0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электромеханическая характеристика синхронный двигатель

Учебные материалы

Принцип действия синхронного двигателя основан на явлении притяжения разноименных полюсов двух магнитных полей — вращающегося поля статора и постоянного поля ротора. Вращающееся магнитное поле статора создается при питании обмоток статора от трехфазной сети.

Постоянное поле ротора создается постоянным током возбуждения, протекающим по обмотке возбуждения ротора. На рис.24,а полюсы N и S вращающегося магнитного поля статора показаны штриховкой. Они вращаются против часовой стрелки с частотой n.

При вращении поля статора с частотой n, полюсы ротора N и S будут вращаться также с частотой n (произойдет «сцепление» этих полюсов с разноименными полюсами статора N и S).

В режиме идеального холостого хода (момент сопротивления отсутствует Мс=0) оси магнитных полей статора и ротора совпадают. При этом на полюсы ротора действуют радиальные силы F1 и F2, которые не создают вращающего момента.
Рис. 24. Идеальный холостой ход и режим нагрузки
Если к валу машины приложить механическую нагрузку, которая создает момент сопротивления Мс, ось ротора и его полюсов S, N сместится в сторону отставания на угол q, который называется углом нагрузки (см.рис.24 ,б).

В данном случае вращающееся поле статора «ведет» за собой поле ротора и сам ротор. Тангенциальные составляющие Ft сил F создают вращающий момент М двигателя, который преодолевает момент сопротивления (М = Мс).

Полезно знать, что момент двигателя пропорционален напряжению сети (М º Uc); то есть синхронный двигатель, в отличие от синхронного двигателя, в меньшей степени зависит от колебаний питающего напряжения.

При неизменной величине напряжения сети максимальный момент двигателя зависит от тока возбуждения.

При увеличении момента сопротивления Мс угол нагрузки q увеличивается до некоторого предела, когда Мс>Mmax, то угол нагрузки q станет больше 90°, режим двигателя будет неустойчивым. Вращающий момент двигателя начнет уменьшаться, ротор будет тормозиться, двигатель выйдет из синхронизма и может остановиться.

Выпадение машины из синхронизма недопустимое явление. Синхронные машины проектируют так, чтобы при номинальном режиме угол нагрузки не превышал 30°, а запас по моменту и активной мощности был не менее 1,65.
Механическая характеристика синхронного двигателя n=f(M) представлена на рис. 25
Рис. 25 Механическая характеристика синхронного двигателя
Синхронный двигатель позволяет регулировать реактивную мощность Q, потребляемую из сети, и улучшать коэффициент мощности cos j сети. При этом двигатель должен работать в режиме перевозбуждения (Iв>Iвном).

Существуют специальные машины (синхронные компенсаторы), предназначенные для выработки реактивной мощности, которая отдается в сеть и потребляется другими потребителями, например, асинхронными двигателями. Тем самым исключается необходимость передачи реактивной мощности по сети на большие расстояния от электрической станции и сокращаются потери мощности в сети, что повышает эффективность системы электроснабжения.

Синхронные компенсаторы имеют облегченную конструкцию, меньшие размеры и массу, так как работают вхолостую и загружены только реактивным током.

Уважаемые студенты!
Специалисты нашего сайта готовы оказать помощь в учёбе по разным предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Электромеханическая характеристика синхронный двигатель

Синхронный двигатель имеет постоянную частоту вращения при разнообразных нагрузках. Часто такие приборы применяют для приводов машин, которые работают с постоянной неизменной скоростью, например, компрессоры, вентиляторы, насосы и пр.

Читать еще:  Что такое бэта двигатель

Особенности синхронных двигателей:

  • Высокий коэффициент мощности cosФ=0,9
  • Возможность использования синхронных двигателей на предприятиях для увеличения общего коэффициента мощности

Высокий КПД: он больше чем у асинхронного двигателя на (0,5-3%) это достигается за счёт уменьшения потерь в меди и большого CosФ.

  • Обладает большой прочностью обусловленной увеличенным воздушным зазором.
  • Вращающий момент синхронного двигателя прямо пропорционален напряжению в первой степени. Т.е синхронный двигатель будет менее чувствителен к изменению величины напряжения сети.
  • Сложность пусковой аппаратуры и большая стоимость.

Устройство и принцип работы синхронного двигателя

В статоре синхронного двигателя имеется обмотка, которая подключается к сетям трехфазного тока. Она образует собой магнитное поле, которое вращается. Ротор у такой электроэнергетической машины, как синхронный двигатель, состоит из сердечника и обмотки возбуждения. Обмотка подключается через специальные контактные кольца к источнику (обычно это источник постоянного тока или же иногда используют выпрямленный переменный ток). Электрический ток, который протекает через обмотки возбуждения, создает намагничивающее ротор магнитное поле.

Магнитное поле статора, которое вращается, намагничивает ротор. Синхронный двигатель с постоянными магнитами имеет разное электромагнитное сопротивление по поперечной и продольной осям полюсов. Силовые линии у магнитного поля обмотки статора начнут изгибаться, потому что они будут как бы стремиться найти пути с наименьшим сопротивлением. Вследствии специфических свойств силовых магнитных линий поля, в свою очередь, такая деформация его вызовет реактивный момент. Именно поэтому ротор будет вращаться синхронно вместе с магнитным полем статора.

Виды синхронных двигателей

В основном все отличия в конструктивном исполнении такого устройства — это модификации вращающейся детали. Ротор синхронной машины может быть с явно выраженными полюсами (т.н. «явнополюсный»), и с неявно выраженными полюсами (т.н.«неявнополюсный»).

  • Явнополюсный ротор обычно имеет ярко выраженные, выступающие полюса, на которых размещаются катушки возбуждения.
  • Неявнополюсный ротор обычно представляет собой цилиндр из ферромагнитного сплава, на поверхности которого фрезеруют пазы в осевом направлении. Впоследствии именно в эти пазы укладывают обмотки возбуждения.

Чем отличается синхронный двигатель от асинхронного?

Основная задача электродвигателя — преобразовывать электрическую энергию в механическую. Сегодня электродвигатели изготавливаются как постоянного, так и переменного тока. Среди двигателей переменного тока лидируют асинхронные и синхронные двигатели. Асинхронные двигатели малой и средней мощности относятся к группе наиболее часто используемых электродвигателей. Они широко используются как в промышленности, так и в бытовой технике.

В промышленности чаще всего используются асинхронные двигатели трехфазные. Они используются, например, в энергетике — в качестве приводов для собственных нужд электростанций, в строительстве, на транспорте, в коммунальном хозяйстве — в качестве приводов насосов водоснабжения и т. д.

Отличие асинхронного электродвигателя от синхронного

С виду внешне они похожи, порой даже специалист не отличит по внешним признакам синхронный электродвигатель от асинхронного. У обоих электродвигателей есть неподвижный статор, состоящий из обмоток (катушек), которые уложены в пазы сердечника, набранного из пластин, выполненных из электротехнической стали, и подвижный ротор. Кроме того, функция этих типов электродвигателей одна и та же — создание вращающегося магнитного поля статора.

Ротор синхронного двигателя имеет обмотку возбуждения с независимым питанием. Статоры синхронного и асинхронного двигателя устроены одинаково, функция в каждом случае одна и та же — создание вращающегося магнитного поля статора.

Обороты асинхронного двигателя под нагрузкой всегда на величину скольжения отстают от вращения магнитного поля статора, в то время как обороты синхронного двигателя равны по частоте «оборотам» магнитного поля статора. И поэтому у асинхронного двигателя есть такой параметр — как СКОЛЬЖЕНИЕ — разность скоростей вращения ротора и вращающегося магнитного поля в статоре. У синхронного электродвигателя частота вращения ротора всегда равна частоте вращения электромагнитного поля.

У этих двух типов двигателей разные области применения: синхронные электродвигатели отличаются гораздо большей мощностью и полезной нагрузкой, но они дороже и сложней. И поэтому асинхронные двигатели востребованы там, где достаточно их характеристик, ведь они дешевле и проще в изготовлении.

Недостатки и преимущества двигателей

Синхронные двигатели

Синхронные двигатели имеют довольно сложную конструкцию, обусловленную наличием щеточного узла. Кроме того, для их работы требуется дополнительный источник постоянного тока. Еще одним недостатком является невозможность их эксплуатации в условиях частых пусков и остановов. Однако все это компенсируется большой мощностью, высоким КПД, устойчивостью к перепадам напряжения в питающей сети и стабильной частотой вращения вала, вне зависимости от величины нагрузки на него.

Синхронные электрические машины рентабельны при мощностях свыше 100 кВт и основное применение находят для вращения мощных вентиляторов, на различных металлургических производствах, для привода насосов, которые обладают не только значительной мощностью, но и долгим режимом функционирования т.д.

Асинхронный двигатель

Асинхронный двигатель в отличие от синхронных машин более чувствителен к колебаниям напряжения и не может сохранять номинальную скорость вращения, при увеличении нагрузки. В большинстве случаев недостатки компенсируются путем применения преобразователей частоты и других устройств пуска. Но простота конструкции, длительный срок эксплуатации, универсальность применения, способность работать в режиме частых включений и остановок делают эти машины наиболее распространенными в промышленном и бытовом секторе.

Механическая и угловая характеристики синхронных двигателей

Скорость вращения синхронного двигателя при работе в уста­новившемся режиме независимо от нагрузки на валу остается строго постоянной (при неизменной частоте тока) и равна синхронной скорости, рад/с

Поэтому механическая характеристика его имеет вид пря­мой линии, параллельной оси абсцисс (рис 3.6,а).

Однако при пульсации нагрузки на валу двигателя в уста­новившемся режиме имеют место колебания мгновенной ско­рости вследствие изменения угла θ между напряжением и э. д. с. синхронной машины.

Эти колебания оказывают существенное влияние при работе синхронного двигателя на пульсирующую нагрузку, например на поршневой компрессор. В этих случаях для решения вопроса о поведении двигателя важно знать зависимость между момен­том М и углом θ.

Момент вращения синхронного двигателя определяется вы­ражением

где т — число фаз статора; U — напряжение на зажимах ста­тора; Е — э. д. с, наводимая в обмотке статора полем ротора; со — угловая скорость ротора; хс — синхронное индуктивное со­противление обмотки статора. Из формулы (3.20) следует, что

где Мтах — максимальный момент двигателя, определяемый при sin θ=1 по выражению

Зависимость вращающего момента М от угла Э, называе­мая угловой характеристикой синхронного двигателя, приведена на рис. 3.6, б. При изменении угла Э от 0 до 90° (электриче­ских градусов) вращающий момент возрастает до Мтах. При изменении угла от 90 до 180° — момент уменьшается от Мтах до нуля. Таким образом, устойчиво двигатель может работать при углах θ от 0 до 90°. При увеличении угла θ свыше 90° вра­щающий момент уменьшается, двигатель выпадает из синхро­низма и останавливается. Номинальному моменту двигателя соответствует угол θном = 20÷30°. При этом угле Мтахном= = 2÷2,5.

Синхронные двигатели широко применяют в горной про­мышленности для приводов компрессоров, вентиляторов и пре­образовательных агрегатов подъемных установок и экскава­торов.

Основным преимуществом синхронных двигателей является высокий коэффициент мощности. Они могут работать с опере­жающим cos φ и этим повышать общий средневзвешенный коэф­фициент мощности предприятия.

ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЭЛЕКТРОПРИВОДАХ

Общие понятия и определения

Под переходными процессами электропривода понимаются про­цессы перехода от одного состояния электропривода к другому, т. е. режимы перехода от покоя к вращению и обратно, от од­ной скорости к другой, от одного направления вращения к дру­гому, от одной нагрузки исполнительного механизма к другой. Таким образом, переходные процессы в электроприводе будут при пуске и торможении, регулировании скорости, реверсирова­нии, приеме и сбросе нагрузки. Исследование переходных про­цессов позволяет выяснить зависимости вращающего момента двигателя, его скорости, тока и пройденного пути от времени за период перехода от одного состояния электропривода к дру­гому.

Количество исполнительных механизмов, для которых харак­тер протекания переходных режимов электропривода малосу­ществен, ограничено. К ним можно отнести механизмы дли­тельного режима работы с постоянной нагрузкой и с редкими пусками (вентиляторы, центробежные насосы). Для большин­ства рабочих машин протекание переходных процессов электро­привода имеет существенное значение. Например, при циклич­ном режиме работы с большим количеством пусков производи­тельность машины во многом зависит от длительности пуска и торможения (одноковшовый экскаватор). С уменьшением длительности пуска и торможения уменьшается длительность рабочего цикла — производительность увеличивается. Но при сокращении длительности этих режимов возрастают динами­ческие нагрузки в элементах рабочей машины, что может при­вести к их разрушению. Поэтому только нагрузочные диаграммы, построенные с учетом переходных процессов в элект­роприводе, дают возможность правильно проектировать элект­ропривод.

Основной причиной переходных процессов в электроприводе являются механическая и электромагнитная инерционность. В зависимости от вида инерции, влияющей на переходные про­цессы, их разделяют на механические, электромагнитные и электромеханические.. Механические переходные процессы — учитывается только механическая инерция движущихся частей агрегата; электромагнитные переходные процессы — учитыва­ется электромагнитная инерция индуктивностей обмоток элект­рических машин; электромеханиче­ские переходные процессы — учитыва­ются механическая и электромагнитная инерции.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector