0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрические схемы испытаний двигателей

Как проверить состояние обмотки электродвигателя. Прозвон мультимертом

При помощи мультиметра и нескольких приспособлений, не особо разбираясь в принципе работы электродвигателей, можно своими руками в домашних условиях проверить:

  • Асинхронный трёхфазный двигатель с короткозамкнутым ротором – наиболее лёгкий для проверки, из-за его простого внутреннего устройства, благодаря которому, данный тип электродвигателя имеет наибольшую популярность;

  • Асинхронный однофазный (двухфазный, конденсаторный) электродвигатель с короткозамкнутым ротором – часто используется в различной бытовой технике, подключаемой в сеть 220 В. (стиральные машины, пылесосы, вентиляторы).
  • Коллекторный электродвигатель постоянного тока – массово применяется в автомобилях в качестве привода для стеклоочистителей (дворников), стеклоподъёмников, насосов, вентиляторов;
  • Коллекторный электродвигатель переменного тока – используется в ручных электрических инструментах (дрели, перфораторы, болгарки и т.д.)
  • Асинхронный двигатель с фазным ротором – в сравнении с электродвигателем с короткозамкнутым ротором, обладает мощным стартовым моментом, поэтому используется в в качестве привода силового оборудования — подъёмников, лифтов, кранов, станков.

Испытание изоляции обмоток электродвигателя мегомметром

Независимо от конструкции, электродвигатель нужно проверить при помощи мегомметра на пробой изоляции между обмотками и корпусом. Проверки при помощи одного только мультиметра может быть недостаточно для выявления повреждения изоляции, по причине того, что нужно использовать высокое напряжение.

В паспорте электродвигателя должно указываться напряжение для испытания изоляции обмоток на электрическую прочность. Для двигателей, подключаемых к сети 220 или 380 В, при их проверке используются 500 или 1000 Вольт, но за неимением источника, можно воспользоваться сетевым напряжением.

Изоляция обмоточных проводов низковольтных двигателей не рассчитана выдерживать такие перенапряжения (она может сгореть), поэтому при проверке нужно свериться с паспортными данными. Иногда у некоторых электродвигателей вывод обмоток, соединённых звездой, может быть подключён на корпус, поэтому следует внимательно изучать подключение отводов, делая проверку.

Как правильно проверить обмотоку электродвигателя на обрыв и межвитковое замыкание мультиметром

Чтобы прозвонить обмотки на обрыв нужно переключить мультиметр в режим омметра. Выявить межвитковое замыкание можно сравнив сопротивление обмотки с паспортными данными или с измерениями симметричных обмоток проверяемого электродвигателя.

Нужно помнить, что у мощных электродвигателей поперечное сечение проводов обмоток достаточно большое, поэтому их сопротивление будет близким к нулю, а такую точность измерений в десятые доли Ома обычные тестеры не обеспечивают.

Поэтому нужно собрать измерительное приспособление из аккумулятора и реостата, (приблизительно 20 Ом) выставив ток 0,5-1А. Измеряют падение напряжения на резисторе, подключенном последовательно в цепь аккумулятора и измеряемой обмотки.

Для сверки с паспортными данными, можно рассчитать сопротивление по формуле, но, можно этого и не делать – если требуется идентичность обмоток, то достаточно будет совпадения падения напряжения по всем измеряемым выводам.

Измерения можно производить любым мультиметром

Ниже приведены алгоритмы проверки электродвигателей, у которых необходимым условием работоспособности является симметричность обмоток.

Проверка асинхронных трёхфазных электродвигателей с короткозамкнутым якорем

У подобных двигателей можно прозвонить только статорные обмотки, электромагнитное поле которых в замкнутых накоротко стержнях якоря наводит токи, создающие магнитное поле, взаимодействующее с полем статора.

Неисправности в роторах данных электродвигателей случаются крайне редко, и для их выявления, необходимо специальное оборудование.

Чтобы проверить трёхфазный мотор, нужно снять крышку клеммника – там находятся клеммы подключения обмоток, которые могут быть соединены по типу «звезда» или «треугольник».

Прозвонку можно сделать, даже не снимая перемычки – достаточно измерить сопротивление между фазными клеммами – все три показания омметра должны совпадать.

Проверка конденсаторных электродвигателей

Чтобы проверить однофазный асинхронный двигатель с короткозамкнутым ротором, по аналогии с трёхфазным мотором, необходимо прозвонить только статорные обмотки.

Но у однофазных (двухфазных) электродвигателей имеются только две обмотки – рабочая и пусковая.

Сопротивление рабочей обмотки всегда меньше, чем у пусковой

Таким образом, измеряя сопротивление, можно идентифицировать выводы, если табличка со схемой и обозначениями затёрлась или затерялась.

Часто у таких электродвигателей рабочая и пусковая обмотки соединены внутри корпуса, и от точки соединения сделан общий вывод.

Принадлежность выводов идентифицируют следующим образом – сумма сопротивлений, измеренных от общего отвода должна соответствовать суммарному сопротивлению обмоток.

Проверка коллекторных двигателей

Поскольку коллекторные электродвигатели переменного и постоянного тока имеют схожую конструкцию, то алгоритм прозвонки будет одинаков.

Сначала проверить целостность обмотки статора (в двигателях постоянного тока её может заменять магнит). Потом проверяют роторные обмотки, сопротивление которых должно быть одинаково, коснувшись щупами щёток коллектора, или противоположных контактных выводов.

Удобней проверять обмотки ротора на выводах щёток, прокручивая вал, добиваясь, чтобы щётки контактировали только с одной парой контактов – таким способом можно выявить подгорание у некоторых контактных площадок.

Проверка электромоторов с фазным ротором

Асинхронный электромотор с фазным ротором отличается от обычного трёхфазного электродвигателя тем, что в роторе также имеются фазные обмотки, соединённые по типу «звезда», которые подключаются при помощи контактных колец на вале.

Статорные обмотки проверяются как у обычного трёхфазного электродвигателя.

Фотографии позаимствованы с сайта http://zametkielectrika.ru

Подскажитье почему электродвигатели делают из чугуна и алюминия? какая разница в этом? Почему нельзя их сделать из стали например?

корпус из чугуна крепче, намного устойчив к механическому износу легко отливается и обрабатывается. Также При работе эл. двигатель выделяет тепло т. е нагревается и это тепло необходимо отдать в атмосферу, а чугун и алюминиевый сплав очень хороший теплообменник ( батареи в квартире чугун или дюралевые)

подскажите, мерил сопротивление на обмотках двигателя когда он был очень горячим, у него просто один виток с клемника отгорел, все показывало нормально и на корпус не шил, но только двигатель остыл приборы мне показали что данный двигатель неисправен. Почему так??

при нагревании все тела расширяются , а при остывании , сужаются . Отсюда вывод , когда двигатель был нагрет , все его обмотки тоже были нагреты и расширены, и не создавали (к.з.) , а когда остыли , повреждённые её участки прижались один к одному , и закоротили между собой.

Здравствуйте! имеется асинхронный двигатель 2,2 КВт, стоит в редукторе для бурения. Сопротивление всех обмоток постоянному току 2,8 Ом. Сопротивление между обмотками относительного друг друга и корпуса измерялось мегаомметром на 500 В. Норма. Проблема: На холостую мотор работает, крутит. Под нагрузкой не развивает требуемой мощности. Подключали сначала через частотный преобразователь на 220 В, соединение треугольник, не бурит. потом, для эксперимента подключили звездой на 380В та же картина, под нагрузкой умирает, хотя в холостую замечаний нет.Сам редуктор в идеальном состоянии. Подскажите, что делать? может ли проблема быть в роторе? вряд ли могли все три обмотки одинаково подгореть до 2,8 Ом. и вообще каких порядков должно быть там сопротивление? заранее спасибо!

Да, Вы правы, фактически такого не может быть, чтобы во всех обмотках случилось идентичное межвитковое замыкание. К тому же, активное сопротивление 2,8 Ом как раз свойственно обмоткам двигателя подобной мощности. Поскольку двигатель исправно работает на холостом ходу, то, пожалуйста, ответьте на пару уточняющих вопросов:
на холостом ходу двигатель перегревается? Если да, то возможно, замкнуты пластины шихтованного магнитопровода и там вихревые токи гуляют — такое могло случиться, если разлетелся подшипник, и его части попали между ротором и статором, оставляя царапины и борозды в металле. Разберите двигатель и осмотрите поверхности ротора и статора — нет ли там явственных повреждений магнитопровода. Также убедитесь, что пластины магнитопровода не проржавели внутри (ржавчина распирает и искривляет пластины)
Маловероятно, чтобы литые алюминиевые цельнометаллические короткозамкнутые витки беличьего колеса были повреждены. Но внимательно осмотрите ротор — продольные полоски не должны иметь трещин.
Второй вопрос — Вы упомянули, что подключали двигатель через частотный преобразователь.И если я правильно понял, подключали также напрямую к трем фазам 380В звездой, или тоже через частотный преобразователь? Возможно, сам частотник не вытягивает?
И еще один вопрос — данный двигатель до этого исправно бурил, или оборудование новое (заводское или самодельное, не важно)? Если это опытная разработка, то возможно, не хватает момента двигателя для бурения?
Для проверки момента можно воспользоваться простым народным способом:
нужно заглубить бур, пока двигатель не начнет глохнуть.
Затем взять динамометрический ключ и измерить момент прямо на валу выключенного двигателя. По логике, чтобы бур весело бурил, нужно, чтобы момент двигателя в несколько раз превышал момент нагрузки (измеренный динамометрическим ключом) на входе редуктора с углубленным буром. Ведь там и почва особо плотная бывает, и камни попадаются.
для Вашего мотора номинальный крутящий момент где-то 7-8 Н*М (знайте поточнее, зависит от оборотов и производителя, марки и т д)
Не знаю, какой бур, но подразумеваю, что для бурений водяных скважин неглубоких. По опыту, навскидку — 2,2кВт маловато будет, ребята на свои буровые 5, 7, и даже 10 кВт ставят.
нужно убедиться что нагрузка соответствует возможностям двигателя, Без измерений момента нагрузки, проверить данную версию, можно установив на редуктор идентичный заведомо исправный двигатель

Мне понравилась эта статья. Доступно, внятно, поучительно.

Нормальное сопротивление обмотки электродвигателя. Проверка мегомметром сопротивления изоляции двигателя

Измерение сопротивление изоляции электродвигателя

Проверку изоляции производят разными способами.

Испытание изоляции мегомметром

Измерение сопротивления производится механическим или электронным мегомметром.

Читать еще:  Что означает шаговый двигатель

Важно! Проверка изоляции двигателей до 380В выполняется прибором напряжением 500 вольт, а от 0,4 до 1 кВ аппаратом 1000В.

Перед проверкой сопротивления изоляции производится осмотр электромашины на отсутствие повреждений корпуса. Мокрый электродвигатель перед испытанием необходимо просушить. Все обмотки желательно отключить друг от друга для проверки изоляции между ними.

Порядок измерения сопротивления изоляции:

  1. подключить вывода или установить переключатель в положение «мегаомы»;
  2. проверить мегомметр замыканием концов между собой и проведением кратковременного измерения;
  3. результат должен быть около «0»;
  4. присоединить один из проводов к испытуемой катушке, а другой к очищенному от краски месту корпуса или другой обмотке;
  5. в течении 15-60 секунд вращать ручку прибора с частотой 120 оборотов в минуту;
  6. не прекращая вращения рукоятки проверить показания прибора.

Обмотка и корпус или две обмотки с изоляцией между ними представляют собой конденсатор. При измерении этот конденсатор заряжается до напряжения мегомметра — 500 или 1000 вольт. Поэтому клеммы электромашины и вывода прибора после проверки необходимо закоротить между собой.

Проверка межвитковой изоляции обмоток

Этот вид испытаний проводится для проверки изоляции между витками катушек асинхронных электромашин.

Для этого после разгона двигатель с короткозамкнутым ротором, вращающийся на холостом ходу, подключается на повышенное напряжение. Это напряжение на 30% выше номинального, а время работы в таких условиях — 3 минуты. Включение машины производится через амперметры, установленные на каждой фазе. После испытаний напряжение уменьшается до номинального и аппарат выключается.

Важно! Повышение и понижение напряжения производится плавно, при помощи регулируемого автотрансформатора или электронного блока питания.

При появлении шума, стуков, дыма или «плавающих» показаний амперметров, электродвигатель отключается и отправляется на ремонт.

Испытания электромашины с фазным ротором проводятся в заторможенном состоянии при отключенном роторе.

Испытание изоляции повышенным напряжением переменного тока

Такая проверка проводится при помощи трансформатора, имеющего плавную регулировку напряжения со стороны вторичной обмотки. В схеме испытательного прибора также предусматривается автоматический выключатель с величиной уставки максимальной защиты, достаточной для отключения установки в аварийных ситуациях. Вторичная обмотка подключается к обмоткам электромашины и корпусу.

Продолжительность испытаний составляет 1 минута при проверке изоляции между обмотками и корпусом и 5 минут при испытании изоляции между обмотками. Для проведения межобмоточной проверки напряжение подаётся на одну из обмоток, а остальные присоединяются к корпусу.

Напряжение поднимается и опускается плавно, в течение 10 секунд со значения 50%Uном до 200%Uном.

Проверка электродвигателя внешним осмотром

Полноценный осмотр

можно провести только после разборки электродвигателя, но сразу не спешите разбирать.

Все работы выполняются только после отключения

электропитания, проверки его отсутствия на электродвигателе и принятия мер по предотвращению его самопроизвольного или ошибочного включения. Если устройство включается в розетку, тогда просто достаточно достать вилку из нее.

Если в схеме есть конденсаторы

, тогда их выводы необходимо разрядить.

Проверьте перед началом разборки:

  1. Люфт в подшипниках.
    Как проверить и заменить подшипники читайте в .
  2. Проверьте покрытие краски
    на корпусе. Выгоревшая или отлущиваяся местами краска свидетельствует о нагревании двигателя в этих местах. Особенно обратите внимание на места расположения подшипников.
  3. Проверьте лапы
    крепления электродвигателя и вал вместе его соединения с механизмом. Трещины или отломанные лапы необходимо приварить.

, у мотора от старой стиральной машины есть три вывода. Самое большое сопротивление будет между двумя точками, включающей в себя 2 обмотки, например 50 Ом. Если взять оставшейся третий конец, то это и будет общий конец. Если замерить между ним и 2 концом пусковой обмотки- получите величину около 30-35 Ом, а если между ним и 2 концом рабочей- около 15 Ом.

В двигателях на 380 Вольт,

подключенных по схеме необходимо будет разобрать схему и прозвонить отдельно каждую из трех обмоток. У них сопротивление должно быть одинаковым от 2 до 15 Ом с отклонениями не более 5 процентов.

Обязательно необходимо прозвонить

все обмотки между собой и на корпус. Если сопротивление не велико до бесконечности, значит есть пробой обмоток между собой или на корпус. Такие двигатели необходимо сдать в перемотку обмоток.

Как проверить сопротивление изоляции обмоток электродвигателя

К сожалению, мультиметром не проверить

величину сопротивления изоляции обмоток электромотора для этого необходим мегомметр на 1000 Вольт с отдельным источником питания. Прибор дорогой, но он есть у каждого электрика на работе, которому приходится подключать или ремонтировать электродвигатели.

При измерении

один провод от мегомметра присоединяют к корпусу в неокрашенном месте, а второй по очереди к каждому выводу обмотки. После этого измерьте сопротивление изоляции между всеми обмотками. При величине менее 0.5 Мегома- двигатель необходимо просушить.

Будьте внимательны

, во избежание поражения электрическим током не прикасайтесь к измерительным зажимам во время проведения измерений.

Все измерения проводятся

только на обесточенном оборудовании и по продолжительности не менее 2-3 минут.

Как найти межвитковое замыкание

Наиболее сложным является поиск межвиткового замыкания

, при котором замыкается между собой лишь часть витков одной обмотки. Не всегда выявляется при внешнем осмотре, поэтому для этих целей применяется для двигателей на 380 Вольт- измеритель индуктивности. У всех трех обмоток должно быть одинаковое значение. При межвитковом замыкании у поврежденной обмотки индуктивность будет минимальной.

Когда Я был на практике 16 лет назад на заводе, электрики для поиска межвитковых замыканий у асинхронного мотора мощностью 10 Киловатт использовали шарик из подшипника диаметром около 10 миллиметров. Они вынимали ротор и подключали 3 фазы через 3 понижающих трансформатора на обмотки статора. Если все в порядке шарик движется по кругу статора, а при наличии межвиткового замыкания он примагничивается к месту его возникновения. Проверка должна быть

кратковременной и будьте аккуратны шарик может вылететь!

Я уже давно работаю электриком и проверяю на межвитковое замыкание, если только двигатель на 380 В начинает сильно греться после 15-30 минут работы. Но перед разборкой, на включенном моторе проверяю величину потребляемого им тока на всех трех фазах. Она должна быть одинаковой с небольшой поправкой на погрешности измерений.

Модификации электродвигателей друг с другом различаются, равно как и их дефекты. Не каждая неисправность может быть диагностирована с помощью тестера, но в большинстве случаев – вполне возможно.

Ремонт начинают со зрительного осмотра: есть ли повреждённые части, не залит ли водой электродвигатель, не появился ли запах горелой изоляции и так далее. Обмотка в асинхронном двигателе может сгореть из-за короткого замыкания между двумя соседними витками. Агрегат перегревается из-за перегрузок, возникновения больших токов.

Нередко обгоревшие обмотки видны при визуальном осмотре, и в этом случае любые измерения будут лишними. Когда никаких шансов на исправление нет, нужно удалить и заменить обмотки на новые. Иногда требуется более тщательно проверить электродвигатель.

Для начала необходимо изучить конфигурацию двигателя, например, какие обмотки используются. Все вращающиеся машины имеют две части: статор и ротор.

В электродвигателях постоянного тока имеются:

  • обмотка возбуждения, имеющая важное значение для производства магнитного поля. Она позволяет преобразовать энергию из механической в электрическую и наоборот;
  • обмотка якоря, несущая нагрузку току и регулирующая переменный ток для уменьшения вихревых потерь.

Двигатель переменного тока, обычно состоит из двух частей:

  1. статора, имеющего катушку для создания вращающегося магнитного поля;
  2. ротора, прикрепленного к выходному валу и предназначенного для производства второго вращающегося магнитного поля.



Нормы сопротивления изоляции электрических машин

В ПУЭ (правилах устройства электроустановок) регламентируется сопротивление изоляции электродвигателей в зависимости от конструкции и мощности аппарата.

Допустимое сопротивление при испытании изоляции асинхронных электромашин

При измерении изоляции асинхронных двигателей соединение обмоток статора «звезда» или «треугольник» необходимо разобрать и проверить каждую из катушек относительно корпуса и между собой. Испытания проводятся при температуре машины 10-30°С.

Сопротивление изоляции должно быть:

  • в статоре не менее 0,5мОм;
  • в фазном роторе не менее 0,2мОм;
  • минимальное сопротивление изоляции термодатчиков не нормируется.

Для того чтобы не использовать справочник, обычно допустимое сопротивление считается 1мОм. Меньшие значения говорят о незначительных нарушениях, которые со временем приведут к выходу электромашины из строя.

Важно! Для того чтобы избежать такой ситуации аппарат целесообразно отправить на специализированное предприятие для проведения среднего ремонта.

Изоляция двигателей постоянного тока

Для проверки изоляции в машинах постоянного тока необходимо вынуть щётки из щёткодержателей или подложить под них изоляционный материал.

Измерение проводится между разными частями схемы электромашины:

  • обмотками возбуждения и коллектором якоря;
  • щёткодержателем и корпусом аппарата;
  • коллектором якоря и корпусом;
  • обмотками возбуждения и корпусом электромашины.

Важно! Если есть возможность, то катушки обмотки возбуждения отключаются друг от друга и проверяются по отдельности.

Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины. При 20°С она составляет:

  • 220В — 1,85мОм;
  • 440В — 3,7мОм;
  • 660В — 5,45мОм.

Кроме обмоток и якоря измеряется сопротивление бандажей обмоток возбуждения и якоря. Оно проверяется между самим бандажом и корпусом, а также закрепляемой им обмоткой. Оно не должно быть менее 0,5мОм.

Приемо-сдаточные испытания электродвигателей — первый этап

Оценивая состояние двигателя и его готовность к работе, в первую очередь проводят внешний осмотр агрегата, начиная со щитка. Предметом проверки являются такие параметры, как:

  • целостность комплектующих (всех, осмотр которых не требует демонтажа);
  • правильность их установки;
  • соответствие паспортных данных проектным.
Читать еще:  Двигатель d13 volvo схема

Современная методика испытаний электродвигателей переменного тока позволяет определить, необходима ли сушка изоляции обмоток. На соответствие нормам проверяют:

  • уровень сопротивления изоляции;
  • коэффициент абсорбции;
  • коэффициент нелинейности.

Причины низкого сопротивления

Есть несколько причин низкого сопротивления изоляции.

Перегрев электромашины

Эта ситуация возникает из-за перегрузки электромашины или обрыва одной из фаз в трёхфазных электродвигателях. Устранить эту проблему в условиях мастерской невозможно и аппарат приходится отправлять для замены обмоток в специализированное предприятие.

Предотвратить такую неисправность помогают устройства защиты:

  • тепловое реле отключает электромашину при перегрузке;
  • реле напряжения отключает установку при отсутствии одной из фаз или пониженном напряжении сети.

Важно! Для лучшей защиты внутри электродвигателей встраиваются датчики температуры. В новых машинах они устанавливаются при изготовлении, а в старых такие приборы можно поставить при плановом или капитальном ремонте.

Маневровые локомотивы

Испытания электрических машин

Изготовленные или отремонтированные тяговые электрические машины должны удовлетворять требованиям и нормам, установленным ГОСТ 2582—81, ведомственным техническим условиям и Правилам ремонта электрических машин тепловозов (ЦТ/3542, 1979 г.). Приемо-сдаточные испытания проходит каждая машина после ремонта или выпуска завода-изготовителя. Программа приемо-сдаточных испытаний машины постоянного тока включает в себя внешний осмотр машины, измерения сопротивления обмоток, испытания на нагревание в течение 1 ч, проверку частоты вращения и реверсирования при номинальных значениях напряжения, токов нагрузки и возбуждения для электродвигателей, для тяговых генераторов — проверку напряжений, соответствующих продолжительному режиму при низшем и высшем напряжениях, при номинальной частоте вращения, испытания на повышенную частоту вращения, проверку биения коллектора, коммутации, сопротивления н электрической прочности изоляции.

Для тяговых генераторов переменного тока программа приемосдаточных испытаний состоит из: измерения сопротивления обмоток постоянному току, испытания на нагревание в течение 1 ч (допускается проводить эти испытания методом короткого замыкания), снятие характеристики холостого хода и испытание на повышенную частоту вращения, измерение сопротивления изоляции обмоток, испытание электрической прочности межвитковой изоляции между обмотками и изоляции обмоток относительно корпуса, определение биения контактных колец и измерение уровня вибрации.

При осмотре машины обращают внимание на состояние коллектора, установку щеткодержателей, разбег якоря, исправность щеточного аппарата и легкость вращения якоря. Коллектор не должен иметь пластин с острыми кромками, заусенцами и забоинами. Биение коллектора, контактных колец на нагретой машине допускается для электродвигателей и вспомогательных машин не более 0,04 мм, а коллекторов и контактных колец тяговых генераторов — -0,06 мм.

Испытание на холостом ходу проводят для проверки точности сборки и уравновешенности машины, работы подшипников и приработки щеток по коллектору. Тяговые электродвигатели с последовательным возбуждением в режиме холостого хода могут иметь недопустимую частоту вращения (разнос), поэтому они питаются Пониженным напряжением, равным ‘/в-/о номинального значения. Электродвигатели ЭД-107, ЭД-108 и ЭД-118 проверяют в течение 30 мин при частоте вращения 600 об/мин, тяговые генераторы — в течение 30-40 мин при частоте вращения 500 об/мин, вспомогательные машины — в течение 20-30 мин при частоте вращения, равной 25-40 % номинального значения.

Чтобы выявить нагревание от трения щеток и испытать подшипники, электродвигатели работают без подачи охлаждающего воздуха в течение 1 ч. Двигатели ЭД-107 и ЭД-118 работают при частоте вращения 2290 об/мин. При этих частотах измеряют вибрации на подшипниковом щите в верхней точке со стороны коллектора и привода. Допустимая вибрация 4 мм/с. Температура подшипников, измеренная термометром или термопарой, не должна превышать температуру окружающей среды более чем на 55 °С. Качество приработки щеток оценивается по контактной поверхности, которая должна быть блестящей с почти незаметными рисками по всей площади, но не менее 75 % нлошади.

Измерение омического сопротивления обмоток производят методом сопротивления (вольтметра и амперметра), который при использовании приборов класса 0,2 или 0.5 обеспечивает высокую точность. Вольтметр, измеряющий падение напряжения, присоединяют непосредственно к выводам измеряемой обмотки. К обмотке якоря вольтметр подсоединяют специальными щупами, устанавливаемыми на коллекторных пластинах, расположенных между щетками. Омическое сопротивление измеряют до испытания машин (в практически холодном состоянии); полученное значение пересчитывают к температуре 20 °С. Сопротивление не должно отличаться от номинального (паспортного) значения на ±10% для отремонтированных машин.

Машины на нагревание* испытывают для определения превышения температуры (перегрева) обмоток, коллектора и подшипников над температурой охлаждающего воздуха при номинальном режиме работы. Испытания тяговых электрических машин иод нагрузкой проводят методом взаимной нагрузки (возвратной работы). При этом методе две однотипные машины соединяют электрически и механически (с помощью полумуфт). Одна машина работает в режиме генератора, а другая — -двигателя (рис. 5.9, о). Машина, работающая генератором Г, питает машину, работающую двигателем ТД, которая вращает генератор. Потери обеих машин покрываются вольтодобавочной машиной ВДМ и линейным генератором ЛГ. Машина ВДМ покрывает электрические потери, а ЛГ — магнитные и механические. Испытание на нагревание производится при номинальном режиме: например, для электродвигателя ЭД-118Б при напряжении 463 В, токе 720 А, частоте вращения 585 об/мин и подаче охлаждающего воздуха 1,33 м’7с.

В процессе испытания машины постоянно контролируют ток нагрузки, напряжение, частоту вращения, температуру подшипников, охлаждающего воздуха и неподвижных обмоток. После остановки машины измеряют температуру обмотки якоря методом сопротивления, а коллектора — — термометром. Превышение температур

1 Этот вид испытаний в депо не выполняют.

Рис. 5.9. Испытания тяговых машин поднагрузкой: а

— схема стенда взаимной нагрузки; 6 схема стенда для мощных синхронных генераторов;А — асинхронный электродвигатель; ДПГ, ДПТД — обмотки добавочных полюсов генератора и двигателя; ВГ, ВТД — обмотки возбуждения генератора н двигателя; 1Ил, Л. 1.д—токи линейного генератора, генератора н тягового электродвигателяобмоток для электродвигателя ЭД-118Б должно быть не более: якоря — 140 °С, главных и добавочных полюсов — 115 °С, коллектора -95 °С. Наибольшая температура подшипников 100 °С.

Тяговые генераторы и тяговые электродвигатели разрешается испытывать без подачи охлаждающего воздуха при открытых люках в течение 1 ч при номинальном напряжении и токе, устанавливающем превышение температуры, равное превышению температуры при номинальном режиме. Для тягового электродвигателя ЭД-118Б этот ток равен 575 А. Тяговые генераторы также разрешается испытывать методом короткого замыкания, поддерживая при этом ток номинального режима. Нагрузочные испытания вспомогательных машин производят методом непосредственной нагрузки. В качестве нагрузочного устройства используют реостаты.

Отклонения частоты вращенияпроверяют в обоих направлениях вращения после испытания на нагревание. Допустимые отклонения частоты вращения тяговых электродвигателей ±3 % от номинального значения, а разность между частотой вращения в одну и другую сторону должна быть не более 4 % от среднеарифметического обеих частот вращения.

Нагрузочные испытания мощных синхронных генераторов. Перспективные тепловозы будут иметь синхронные тяговые генераторы мощностью 5800- 7400 кВт. Для обеспечения надежной работы генераторов в эксплуатации при выпуске с завода-изготовителя или ремонтного завода необходимо проводить их испытания в объеме приемо-сдаточных по полному циклу, предусмотренному ГОСТ 2582-81. Применить для испытаний метод взаимной нагрузки синхронного генератора на машину постоянного тока невозможно, так как такие мощные генераторы не изготавливает промышленность. В результате проведенного анализа методов испытания была выбрана схема испытательного стенда (рис. 5.9, б) с нагружением тягового синхронного генератора на такой же генератор или любую другую синхронную машину методом взаимной нагрузки через статический преобразователь со звеном постоянного тока с покрытием потерь механическим способом. Испытуемый тяговый синхронный генератор ИГ работает на неуправляемую выпрямительную установку ВУ, а нагрузочный синхронный двигатель ДН (тяговый синхронный генератор, работающий в двигательном режиме) получает питание от инверторной установки И. Инвертор и выпрямитель составляют вместе статический преобразователь СП со звеном постоянного тока. В качестве приводного двигателя ДП (для покрытия потерь) используется машина постоянного тока, получающая питание от двигатель-генератора АД — 17.

Основное назначение СП в схеме — передача мощности от ИГ к ДН и обеспечение требуемых режимов работы генератора по току, напряжению и частоте вращения. Заданный режим устанавливается регулированием частоты вращения ДП, угла управления тиристорного инвертора и возбуждения ИГ.

Приведенная схема стенда обеспечивает любой требуемый режим при испытании тяговых синхронных генераторов, минимальные потери энергии при испытаниях, минимальное число установочных мощностей и минимальные габаритные размеры стенда. По приведенной схеме разрабатываются стенды для испытания мощных тяговых синхронных генераторов на заводах-изготовителях и ремонтных заводах.

Испытание на повышенную частоту вращения проводится на нагретой машине при холостом ходе в течение 2 мин. Частота вращения для тяговых электродвигателей превышает на 25 % максимальную частоту вращения (для ЭД-118Б -2860 об/мин), для тяговых генераторов и вспомогательных машин — на 20 %. В депо тяговые генераторы на повышенную частоту вращения не испытывают.

Коммутация машины оценивается визуально по степени искрения под сбегающим краем щетки. Установлено 5 классов коммутации; для тепловозных машин допустимым классом коммутации является 11 1г, при котором происходит слабое искрение под большей частью щетки примерно у половины щеток. Электрические машины должны иметь удовлетворительную коммутацию при всех токах, соответствующих рабочим характеристикам машин, поэтому при снятии характеристик ведут наблюдения за коммутацией.

Коммутацию тягового генератора проверяют в течение 1 мин на тепловозе при реостатных испытаниях при номинальной частоте вращения, максимальном токе и напряжении, соответствующем этому току. Для генератора ГП-311Б проверку коммутации производят при токе 6600 А и напряжении 300 В. Коммутацию тяговых электродвигателей проверяют при снятии скоростных характеристик и при токе 1100 А и напряжении 300 В для двигателей типа ЭД. Этот режим выполняется в двух направлениях вращения по 30 с.

Читать еще:  Двигатель d2066lf70 технические характеристики

Машина считается выдержавшей испытание, если не произошло каких-либо механических повреждений или кругового огня. Коллектор должен быть пригоден к работе без какого-либо исправления. При повышенном искрении проверяют нажатие пружин щеткодержателей, приработку щеток к коллектору, состояние коллектора, плотность контактов, биение коллектора, правильность установки добавочных полюсов и чередования щеткодержателей по коллектору. На тяговых генераторах дополнительно проверяют установку щеток на нейтрали индуктивным методом. Если эти проверки не улучшат коммутацию, то определяют зону наилучшей коммутации (безыскровой работы) машины методом положительной и отрицательной подпитки (отнитки) добавочных полюсов.

Точность установки щеток на геометрической нейтрали проверяют на неподвижном якоре. К двум щеткам (рис. 5.10), расположенным на расстоянии полюсного деления, подключается милливольтметр с нулем посредине шкалы. В обмотку возбуждения через выключатель подводится ток от постороннего источника постоянного тока, равный 1-5 % номинального. Затем при помощи выключателя замыкают или размыкают цепь. Если щетки расположены на нейтрали, то стрелка милливольтметра отклоняться не будет, так как э. д. с, индуктируемая в обмотке якоря, равна нулю. В случае смещения щеток с нейтрали будет происходить отклонение стрелки милливольтметра. Необходимо сместить щетки и снова разомкнуть и замкнуть цепь возбуждения, при этом отметить не только значение, но и направление отклонения стрелки вольтметра. Если показание вольтметра уменьшилось, то щетки надо смещать в ту же сторону, если увеличилось — в обратную.

Сопротивление и электрическую прочность изоляции оценивают по значению сопротивления и пробивного напряжения. Сопротивление изоляции электрических машин с номинальным напряжением до 500 В измеряется мегаомметром на 500 В, а машин, рассчитанных на напряжение больше 500 В,- — мегаомметром ла 1000 В. Сопротивление изоляции обмоток тяговых генераторов постоянного ипеременного тока и тяговых электродвигателей, измеренное в холодном состоянии, не должно быть меньше 20 МОм. Отсчет по мегаомметру ведется через 1 мин после приложения напряжения.

Для оценки увлажненности изоляции измеряют сопротивление изоляции мегаомметром спустя 15 и 60 с с момента приложения напряжения и вычисляют отношение показаний 1?еп//?15- Изоляция сухая, если отношение больше 2, степень увлажненности изоляции можно оценивать по соотношению

Рис. 5.II. Схема стенда для испытания электрической прочности изоляцииемкостей, измеренных при частотах 50 и 2 Гц. Если это соотношение равно или больше 1,5, то изоляция увлажнена.

Электрическую прочность изоляции (испытание на пробой) обмоток электрических машин относительно корпуса и между обмотками проверяют в течение 1 мин повышенным напряжением переменного тока частотой 50 Гц. Испытательное напряжение для тяговых генераторов и двигателей, прошедших капитальный ремонт, определяется Um.„ — 2(7+ 1000, а после среднего или деповского ремонта £/,„.„ = 0,75(2£/+1000). Здесь (7 = 85% максимального напряжения тягового генератора (но не ниже номинального).

Схема установки для испытания на пробой приведена на рис. 5.11. Для регулирования испытательного напряжения служит автотрансформатор

Изоляция электродвигателя

При испытаниях электродвигателя после ремонта или хранения на складе одним из важных параметров является сопротивление изоляции.

Измерение сопротивление изоляции электродвигателя

Проверку изоляции производят разными способами.

Испытание изоляции мегомметром

Измерение сопротивления производится механическим или электронным мегомметром.

Важно! Проверка изоляции двигателей до 380В выполняется прибором напряжением 500 вольт, а от 0,4 до 1 кВ аппаратом 1000В.

Перед проверкой сопротивления изоляции производится осмотр электромашины на отсутствие повреждений корпуса. Мокрый электродвигатель перед испытанием необходимо просушить. Все обмотки желательно отключить друг от друга для проверки изоляции между ними.

Порядок измерения сопротивления изоляции:

  1. подключить вывода или установить переключатель в положение «мегаомы»;
  2. проверить мегомметр замыканием концов между собой и проведением кратковременного измерения;
  3. результат должен быть около «0»;
  4. присоединить один из проводов к испытуемой катушке, а другой к очищенному от краски месту корпуса или другой обмотке;
  5. в течении 15-60 секунд вращать ручку прибора с частотой 120 оборотов в минуту;
  6. не прекращая вращения рукоятки проверить показания прибора.

Обмотка и корпус или две обмотки с изоляцией между ними представляют собой конденсатор. При измерении этот конденсатор заряжается до напряжения мегомметра — 500 или 1000 вольт. Поэтому клеммы электромашины и вывода прибора после проверки необходимо закоротить между собой.

Проверка межвитковой изоляции обмоток

Этот вид испытаний проводится для проверки изоляции между витками катушек асинхронных электромашин.

Для этого после разгона двигатель с короткозамкнутым ротором, вращающийся на холостом ходу, подключается на повышенное напряжение. Это напряжение на 30% выше номинального, а время работы в таких условиях — 3 минуты. Включение машины производится через амперметры, установленные на каждой фазе. После испытаний напряжение уменьшается до номинального и аппарат выключается.

Важно! Повышение и понижение напряжения производится плавно, при помощи регулируемого автотрансформатора или электронного блока питания.

При появлении шума, стуков, дыма или «плавающих» показаний амперметров, электродвигатель отключается и отправляется на ремонт.

Испытания электромашины с фазным ротором проводятся в заторможенном состоянии при отключенном роторе.

Испытание изоляции повышенным напряжением переменного тока

Такая проверка проводится при помощи трансформатора, имеющего плавную регулировку напряжения со стороны вторичной обмотки. В схеме испытательного прибора также предусматривается автоматический выключатель с величиной уставки максимальной защиты, достаточной для отключения установки в аварийных ситуациях. Вторичная обмотка подключается к обмоткам электромашины и корпусу.

Продолжительность испытаний составляет 1 минута при проверке изоляции между обмотками и корпусом и 5 минут при испытании изоляции между обмотками. Для проведения межобмоточной проверки напряжение подаётся на одну из обмоток, а остальные присоединяются к корпусу.

Напряжение поднимается и опускается плавно, в течение 10 секунд со значения 50%Uном до 200%Uном.

Нормы сопротивления изоляции электрических машин

В ПУЭ (правилах устройства электроустановок) регламентируется сопротивление изоляции электродвигателей в зависимости от конструкции и мощности аппарата.

Допустимое сопротивление при испытании изоляции асинхронных электромашин

При измерении изоляции асинхронных двигателей соединение обмоток статора «звезда» или «треугольник» необходимо разобрать и проверить каждую из катушек относительно корпуса и между собой. Испытания проводятся при температуре машины 10-30°С.

Сопротивление изоляции должно быть:

  • в статоре не менее 0,5мОм;
  • в фазном роторе не менее 0,2мОм;
  • минимальное сопротивление изоляции термодатчиков не нормируется.

Для того чтобы не использовать справочник, обычно допустимое сопротивление считается 1мОм. Меньшие значения говорят о незначительных нарушениях, которые со временем приведут к выходу электромашины из строя.

Важно! Для того чтобы избежать такой ситуации аппарат целесообразно отправить на специализированное предприятие для проведения среднего ремонта.

Изоляция двигателей постоянного тока

Для проверки изоляции в машинах постоянного тока необходимо вынуть щётки из щёткодержателей или подложить под них изоляционный материал.

Измерение проводится между разными частями схемы электромашины:

  • обмотками возбуждения и коллектором якоря;
  • щёткодержателем и корпусом аппарата;
  • коллектором якоря и корпусом;
  • обмотками возбуждения и корпусом электромашины.

Важно! Если есть возможность, то катушки обмотки возбуждения отключаются друг от друга и проверяются по отдельности.

Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины. При 20°С она составляет:

  • 220В — 1,85мОм;
  • 440В — 3,7мОм;
  • 660В — 5,45мОм.

Кроме обмоток и якоря измеряется сопротивление бандажей обмоток возбуждения и якоря. Оно проверяется между самим бандажом и корпусом, а также закрепляемой им обмоткой. Оно не должно быть менее 0,5мОм.

Причины низкого сопротивления

Есть несколько причин низкого сопротивления изоляции.

Перегрев электромашины

Эта ситуация возникает из-за перегрузки электромашины или обрыва одной из фаз в трёхфазных электродвигателях. Устранить эту проблему в условиях мастерской невозможно и аппарат приходится отправлять для замены обмоток в специализированное предприятие.

Предотвратить такую неисправность помогают устройства защиты:

  • тепловое реле отключает электромашину при перегрузке;
  • реле напряжения отключает установку при отсутствии одной из фаз или пониженном напряжении сети.

Важно! Для лучшей защиты внутри электродвигателей встраиваются датчики температуры. В новых машинах они устанавливаются при изготовлении, а в старых такие приборы можно поставить при плановом или капитальном ремонте.

Сушка электродвигателя

Если пониженное сопротивление вызвано попаданием на двигатель влаги или хранением в сыром помещении, то электромашину можно высушить. Для этого её необходимо разобрать — снять крышки подшипниковых щитов и вынуть ротор. Это делается для свободного выхода влаги.

Совет! Можно снять только один щит, а ротор вынуть вместе со вторым.

После разборки осуществляется сушка одним из способов:

  • Подачей на обмотки пониженного напряжения. Ток при этом не должен превышать номинальный.
  • Вставить в статор нагреватель. Чаще всего для этого используется лампа накаливания 60-100Вт.

Через сутки проводится повторное измерение изоляции. Если сопротивление растёт, то сушка продолжается до полного высыхания, если нет, то двигатель отправляется на средний ремонт в специализированное предприятие. Этот вид ремонта включает в себя пропитку обмоток лаком и повторную сушку.

Проверка изоляции является необходимой частью испытаний электродвигателя. Виды проверок в отдельных случаях определяются ПУЭ и другими нормативными документами.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector