с токами, индуктированными в обмотке ротора, вызывает появление начального пускового момента Мп = (0,2 — 0,6) Мном и разгон ротора до номинальной скорости, если тормозной момент приложенный к валу двигателя, не превышает начальный пусковой момент.

С целью увеличения начального пускового и максимального моментов однофазных асинхронных двигателях с расщепленными или экранированными полюсами между их полюсами располагают магнитные шунты из листовой стали, что приближает вращающееся магнитное поле к круговому.

Двигатели с расщепленными полюсами являются нереверсивными устройствами, допускающими частые пуски, внезапную остановку и могут длительное время находиться в заторможенном состоянии. Их изготовляют двух- и четырехполюсными номинальной мощностью от 0,5 до 30 Вт, а при усовершенствованной конструкции до 300 Вт для работы от сети переменного напряжения частотой 50 Гц с кпд η ном = 0,20 — 0,40.
Читайте также: Сельсины: назначение, устройство, принцип действия

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector