3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электро двигатели 120 оборотов

Многоскоростные электродвигатели и их использование — назначение и особенности, определение мощности при разных скоростях вращения

Многоскоростные электродвигатели — асинхронные двигатели с несколькими ступенями частоты вращения, предназначены для привода механизмов, требующих ступенчатого регулирования частоты вращения.

Многоскоростные электродвигатели — электродвигатели специальной конструкции. Они имеют особую обмотку статора и нормальный короткозамкнутый ротор.

В зависимости от отношения полюсов, сложности схем и года выпуска многоскоростных электродвигателей, их статоры выполнены в четырех вариантах:

независимыми друг от друга односкоростнымн обмотками на две, три, даже четыре частоты вращения;

с одной или двумя полюсно-переключаемыми обмотками, в первом случае двухскоростными, а во втором — четырехскоростными;

с наличием трех частот вращения электродвигателя, одна обмотка изготовлена полюсно-переключаемой — двухскоростной, а вторая — односкоростиой, независимой — на любое число полюсов;

с одной полюсно-переключаемой обмоткой на три или четыре частоты вращения.

Электродвигатели с самостоятельными обмотками имеют плохое использование и заполнение пазов из-за наличия большого количества проводов и прокладок, что значительно снижает мощность по ступеням скоростей.
Наличие в статоре двух полюсно-переключаемых обмоток и особенно одной на три или четыре частоты вращения улучшает заполнение пазов и позволяет более рационально использовать сердечник статора, в результате чего повышаются мощности электродвигателя.

По сложности выполнения схем многоскоростные электродвигатели подразделяются на две части: с отношением полюсов равным 2/1 и — не равными 2/1. К первым относятся электродвигатели с частотой вращения — 1500/3000 об/мин или 2р = 4/2, 750/1500 об/мин или 2р = 8/4, 500/1000 об/мин или 2р = 12/6 и т. д. а ко вторым — 1000/1500 об/мин или 2р = 6/4, 750/1000 об/мин или 2р=8/6, 1000/3000 об/мин или 2р = 6/2, 750/3000 об/мин или 2р = 8/2, 600/3000 об/мин или 2р = 10/2, 375/1500 об/мин или 2р = 16/4 и т. д.

В зависимости от выбора схемы полюсно-переключаемой обмотки, при разном числе полюсов, электродвигатель может быть с постоянной мощностью или с постоянным моментом.

У электродвигателей с полюсно-переключаемой обмоткой и постоянной мощностью число витков в фазах при обеих числах полюсов будет одинаково или близко друг к другу, значит их токи и мощности будут одинаковы или близки. Вращающие моменты их будут разные, зависящие от числа оборотов.

У электродвигателей с постоянным моментом при меньшем числе полюсов катушечные группы, разделенные на две части в каждой фазе, включаются в двойной треугольник или двойную звезду параллельно, в результате чего число витков в фазе уменьшается, а сечение проводов, ток и мощность увеличиваются в два раза. При переключении с больших на меньшее число полюсов по схеме звезда/треугольник число витков уменьшается, а ток и мощность увеличатся в 1,73 раза. Значит при большей мощности и больших оборотах, а также при меньшей мощности и меньших оборотах вращающие моменты будут одинаковыми.

Наиболее простым способом получения двух разных чисел пар полюсов является устройство на статоре асинхронного двигателя двух независимых обмоток. Электротехнической промышленностью выпускаются такие двигатели с синхронными скоростями вращения 1000/1500 об/мин.

Существует, однако, ряд схем переключения проводников обмотки статора, при которых одна и та же обмотка может создать различные числа полюсов. Простое и широко распространенное переключение такого рода показано на рис. 1, а и б. Катушки статора, включенные последовательно, образуют две пары полюсов (рис. 1, а). Те же катушки, включенные в две параллельные цепи, как это показано на рис. 1, б, образуют одну пару полюсов.

Промышленность выпускает многоскоростные однообмоточные электродвигатели с последовательно-параллельным переключением и с отношением скоростей 1:2 с синхронными скоростями вращения 500/1000, 750/1500, 1500/3000 об/мин.

Описанный выше способ переключения не является единственным. На рис. 1, в приведена схема, образующая такое же число полюсов, как и схема, представленная на рис. 1, б.

Наибольшее распространение в промышленности получил, однако, первый способ последовательно-параллельного переключения , так как при таком переключении от обмотки статора может быть выведено меньше проводов, а следовательно, и переключатель может быть проще.

Рис. 1. Принцип переключения полюсов асинхронного двигателя.

Три фазовые обмотки могут быть включены в трехфазную сеть звездой или треугольником. На рис. 2, а и б показано широко распространенное переключение, при котором электродвигатель для получения меньшей скорости включается треугольником с последовательным соединением катушек, а для получения большей скорости — звездой с параллельным соединением катушек (так называемой двойной звездой).

Наряду с двухскоростными электропромышленность выпускает также трехскоростные асинхронные двигатели . В этом случае статор электродвигателя имеет две отдельные обмотки, одна из которых обеспечивает две скорости путем описанного выше переключения. Вторая обмотка, включаемая обычно в звезду, обеспечивает третью скорость.

При наличии на статоре электродвигателя двух независимых обмоток, каждая из которых допускает переключение полюсов, можно получить четырехскоростной электродвигатель. Числа полюсов подбирают при этом так, чтобы скорости вращения составили нужный ряд. Схема такого электродвигателя представлена на рис. 2, в.

Следует заметить, что вращающееся магнитное поле будет наводить в трех фазах неработающей обмотки три э. д. с, одинаковые по величине и сдвинутые по фазе на 120°. Геометрическая сумма этих электродвижущих сил, как известно из электротехники, равна нулю. Однако, вследствие неточной синусоидальности фазовых э. д. с. тока сети, сумма этих э. д. с. может быть отличной от нуля. В этом случае в замкнутой неработающей обмотке возникает ток, нагревающий эту обмотку.

В целях предотвращения этого явления схему переключения полюсов составляют таким образом, чтобы неработающая обмотка была разомкнута (рис. 12, в). Вследствие небольшой величины указанного выше тока у некоторых электродвигателей, разрыва замкнутого контура неработающей обмотки иногда не делают.

Выпускаются двухобмоточные трехскоростные двигатели , имеющие синхронные скорости вращения 1000/1500/3000 и 750/1500/3000 об/мин, и четырехскоростные двигатели, имеющие 500/750/1000/1500 об/мин. Двухскоростные двигатели имеют шесть, трехскоростные — девять и четырехскоростные — 12 выводов к переключателю полюсов.

Следует заметить, что существуют схемы двухскоростных двигателей, которые при одной обмотке позволяют получить скорости вращения, отношение которых не равно 1:2. Такие электродвигатели обеспечивают синхронные скорости вращения 750/3000, 1000/1500, 1000/3000 об/мин.

Путем использования специальных схем одной обмотки можно получить также три и четыре различных числа пар полюсов. Такие однообмоточные многоскоростные электродвигатели отличаются значительно меньшими габаритными размерами, чем двухобмоточные двигатели с теми же параметрами, что весьма важно для станкостроения.

Кроме того, у однообмоточных электродвигателей несколько выше энергетические показатели и меньше трудоемкость изготовления. Недостатком однообмоточных многоскоростных электродвигателей является наличие большего числа проводов, вводимых к переключателю.

Сложность переключателя определяется, однако, не столько числом выведенных наружу проводов, сколько числом одновременно осуществляемых переключений. В связи с этим были разработаны схемы, позволяющие при наличии одной обмотки получить три и четыре скорости при относительно простых переключателях.

Рис. 2. Схемы переключения полюсов асинхронного двигателя.

Такие электродвигатели выпускаются станкостроительной промышленностью при синхронных скоростях 1000/1500/3000, 750/1500/3000, 150/1000/1500, 750/1000/1500/3000, 500/750/1000/1500 об/мин.

Вращающий момент асинхронного двигателя может быть выражен известной формулой

где Iг — ток в цепи ротора; Ф — магнитный поток двигателя; ?2— угол сдвига фаз между векторами тока и э. д. с. ротора.

Рис. 3. Трехфазный многоскоростной электродвигатель с короткозамкнутым ротором.

Рассмотрим эту формулу применительно к вопросам регулирования скорости асинхронного двигателя.

Наибольшая продолжительно допустимая сила тока в роторе определяется допустимым нагревом и, следовательно, является примерно постоянной величиной. Если регулирование скорости ведется с постоянным магнитным потоком, то при всех скоростях двигателя наибольший длительно допустимый момент будет также величиной постоянной. Такое регулирование скорости называется регулированием с постоянным моментом.

Регулирование скорости изменением сопротивления в цепи ротора является регулированием с постоянным предельно допустимым моментом, так как магнитный поток машины при регулировании не изменяется.

Предельно допустимая полезная мощность на валу электродвигателя при меньшей скорости вращения (и, следовательно, большем числе полюсов) определяется выражением

где Iф1 — фазовый ток, предельно допустимый по условиям нагрева; Uф1 — фазовое напряжение статора при большем числе полюсов.

Предельно допустимая полезная мощность на валу электродвигателя при большей скорости вращения (и меньшем числе полюсов) где Iф2 — фазовый ток, предельно допустимый по условиям нагрева при второй схеме включения статора; Uф2— фазовое напряжение в этом случае.

При переходе от соединения треугольником к соединению звездой фазовое напряжение уменьшается в ?2 раза. Таким образом, при переключении со схемы а на схему б (рис. 2) получим отношение мощностей

Читать еще:  Что такое дефорсировать двигатель

Иначе говоря, мощность на меньшей скорости составляет 0,86 мощности на большей скорости вращения ротора. Имея в виду относительно небольшое изменение наибольшей длительно допустимой мощности на обеих скоростях, такое регулирование условно именуют регулированием при постоянной мощности.

Если при последовательном соединении половин каждой фазы воспользоваться соединением звездой, а затем переключить на соединение параллельной звездой (рис. 2, б), то получим

Таким образом, в данном случае имеет место регулирование скорости с постоянным моментом. У металлорежущих станков приводы главного движения требуют регулирования скорости с постоянной мощностью, а приводы подач — регулирования скорости с постоянным моментом.

Приведенные выше выкладки соотношения мощностей при высшей и низшей скоростях носят приближенный характер. Не была, например, учтена возможность повышения нагрузки на высоких скоростях вследствие белее интенсивного охлаждения обмоток; принятое равенство также очень приближенно. Так, для двигателя 4А имеем

В результате соотношение мощностей для этого двигателя P1/P2 = 0,71. Такие же примерно соотношения имеют место и для других двухскоростных двигателей.

Новые однообмоточные многоскоростные электродвигатели в зависимости от схемы переключения допускают регулирование скорости с постоянной мощностью и с постоянным моментом.

Небольшое число ступеней регулирования, которое может быть получено у асинхронных двигателей с переключением полюсов, обычно позволяет использовать такие двигатели на станках только при наличии специально сконструированных коробок скоростей.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Дасм 2ухл4 Схема Подключения

Схемы подключения однофазного конденсаторного двигателя Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора.


Тэстером смог определить, что это по парные выводы двух обмоток.

Возможно даже разницы между этими углами хватит для того чтобы создать вращающий момент и толкнуть ротор. Воздушный зазор под полюсом выполняется неравномерным для уменьшения провала в кривой момента из-за влияния высших гармонических МДС.
Подключение двигателя ДАСМ-2УХЛ4

У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Надо выяснить схему подключения обмоток двигателя, имхо она не такая как на рис 1 и рис 2 Предполагаю, что это схема, указанная в п В — рис 3. Средний контакт у них при нажатие не фиксируется, остаются зафиксированными, тогда как левый и правый.

Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Надо выяснить схему подключения обмоток двигателя, имхо она не такая как на рис 1 и рис 2 Предполагаю, что это схема, указанная в п В — рис 3.

Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать. В магазинах есть такая кнопка — это ПНВС.

В номинальном режиме двигатель работает как обычный однофазный двигатель с пульсирующим полем в зазоре.

ДАСМ-2У4 подключение, испытание емкости конденсаторов

Welcome To Lectures For Life

К недостаткам двигателей данного типа следует отнести пониженную надежность по сравнению с конденсаторными двигателями из-за возможного выхода из строя пусковой обмотки. Поэтому если есть ввод на В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора.

Подшипники качения нормальной точности, в частности шарикоподшипники радиальные однорядные легкой серии 6 —Ш, применяют, если имеются повышенные механические усилия, а уровень звука не входит в число лимитирующих факторов. Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на В.

Наиболее распространенной является параллельная схема соединения обмоток рис.

Получается нечто среднее между описанными выше вариантами.

Имеется пара МУН-2 ,подскажите у них последовательное или паралельное. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Сколько концов выходит из двигателя. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети В.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на В. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора.
Подключение двигателя от стиральной машины

Recommended Posts

Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Это поле в трехфазной сети имеется в готовом виде.

Однако несмотря на эти и ряд других преимуществ производство двигателей с последовательным соединением обмоток ограничено из-за отсутствия конденсаторов больших емкостей и малых рабочих напряжений. Одна часть обмотки на время пуска шунтируется конденсатором, чем обеспечивается требуемый угол сдвига фаз токов в частях обмотки при пуске. Так как после пуска конденсатор отключается, то остальные характеристики двигателя сохраняются такими же, как и у двигателя с пусковой обмоткой повышенного сопротивления.

Эта схема и реализуется чаще всего. Обмотки статора выполняют эмалированным проводом круглого сечения медным, иногда алюминиевым различных марок в зависимости ог принятого класса изоляции.

При подшипниках скольжения вал выполняется гладким. Основными преимуществами двигателей с экранированными полюсами являются их простота, низкая стоимость и отсутствие дополнительных пусковых устройств. В теории рабочий конденсатор должен обеспечить сдвиг фазы тока в обмотке возбуждения также на 90 град.


Схема подключения электродвигателя мун 2ухл4. Схема подключения однофазного двигателя через конденсатор При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Сколько концов выходит из двигателя.

Начнем с низшей скорости — для нее обмотки исходно соединены в треугольник. Родиной кринума волнистого является Камерун.

Без конденсаторов электромотор гудит, но не запускается. К крайним входным контактам ПНВС подключаем силовой кабель от В , средний контакт соединяем перемычкой с рабочим обратите внимание!
Как подключить двигатель от стиральной машины без конденсатора к 220В

Подключение двигателя ДАСМ-2УХЛ4

Если выводов четыре, они звонятся попарно.

Теоретически 5-ти концов достаточно, чтобы обеспечить 2 скорости полюсопереключаемость и два направления смена направления тока в возбуждающей обмотке. Надо выяснить схему подключения обмоток двигателя, имхо она не такая как на рис 1 и рис 2 Предполагаю, что это схема, указанная в п В — рис 3. Тогда поле получается круговым и элеткромагнитный момент машины не имеет пульсаций с удвоенной частотй сети.

Она на втором рисунке. Это необходимо, так как после разгона она только снижает КПД.

К недостаткам этих двигателей следует отнести также отсутствие возможности реверсирования при обычном исполнении. На рис.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Подшипниковые щиты двигателей бытового назначения, как правило, изготовляются литьем под давлением из сплава алюминия или цинка. Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. А если еще и делать это с умом… Куратора Приморского океанариума.

Это необходимо, так как после разгона она только снижает КПД. Обмоток, видимо, 4: медленная прямого вращения, медленная обратного вращения и две быстрых обмотки, подключаемых в режиме отжим. Без них мотор гудит, но не запускается если подключить его по схеме, описанной выше. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. Схема подключения однофазного двигателя через конденсатор При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения.

У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии. Ha данной странице обсуждают аирут71в2ухл4 конденсаторный схема подключения.

Двигатель представляет собой явнополюсную машину с сосредоточенными обмотками, расположенными на полюсах, и короткозамк-нутыми витками на части полюсов. Особенности конструкции для бытовых приборов В асинхронных двигателях бытового назначения широко применяют для листов статора и ротора горячекатаные слабо- легированные стали марок , ГОСТ Необходимый и достаточный пусковой момент создаст общепризнанная конденсаторная система пуска. Сколько концов выходит из двигателя. Экстракт алоэ — это стимулятор растительного происхождения, обладающий тонизирующим, противовоспалительным, желчегонным, слабительным, адаптогенным действием.
Подключение двигателя от стиральной машины с регулировкой оборотов.

Читать еще:  Давление и температура в цилиндре дизельного двигателя

Электродвигатель 1500 об/мин

Электродвигатели 1500 об/мин — трехфазные асинхронные двигатели мощностью 0,12-630 кВт. Ротор короткозамкнутый, фазный. 4 полюса, скорость вращения вала — 1325, 1390, 1420, 1440, 1460, 1475, 1487 оборотов в минуту. Промышленные электродвигатели на 1500 об/мин производятся в алюминиевых/чугунных/силуминовых корпусах. Напряжение сети – 220/380 В и 380/660 Вольт, частота 50 Гц. Монтажные исполнения лапы IM1081, фланец IM3081, комбинированные IM2081, с малым фланцем IM3681.

Электродвигатели приводят в работу — насосные агрегаты, вентиляторы, станки, компрессоры, редукторы, лифты, дробилки, бетономешалки, козловые и мостовые краны, кран-балки, лебедки, экструдеры, скребковые и ленточные конвейеры, дозаторы, шнеки, градирни, прессы. Подобрать, купить мотор 1500 оборотов по техническим характеристикам.

Каталог электродвигателей 1500 об/мин

Мощность электродвигателя 1500 об. мин, кВтОбщепромышленныеВзрывозащищенные
КитайНКЭМЗ, УкраинаВЭМЗ, складского хранения
3/1500АИР100S4АМУ100S44АМ100S4АИММ100S4
4/1500АИР100L4АМУ112М44АМ100L4АИММ100L4
5,5/1500АИР112М4АМУ132S44АМ112М4АИММ112М4
7,5/1500АИР132S46АМУ132S44АМ132S4АИММ132S4
11/1500АИР132М46АМУ132М44АМ132М4АИММ132М4
15/1500АИР160S46АМУ160S44АМ160S4АИММ160S4
18,5/1500АИР160М46АМУ160М44АМ160М4АИММ160М4
22/1500АИР180S44АМУ180S44АМ180S4АИММ180S4
30/1500АИР180М44АМУ180М44АМ180М4АИММ180М4
37/1500АИР200М44АМУ200М44АМ200М4АИММ200М4
45/1500АИР200L44АМУ200L44АМ200L4АИММ200L4
55/1500АИР225М44АМУ225М44АМ225М4АИММ225М4
75/1500АИР250S44АМУ250S44АМ250S4АИММ250S4
90/1500АИР250М44АМУ250М44АМ250М4АИММ250М4
110/1500АИР280S44АМУ280S44АМ280S4АИММ280S4
132/1500АИР280М44АМУ280М44АМ280М4АИММ280М4
160/1500АИР315S46АМУ315S44АМ315S4ВАО280М4
200/1500АИР315М46АМУ315М44АМ315М4ВАО280L4
250/1500АИР355S46АМУ355S4_________ВАО2 315S4
315/1500АИР355М46АМУ355М4_________ВАО2

Габариты электродвигателей 1500 об/мин:

  • АИР 56
  • АИР 63
  • АИР 71
  • АИР 80
  • АИР 90
  • АИР 100
  • АИР 112
  • АИР 132
  • АИР 160
  • АИР 180
  • АИР 200
  • АИР 225
  • АИР 250
  • АИР 280
  • АИР 315
  • АИР 355

Крепежные и присоединительные размеры

В таблице приведены основные размеры двигателей 1500 оборотов — диаметр вала, торца, отверстий на лапах, длина, фланец, высота до оси вала, расстояние креплений.

МаркировкаГабаритные размеры электродвигателей 1500 об/мин
Длина двигателяДлина валаДиаметр валаВысота вала со шпонкойРазмер шпонкиШирина по лапамДиаметр отверстий на лапахДлина по креплению лапВысота до оси валаДиаметр корпусаВысота корпусаРасстояние по креплениямДиаметр по отверстиям крепленияДиаметр торца фланцаДиаметр фланца
LL3D4H2B1BD5L1H1DHL2D2D3D1
АИР56А4216231112,541135,871561201483611595140
АИР56В4216231112,541135,871561201483611595140
АИР63А425030141651245,8806314018040130110160
АИР63В425030141651245,8806314018040130110160
АИР71А4270401921,561507907114519545165130200
АИР71А2270401921,561507907114519545165130200
АИР80В4310502224,56165101008017521450165130200
АИР90L43605024278180101259019525056215180250
АИР100S438560283182051211210021527063215180250
АИР100L438560283182051214010021527063215180250
АИР112М4435803235102301214011224030070265230300
АИР132S4470803841102701214013227534589300250345
АИР132М4510803841102701217813227534589300250345
АИР160S46151104851,51432015178160330420108300250350
АИР160M46151104851,51432015178160330420108300250350
АИР180S470011055591635515203180380455121350300400
АИР180M474011055591635515241180380455121350300400
АИР200M478014060641839519268200420505133400350450
АИР225М282014055591643519311225435560149500450550
АИР225М482014065641843519311225435560149500450550
АИР250S48451407579,52049024311250490615168500450550
АИР250М49201407579,52049024349250490615168500450550
АИР280S4102517080852255024368280580680190600550660
АИР280М4107517080852255024419280580680190600550660
АИР315S4122017090952563528406315645845216600550660
АИР315М4132517090952563528457315645845216600550660
АИР355S4156021010010828730285003557101010254740690800
АИР355М4156021010010828730285003557101010254740690800

Технические характеристики двигателя 1500 об/мин

Технические требования для покупки промышленного электродвигателя 1500 оборотов в минуту:

  • Количество полюсов 4
  • Напряжение сети питания — 220/380 Вольт, 380/660 Вольт
  • Материал корпуса – чугун, алюминий, силумин
  • Схема подключения – «звезда», «треугольник», «звезда-треугольник»
  • Режим работы: S1 — продолжительный, S2 — кратковременный, S3 — повторно-кратковременный
  • Диапазон мощности: 0,12-630 кВт
  • Степень защиты от влаги, пыли: IP 44; IP 54; IP 55; IP 56
  • Категория размещения и климатическое исполнение — УХЛ, У, ХЛ, У1, У2, У3
  • Сервис-фактор – коэффициент допустимой перегрузки электромотора
  • Исполнение по монтажу – IM 1081, В3 лапы, IM 2081, В35 комбинированный, IM 3081, В5 фланец
  • Класс нагревостойкости изоляции обмоток — F — 150°С

В стандартном исполнении электродвигатели 1500 об/мин эксплуатируются при температуре -20°С. +42°С в помещении. На улице необходим козырек, навес. Модификации — морское исполнение, для тропического климата, с повышенным скольжением. У СЛЕМЗ Вы можете купить электродвигатель 1500 об/мин по техническим требованиям, чертежам.

Определение частоты вращения двигателя

Принцип действия электродвигателя в создании вращающегося магнитного поля. Частота вращения поля прямо пропорциональна частоте переменного тока, обратно пропорциональна числу пар полюсов трехфазной обмотки. Рассчет формулой частоты вращения электродвигателя 1500 об/мин :

  • n1 – частота вращения магнитного поля статора, оборотов в минуту
  • f1 – частота переменного тока, Гц
  • p – число пар полюсов

Частота вращения поля статора 1500 об/мин – условное среднее значение скорости вращения двигателей. Фактическая частота вращения вала – 1325, 1390, 1420, 1440, 1460, 1465, 1475, 1484, 1487.

Цены электродвигателей 1500 об/мин

Цена на двигатель 1500 оборотов зависит от мощности, производителя, способа крепления, типа мотора. Диапазон цен 700-198100 грн. Низкие цены на двигатели БУ — отсутствующая гарантия, минимальная работоспособность. Надежные двигатели 1500 оборотов — новые, с заводской гарантией, постгарантийным ремонтом, обслуживанием. Бюджетная альтернатива моторы складского хранения после расконсервации.

Купить двигатель 1500 оборотов

У Слобожанского завода Вы сможете подобрать и купить электродвигатель 1500 об/мин — общепромышленный, крановый, лифтовый, рольганговый, взрывозащищенный:

  • 3 цены электродвигателя 1500 об. на любой бюджет
  • Широкий выбор по мощности – 0,25-630 кВт
  • Габаритные размеры двигателей – 56-355 мм
  • Производители – Украина, Россия, Беларусь, Китай
  • Только надежные электромоторы, прошедшие ОТК
  • Отправка с ближайшего цеха
  • Сервисные центры в 75 % крупных городов Украины
  • 1 возврат с 2014 года

Купить электродвигатель на 1500 оборотов на 220, 380, 660 Вольт с паспортом, гарантией 12-24 месяца. Подберем двигатель 1500 об под тех процесс, условия эксплуатации, технические характеристики с минимальной ценой. В сервисных цехах завода выполним капитальный ремонт электродвигателя 1500 об/мин, перемотку, восстановление посадочных мест, узлов, замену подшипников.

Однофазные электродвигатели напряжения 220В

Наша жизнь стала уже просто немыслима без различных электромоторов. Пылесосы, стиральные машины, холодильники вентиляторы, кондиционеры, даже часы — все эти приборы снабжены электродвигателями. Если прибор подключается к домашней электрической сети, то, вероятнее всего, в нем стоит однофазный асинхронный двигатель 220В.

  • Принцип действия
  • Трехфазный синхронный двигатель
  • Трехфазный асинхронный двигатель
  • Механическая характеристика
  • Однофазный асинхронный двигатель
    • Пуск
    • Скорость вращения
    • Схемы подключения
  • Сравнение двигателей
    • Синхронный
    • Асинхронный
    • Однофазный асинхронный

Принцип действия

Всем нам на школьных уроках физики демонстрировали опыты с проволочной рамкой, помещенной в поле постоянного магнита. Если через рамку пропустить ток, то на проводники в правой и левой части рамки будет действовать силы Ампера, создающие вращающий момент, и рамка с током будет поворачиваться до тех пор, пока она не займет положение, в котором действующие силы уравновешивают друг друга.

Если заставить поле вращаться, рамка с током будет вращаться вместе с ним. На этом принципе основана работа синхронного электродвигателя. Рамка с магнитами — аналог электрического двигателя. Вращающаяся рамка с током — ротор. Неподвижные магниты — статор.

Трехфазный синхронный двигатель

Теперь надо заставить неподвижный статор создать вращающееся магнитное поле.

Для начала заменим постоянные магниты катушками с током обмотками статора. Катушка с током создает такое же магнитное поле, как и магнит. Разместим на статоре не одну катушку-магнит, а три, повернув их на 120 градусов относительно друг друга. Подадим на эти обмотки переменный ток со сдвигом фаз на 120 градусов. Именно так сдвинуты фазы в трехфазной сети.

Результирующее магнитное поле есть результат векторного сложения трех полей. Суммарный вектор магнитной индукции будет вращаться с частотой переменного тока. За один период магнитное поле, создаваемое статором трехфазного двигателя, совершает полный оборот. Ротор, который аналогичен катушке с током, поворачивается вместе с магнитным полем статора с той же скоростью. Таким образом ротор синхронного двигателя вращается частотой питающего переменного тока.

Синхронные двигатели обладают самыми лучшими характеристиками, развивают максимальную мощность и обеспечивают высокий КПД. Однако там тяжелый ротор с обмотками, который сложно балансировать. К обмоткам ротора надо подводить ток, а это требует применения крайне ненадежного щеточного узла. В общем, синхронный двигатель — это хорошо, но сложно, дорого и не очень надежно.

Трехфазный асинхронный двигатель

Замкнем концы рамки накоротко. Получим один короткозамкнутый виток. Наш трехфазный статор создает вращающееся магнитное поле. Пусть это поле и создает ток в короткозамкнутом роторе.

Когда поле статора вращается относительно неподвижной рамки, оно создает в ее контуре переменный магнитный поток. По закону электромагнитной индукции переменное поле наводит в рамке электрический ток. Ток создает вращающий момент, и рамка поворачивается вслед за магнитным полем, как и в синхронном двигателе.

Но есть одно принципиальное отличие. В синхронном двигателе ротор вращается одновременно, то есть синхронно с полем статора. Ротор относительно поля статора неподвижен.

В асинхронном двигателе ротор пытается догнать вращающееся поле, но всегда немного отстает, как бы скользит относительно него. Если вдруг скорость вращения ротора точно сравняется со скоростью поля, то в роторе перестанет наводиться ток индукции.

Разность частот вращения магнитного поля и ротора асинхронного двигателя называется скольжением. Именно оно обеспечивает наличие тока в роторе.

Асинхронные электродвигатели уступают синхронным по всем характеристикам, но значительно проще, легче, надежнее и дешевле. Практически все электрические двигатели, применяемые сегодня в промышленности — это асинхронные трехфазные двигатели.

Механическая характеристика

Механическая характеристика двигателя — это зависимость момента на валу от скорости вращения.

Как уже было сказано, скорость вращения ротора в асинхронном двигателе всегда отличается от скорости вращения поля статора на величину скольжения.

Скольжение S = (n1- n2)/n1, где n1 — это скорость вращения поля, а n2 — скорость вращения ротора.

Характеристика показывает, что двигатель может работать в пяти режимах:

  1. Холостой ход.
  2. Пуск.
  3. Двигательный режим.
  4. Режим рекуперации.
  5. Генераторный режим.

В режиме холостого хода скольжение S равно 0. Ротор вращается синхронно с магнитным полем, как в синхронном двигателе, а момент вращения равен 0. Режим холостого хода — чисто гипотетический и никогда не реализуется на практике.

В момент пуска ротор еще неподвижен и S=1. Момент вращения при S=1 называется пусковым моментом.

После пуска ротор входит в двигательный режим и начинает раскручиваться, постепенно догоняя магнитное поле. В двигательном режиме 1 > S > 0.

Если ротор вдруг каким-то образом обгонит поле, то наступит режим рекуперации. При этом двигатель отдает энергию в сеть. В режиме рекуперации S 1 соответствует генераторному режиму. В генераторном режиме ротор движется навстречу потоку и генерирует электрический ток.

S = Sn соответствует номинальному режиму. Номинальное значение скольжения составляет обычно 2−8%.

Однофазный асинхронный двигатель

Можно еще упросить трехфазный асинхронный двигатель .

Оставим на статоре всего одну обмотку и подадим туда однофазный электрический ток. У нас получился однофазный асинхронный двигатель. В этом двигателе поле статора неподвижно — в этом принципиальное отличие однофазного двигателя от многофазного. Тем не менее такой двигатель работает.

Однофазный двигатель не может стартовать самостоятельно. Ничего особенного в этом нет. Привычный нам двигатель внутреннего сгорания тоже надо сначала раскрутить. В автомобиле мы пользуемся дополнительным электродвигателем — стартером, а в бензопиле делаем это вручную, дергая пусковой шнур.

Если однофазный двигатель подтолкнуть, причем в любую сторону, он разгонится и будет поддерживать вращение в заданном направлении.

Ели ротору придать вращение в определенном направлении, он будет двигаться попутно с одним полем и навстречу другому.

Двигатель можно представить как два трехфазных мотора, насаженных на один вал, но включенных во встречном направлении. При запуске вал неподвижен и моторы уравновешивают друг друга.

Если вал раскрутить внешней силой в каком-то направлении, то один мотор, запущенный в попутном направлении, окажется в двигательном режиме, а другой — в генераторном. Механическая характеристика показывает, что крутящий момент в двигательном режиме больше, чем в генераторном, поэтому попутный мотор перетягивает.

Для запуска однофазного электромотора на его статоре наматывают дополнительную пусковую обмотку перпендикулярно основной и подают в нее ток со сдвигом по фазе. Для сдвига фазы последовательно с обмоткой включают фазосдвигающий элемент. В качестве фазосдвигающего элемента можно использовать резистор, дроссель или конденсатор. В любом случае полное комплексное сопротивление в цепях основной и пусковой обмоток будет разным, и токи получат фазовый сдвиг.

Чаще всего для сдвига фаз используют конденсатор.

Скорость вращения

В сетях наших энергоснабжающих компаний используется переменное напряжение 220/380 с частотой 50 Гц. Причем частота переменного тока 50 Гц поддерживается с точностью до 2 процентов. Как нам уже известно, ротор синхронного электромотора вращается с частотой переменного тока. То есть при частоте питающей сети 50 Гц ротор совершает 50 оборотов в секунду или 3000 оборотов в минуту. Обмотку статора можно разделить на секции и сделать мотор многополюсным. В многополюсном моторе скорость понижается с ростом числа полюсов и в общем случае равна 3000/ p оборотов, где p — это число полюсов.

Таким образом скорость вращения сетевого электромотора в нашей стране не может быть выше 3000 оборотов в минуту. В странах, где принята частота сети в 60 Гц, например, в США, электромоторы крутятся с максимальной скоростью в 3600 оборотов в минуту. И здесь мы снова отстаем от Америки.

В синхронном электромоторе обороты не зависят от нагрузки. При росте нагрузки ротор синхронной машины отстает от поля на больший угол, но частота вращения не меняется.

В асинхронном режиме величина скольжения зависит от нагрузки. Таким образом, при увеличении нагрузки скорость асинхронного электромотора падает.

Схемы подключения

Пусковая обмотка, включенная со сдвигом по фазе, поворачивает магнитное поле и превращает на время запуска однофазный электродвигатель в двухфазный.

Дополнительная обмотка не рассчитана на длительную работу и после выхода на рабочий режим должна быть отключена. Отключение производится либо вручную кнопкой, либо центробежным выключателем, либо тепловым реле по нагреву пусковой обмотки.

В однофазном двигателе в рабочем режиме магнитное поле статора неподвижно. В этом его главное отличие от многофазного.

Иногда ошибочно называют однофазными электромоторы, дополнительная обмотка которых подключена через конденсатор постоянно.

В однофазную сеть можно подключить и трехфазный мотор, если одну из фазных обмоток подключить через конденсатор. Так что, если в вашем распоряжении вдруг оказался промышленный трехфазный электромотор, вы можете использовать его в однофазной домашней сети, хотя и с потерей мощности и более низким КПД.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты