2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрическая схема управления трехфазными двигателями

Реверсивное управление асинхронным электродвигателем с короткозамкнутым ротором

Всем привет. Рад вас видеть у себя на сайте. Тема сегодняшней статьи: Реверсивное управление асинхронным электродвигателем с короткозамкнутым ротором.

В наше время асинхронные двигателя очень широко используются на производственных предприятиях. Их устанавливают практически на всём оборудование. А ещё бы и не ставить, ведь они самые простые в конструкции, имеют самую простую схему запуска и практически не требуют профилактических ремонтов.

Но мы сегодня не будем говорить о достоинствах и преимуществах этих двигателей, давайте лучше поговорим, о том, как же изменить направления движения этих электрических машин.

Но прежде чем рассматривать схему реверса, я советую вам почитать такие статьи:

Думаю, эти статьи будут вам очень полезны.

Теперь, переходим к практике. Специально для читателей своего сайта, я нарисовал схему реверса на листке бумаги, сфотографировал её, и делюсь с вами. Картинка получилась неплохо, и все основные элементы на ней видно. Но если вдруг вам что-то не понятно, то задавайте свои вопросы в комментариях. Я с радостью на них отвечу.

Схема запуска и реверсивного управления трёхфазного асинхронного электродвигателя с короткозамкнутым ротором.

Давайте для начала рассмотрим все элементы схемы.

QF – автоматический выключатель. Нужен для коммутации электрической схемы и для защиты от токов короткого замыкания.

KM1, KM2 – электромагнитные пускатели. Нужны для дистанционного запуска электродвигателя, и в данной схеме используются для реверса.

KK – тепловое реле. Используется для защиты электропривода от перегруза.

FU – предохранитель. Нужен для защиты цепей управления от токов короткого замыкания. И так же выступает в роли защиты от самопроизвольного включения привода в работу.

SB3 – кнопка стоп

SB1 – кнопка пуск «вперёд» или «вправо» и так далее.

SB2 – кнопка пуск «назад» или «влево» и так далее.

KM1, KM2 – блок-контакты электромагнитных пускателей. Нужны для подхвата.

KM1, KM2 – дополнительные блок-контакты пускателей. Выступают в роли блокировки от включения двух пускателей одновременно.

KM1, KM2 – катушки пускателей. Нужны для управления электромагнитными пускателями.

К – контакт теплового реле.

По элементам разобрались. Теперь давайте поговорим о том, как работает эта схема.

Для того чтобы запустить в работу электродвигатель, мы должны подать на него напряжение. Для этого включаем автоматический выключатель QF. Напряжение подаётся на контакты пускателей, и на цепь управления.

Теперь, чтобы двигатель начал вращаться нажимаем кнопку SB1. Этим действием мы подаём напряжение на катушку пускателя КМ1, пускатель втягивается, замыкаются силовые контакты и так же замыкается блок-контакт КМ1, а блок-контакт КМ2 размыкается. Двигатель при этом начинает вращаться

Теперь, чтобы запустить двигатель в другую сторону, нам нужно его сначала остановить. Для этого нажимаем кнопку SB3. Этим движением мы прекращаем подачу напряжения на цепь управления, и двигатель в любом случае остановиться, независимо от того в какую сторону он вращался.

Теперь для запуска электродвигателя в противоположную сторону. Нажимаем кнопку SB2. Напряжение подаются на катушку второго пускателя, он втягивается, замыкаются силовые контакты, замыкаются блок-контакты для подхвата, и размыкаются дополнительные блок-контакты. Двигатель начинает вращаться.

По сути, если разобраться, то схема очень простая. Главное понять принцип действия, и тогда вы легко сможете эту схему, переделать под свой какой-то вариант.

На этом у меня всё. Если есть вопросы, то задавайте их в комментариях. Если статья была вам полезной, то поделитесь нею со своими друзьями в социальных сетях, вступайте в группу и подписывайтесь на обновления сайта. Пока.

Подключение двигателей к различным видам ПЧ

Рассмотрим схемы включения асинхронных двигателей «звезда» и «треугольник» в контексте их питания от преобразователей частоты. Для начала немного освежим в памяти теорию.

Что такое «звезда» и «треугольник»

Обычно используются асинхронные двигатели с тремя обмотками, которые можно подключить двумя способами — по схеме «звезда» (обозначается символом «Y») или «треугольник» («Δ» или «D»). Схема соединения должна обеспечивать нормальную работу двигателя при имеющемся напряжении питания.

Первое, от чего необходимо отталкиваться при выборе схемы — информация на шильдике двигателя. На нем указываются параметры для обеих схем. Наиболее важный параметр — напряжение питания. Напряжение «звезды» в 1,73 раза (точнее в квадратный корень из 3) больше, чем «треугольника». Например, если указано, что напряжение питания двигателя, включенного по схеме «звезда», составляет 380 В, то можно точно сказать, даже не глядя на шильдик, что для включения по схеме «треугольник» необходимо напряжение 220 В. В данном случае напряжение 380 В соответствует линейному напряжению в стандартной сети, и двигатель можно подключать по схеме «звезда» через контактор либо через частотный преобразователь. То же самое справедливо и для случаев, когда напряжение «треугольника», указанное на шильдике, равно 380 В. Тогда, умножая на 1,73, получаем напряжение «звезды» равным 660 В.

Эти два типа двигателей, отличающиеся напряжениями питания (220/380 и 380/660 В), в подавляющем большинстве случаев используются на практике и имеют свои особенности подключения, которые мы рассмотрим ниже.

Читать еще:  Kayo 140 схема двигателя

Классическая схема «звезда» / «треугольник»

При питании «напрямую» от промышленной сети с линейным напряжением 380 В подойдут оба типа двигателей. Нужно лишь убедиться, что схема включения обмоток собрана на нужное напряжение.

Однако на практике для питания в схеме «звезда» / «треугольник» применяют второй тип приводов (380/660 В). Данная схема используется для уменьшения пускового тока мощных двигателей, который может превышать рабочий в несколько раз. Несмотря на то, что этот ток кратковременный, в течение разгона питающая сеть и привод испытывают значительные электрические и механические перегрузки – ведь в первую долю секунды ток двигателя может в 10 раз превышать номинал, плавно снижаясь в процессе разгона.

Схема подключения «звезда» / «треугольник» приведена во многих источниках, поэтому лишь напомним коротко, как она работает.

Чтобы сделать процесс пуска более щадящим, сначала напряжение 380 В подают на обмотки двигателя, включенные по схеме «звезда». Поскольку рабочее напряжение этой схемы должно быть больше (660 В), двигатель работает на пониженной мощности. Через несколько секунд, после того, как привод раскрутится, включается «треугольник», для которого 380 В является рабочим напряжением, и двигатель выходит на номинальную мощность.

Классическую схему мы рассмотрели, а теперь разберём, в каких случаях использовать подключение двигателей в «звезде» и «треугольнике» при питании от преобразователя частоты.

Преобразователи частоты на 220 В

При питании преобразователя частоты от одной фазы (фазное напряжение 220 В) линейное напряжение на его выходе не может быть более 220 В. Поэтому для питания асинхронного двигателя от однофазного ПЧ нужно подключить обмотки привода с напряжениями 380/220 В по схеме «треугольник». Этот же двигатель, подключенный по схеме «звезда», будет работать с пониженной мощностью.

Преобразователи частоты на 380 В

Трехфазные ПЧ являются более универсальными с точки зрения подключения двигателей с разным напряжением питания. Главное – собрать в клеммнике (борно) двигателя схему на напряжение 380 В. Именно этот вариант используется в большинстве частотных преобразователей, работающих в промышленном оборудовании.

ПЧ с возможностью переключения «звезда» / «треугольник»

В некоторых преобразователях, работающих с мощными двигателями, имеется возможность оперативного переключения схемы работы. Это делается с целью расширения диапазона регулировки скорости двигателя вверх от номинальной. Метод основан на том факте, что подключение «звездой» обеспечивает более высокий момент на малой скорости, а подключение «треугольником» — высокую скорость. Можно задавать выходную частоту, на которой происходит переключение, время паузы (задержки) переключения, параметры двигателя для первого и второго режимов.

У частотных преобразователей такого типа имеются выходы для включения соответствующих контакторов, обеспечивающих формирование нужных схем включения.

Настройки ПЧ для схем «звезда» и «треугольник»

Когда выбирается схема подключения, нужно помнить о том, что некоторые параметры в настройках ПЧ чувствительны к выбору вида схемы, например, номинальное напряжение и номинальный ток.

Бывает так, что необходимо подключить двигатель, собранный по схеме «треугольник» на напряжение 220 В, к выходу трехфазного ПЧ, линейное напряжение которого при частоте 50 Гц равно 380 В. Понятно, что в этом случае двигатель нужно включить в «звезду», но иногда этого сделать невозможно.

Выход есть. Необходимо указать номинальную частоту двигателя равной не 50 Гц, как указано на шильдике, а 87 Гц (в 1,73 раза больше). Аналогичным образом нужно задать и максимальную выходную частоту преобразователя. В результате того, что отношение V/F на выходе ПЧ остается неизменным, на частоте 50 Гц напряжение на обмотках двигателя составит как раз 220 В. При этом верхнюю рабочую частоту двигателя необходимо установить на значение 50 Гц.

Преимуществом такого подключения является возможность повышения рабочей частоты двигателя выше 50 Гц, при этом вплоть до 87 Гц двигатель не будет терять рабочий момент. В данном случае важно следить за механическим износом системы и за нагревом привода.

Схема подключения трехфазного двигателя к однофазной сети

Подключение трёхфазного двигателя к однофазной цепи может потребоваться просто потому, что другого нет под рукой, или нужно сэкономить, или просто захотелось смастерить что-то своими руками из старых запасов. Тем более асинхронники (это практически все 3-фазные электромоторы, могущие встретиться на жизненном пути Самоделкина) имеют одно очень важное конструкционное преимущество: у них нет электрических щёток — лишней расходной детали.

  • Подключение двигателя 380 на 220
  • Какую схему соединения обмоток выбрать
  • Подбираем конденсатор
  • Подсчет итоговой ёмкости
  • Реверс

Подключение двигателя 380 на 220

380в — это напряжение между фазами в трёхфазной цепи (линейное), а 220в — напряжение между фазой и нулём (фазное) в той же самой цепи. В обычной однофазной цепи: дома, на даче или в гараже есть только два провода — ноль и фаза; сейчас в новых постройках появился защитный ноль (заземление) — провод жёлто-зелёного цвета, он подходит к «рогам» розетки, его в расчёт не принимаем, о заземлении разговор совсем другой.

Возникает вопрос о том, где взять недостающие фазы. Применение фазорасщепителя или инвертора (устройство, преобразующее однофазный электрический ток в трёхфазный) рассматривать не будем, не стоит принимать во внимание и индукционный с помощью катушек индуктивности способ сдвига фаз. Пойдём другим путём, ёмкостным — подключение электродвигателя 380 В на 220 В через конденсатор. Этот метод является самым простым и оптимальным, легким в реализации.

Читать еще:  В чем отличие оппозитного двигателя от атмосферного

То, что имеется сам трёхфазный электродвигатель, ясно по умолчанию, нужно только определить схему подключения его обмоток и как подключить двигатель 380 на 220. Для этого надо вскрыть клеммную коробку электродвигателя и если в ней только три клеммы, стало быть, обмотки статора соединены звездой и для переделки на треугольник, а когда на шильдике движка указано рабочее напряжение 380 В, то это нужно, придётся открывать заднюю крышку мотора, искать выводы обмоток, переключать их. Тут рекомендуется позвать опытного электрика.

В коробке шесть клемм, расположенных двумя рядами — по три штуки в каждом. Рассмотрим возможные варианты

  1. Три клеммы ОДНОГО ряда соединены между собой — звезда.
  2. МЕЖДУРЯДНОЕ соединение клемм попарно — треугольник.

Какую схему соединения обмоток выбрать

Читаем информацию о рабочем напряжении на табличке:

  • 380В — только треугольник.
  • 380В/220В — треугольник или звезда.
  • 220/127 — только звезда. Очень редкий вариант.

Нужно иметь в виду, что при соединении треугольником на обмотку попадает напряжение в 1,7 раза больше, чем при соединении звездой, а значит и реализуемая мощность будет выше, но звезда обеспечивает плавный пуск.

Подбираем конденсатор

В цепи переменного тока — а это как раз наш случай — не стоит пользоваться полярными, имеющими плюсовой и минусовой контакты (анод и катод) конденсаторами. Но при необходимости эту проблему обойти можно путём использования диодного моста или двух полярных конденсаторов, объединённых в один соединением одноимённых контактов, но тут опять лучше позвать опытного электрика.

Существует формула потребной ёмкости рабочего конденсатора, но рассчитав по ней, равно потребуется проверять работу устройства на практике. Если есть какие-то конденсаторы лучше сразу перейти к методу вдумчивого подбора, но именно вдумчивого, а не совсем бездумного. Конденсаторы должны быть неполярными, обладать одинаковым рабочим напряжением никак не менее 300 В, но лучше 400 В и выше.

  • Рабочее напряжение конденсаторов должно быть ОДИНАКОВЫМ, иначе тот, где оно меньше, выйдет из строя.

Начните со значения 30 микрофарад (μF) на 1 киловатт паспортной мощности мотора при соединении обмоток статора звездой, при треугольнике можно пробовать с 50−70 μF. Электродвигатель на холостом ходу (без нагрузки) должен запуститься и набрать обороты не особо нагреваясь, продолжительная работа на холостом ходу нежелательна, двигатель может сгореть. Если холостой запуск происходит нормально, без перегрева и запаха гари, то рабочий конденсатор подобран, на нём и будет работать, подключайте нагрузку и продолжайте испытания уже в рабочем состоянии.

А если подключение электродвигателя 380 В на 220 В через конденсатор происходит сразу под серьёзной нагрузкой? Тут потребуется стартовый конденсатор, его ёмкость нужно начинать подбирать со значений в полтора раза больше, чем рабочий. Пример: рабочий 60 μF, тогда стартовый первоначально ставим на 90 μFи, если нормального запуска нет, то добавляем ёмкость пусковой цепи конденсаторов (примерная ёмкость пусковой цепи составляет до трёх рабочей, в нашем примере до 180 μF). После выхода на рабочие обороты пусковые конденсаторы выключаются, остаётся только рабочий. Цепи рабочего и пускового конденсаторов параллельны, в каждую можно поставить отдельный выключатель.

В бытовой сети не нужно использовать устройства мощностью более 3 квт — сработает защита или сгорит проводка.

Подсчет итоговой ёмкости

При параллельном соединении конденсаторов их ёмкости складываются, а вот при последовательном — наоборот, суммарная ёмкость будет меньше, тут равна сумма обратных значений. Когда два одинаковых конденсатора соединяются параллельно суммарная ёмкость удваивается, а если последовательно, то уменьшается в два раза. То есть сумма ёмкости двух конденсаторов по 100 микрофарад может быть и 200 μF, и 50 μF. Всё зависит от типа их соединения между собой.

Другой пример: суммарная ёмкость конденсаторов 60 μF и 90 μF при параллельном соединении будет 150 μF, при последовательном — 36 μF. Это можно творчески использовать при подборе из того, что есть, или при покупке подешевле.

Реверс

Для изменения направления вращения ротора нужно переключить ёмкостную цепь на другой провод или клемму коробки электродвигателя. На одну клемму подаётся фаза, на другую ноль, включение конденсаторной группы производим к третьей. Теперь при подключении второго провода конденсатора к фазе мотор крутится в одну сторону, к нулю — в другую.

Этого достаточно, чтобы разобраться в том как подключить трёхфазный двигатель на 220, но если всё получилось и вроде работает правильно крутит, не греется, не горит окончательно убедиться в правильности собранной схемы поможет нехитрая и в этом случае необязательная проверка. Во время работы с постоянной, одинаковой нагрузкой с помощью токоизмерительных клещей померьте токи в фазном, нулевом и конденсаторном проводах. В идеале они должны быть равны между собою, если и есть небольшие различия (процентов 30), то это не идеал, но всё-таки хорошо.

Читать еще:  Kia sorento стук двигателя

А исправляется различие токов просто — путём изменения ёмкости рабочего конденсатора. Нужно не делать резких движений и не сжечь обмотку, установив слишком большую ёмкость рабочего конденсатора.

Технический блог — металургия — альтернативная энергетика

Трехфазный регулятор мощности на тиристорах

Данный трехфазный регулятор мощности был разработан для управления током нагревателя в вакуумной печи 150 КВт. Подойдет для регулирования мощности в любых трехфазных схемах с тиристорами от 10 до 2500А. Обновлено 03.2019.

  • Регулятор мощности тиристорный.
  • Фазо-импульсный регулятор
  • Применим для схем с тиристорами от 10А до 2500А.
  • Входной сигнал 0-10V
  • Диапазон регулировки мощности от 0 до 100%
  • Варианты подключения смотрите ниже

Схема трехфазного регулятора мощности и его принцип действия.

Схема трехфазного регулятора мощности

Трехфазный регулятор мощности разработан на базе 3-х микросхем TCA (Siemens) 785. Данная микросхема вырабатывает управляющие импульсы открытия тиристоров и устроена таким образом, что при на входе — импульс управления подается в начале полуволны(тиристор полностью открыт) А при входном напряжении 10V управляющий импульс не подается(тиристор закрыт). Поэтому, для перехода на классическую схему управления — 0V на входе — минимальная мощность на выходе, 10V — максимальная, сделана соответствующая доработка. Импульсы выдаваемые микросхемой TCA 785 усилены и преобразованы.

В данном трехфазном регуляторе так же присутствует плата синхронизации с трехфазной питающей сетью, показана на схеме ниже.

Варианты подключения

Напрямую от питающей сети

Напрямую от трехфазной сети, без использования понижающего трансформатора данный регулятор можно применять для регулирования мощности как трехфазной нагрузки, так нагрузки постоянного тока. Коммутационная схема регулятора мощности в таких случаях выглядит так

С использованием понижающего или разделительного трансформатора. С потребителем постоянного тока

Если регулятор подключается во вторичку как показано на схеме выше. В таком случае вторичные обмотки трансформатора можно соединять как треугольником так и в звезду.

Внимание! При включении 3-х фазного регулятора в первичку трансформатора. Первичные обмотки соединять только звездой! С треугольником схема не работает.

Без понижающего трансформатора. С нагрузкой постоянного тока.

Трехфазный регулятор мощности своими руками.

(данный раздел статьи будет дополняться по мере изготовления 3-фазного регулятора)

Что-же, давайте перейдем от теории к практике и соберем такой регулятор. Он будет использоваться для автоматического управления температурой в печи отжига отливок. В литейном цеху.

Условно трехфазный регулятор можно изобразить так:

Модуль синхронизации — три трансформатора для синхронизации по 3-м фазам.

Плата регулятора — схема трехфазного регулятора представлена выше, печатная плата показана ниже)

Модуль согласования. Разные типы тиристоров требуют разных по форме импульсов открытия. В модуле согласования мы настраиваем ширину и амплитуду импульса в зависимости от выбранных тиристоров.

Делаем печатную плату

так выглядит наша готовая плата регулятора

Теперь собираем синхронизацию. В данном случае будет использован трехфазный тиристорно-диодный выпрямитель без понижающего трансформатора. Поэтому схему синхронизации подключаем так:

Схема платы согласования выглядит следующим образом:

Показан только один канал. Нужно собрать таких три.

Все регулятор готов. Подключаем его к трехфазному выпрямителю, а на вход задания подаем сигнал 0-10В температурного контроллера. (или потенциометра, для ручного управления).

Подытожим. Если у вас есть трехфазная установка, печь, нагреватель, да что угодно, любой потребитель мощности с максимальным потребляемым током до 2500 А. Можете смело использовать такой трехфазный регулятор мощности. Подобрав при этом трансформатор в зависимости от потребляемой мощности вашей установки. Или подключить регулятор напрямую от питающей трехфазной сети без использования понижающего трансформатора. Данный трехфазный регулятор мощности испытан и отлично себя зарекомендовал на более чем 10-ти печах мощностью до 300 000 W (срок эксплуатации уже более 6 лет).

Купить такой 3-х фазный регулятор можно по ссылке.

Если вы хотите собрать трехфазный регулятор мощности своими руками, напишите в комментариях, дам необходимую информацию.

Эндоскоп с Aliexpress. Обзор, примеры фото и видео.

on 23 августа, 2019 by admin

Эндоскоп представляет из себя шнур диаметром 5мм , на конце которого размещена видеокамера со светодиодной п�…

Как летнюю жару превратить в тепло зимой. Автономное отопление на солнечных батареях.

on 16 апреля, 2019 by admin

В этом материале постараемся теоретически решить задачу автономное отопление на солнечных батареях. Посчит�…

Трехфазный регулятор мощности на тиристорах

on 22 марта, 2019 by admin

Данный трехфазный регулятор мощности был разработан для управления током нагревателя в вакуумной печи 150…

Садовый пруд на солнечных батареях. Биоплато, экопруд.

on 24 января, 2019 by admin

Чтобы очистить садовый пруд нужно организовать биоплато. Чем больше солнца тем больший объем воды солнечные …

Можно ли заряжать литиевые аккумуляторы напрямую от солнечных батарей

on 27 сентября, 2018 by admin

Возможно ли использовать солнечную панель как зарядное для литиевых аккумуляторов li ion типа 18650. Мы решили…

Aiek M-5 телефон-кредитка. Обзор

on 31 июля, 2018 by admin

Aiek M5 из магазина AliExpress. Начну с главного. Телефончик действительно хорош, вызывает много положительных эмоци�…

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector