0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрозапуск двигателя что это

Aviatus: Запуск, прогрев, опробование и останов двигателя самолета Ан-2

Поршневые двигатели

Ручной запуск / раскачивание пропеллера

Эскиз 1918 года, когда наземный экипаж получает инструкцию по запуску вручную

Ручной запуск поршневых двигателей самолетов путем поворота гребного винта – самый старый и простой метод, отсутствие какой-либо бортовой системы запуска дает заметную экономию веса. Позиционирование гребного винта относительно коленчатого вала выполнено таким образом, что поршни двигателя проходят через верхнюю мертвую точку во время хода качания.

Поскольку система зажигания обычно устроена так, чтобы производить искры перед верхней мертвой точкой, существует риск того, что двигатель отскочит назад во время ручного запуска, чтобы избежать этой проблемы, один из двух магнето, используемых в типичной системе зажигания авиационного двигателя, снабжен импульсным сцепление », это подпружиненное устройство задерживает искру до верхней мертвой точки, а также увеличивает скорость вращения магнето для получения более сильной искры. При запуске двигателя импульсная муфта перестает работать и включается второй магнето. По мере увеличения мощности авиадвигателей (в межвоенный период) раскачивание пропеллера для одного человека становилось физически затруднительным, наземный персонал брался за руки и объединялся в команду или использовал брезентовый носок, надеваемый на одну лопасть воздушного винта, причем носок имел длина троса, прикрепленного к концу гребного винта. Обратите внимание, что это отличается от ручного «переворачивания» радиально-поршневого двигателя, который выполняется для выпуска масла, которое застряло в нижних цилиндрах перед запуском, чтобы избежать повреждения двигателя. Оба они кажутся похожими, но в то время как ручной запуск включает в себя резкое, сильное «рывок» винта для запуска двигателя, переворачивание просто выполняется поворотом винта на определенную заданную величину.

Несчастные случаи произошли во время запуска пилотом-одиночкой, высоких настроек дроссельной заслонки, не задействованных тормозов или использования противооткатных упоров; все это привело к троганию с места без пилота за штурвалом. «Заведение двигателя» при включении зажигания и переключателях, случайно оставленных «включенными», также может привести к травмам, поскольку двигатель может неожиданно запуститься при возгорании свечи зажигания. Если переключатель находится не в исходном положении, искра возникнет до того, как поршень коснется верхней мертвой точки, что может заставить гребной винт резко отскочить назад.

Хакс стартер

Стартер Hucks (изобретенный Бентфилдом Хаксом во время Первой мировой войны) представляет собой механическую замену наземной команде. Основанное на шасси транспортного средства, устройство использует ведомый вал сцепления для вращения гребного винта, расцепляясь при запуске двигателя. Стартер Hucks регулярно используется в коллекции Shuttleworth для самолетов стартового периода.

Потяните шнур

Самоподдерживающиеся моторные планеры (часто известные как «турбины») оснащены небольшими двухтактными двигателями без системы запуска, для наземных испытаний шнур наматывается на выступ гребного винта и быстро вытягивается вместе с работающими клапанами декомпрессора . Эти двигатели запускаются в полете с помощью декомпрессора и увеличения воздушной скорости для вращения винта. Ранние варианты моторного планера Slingsby Falke используют систему запуска от тяги, установленную в кабине.

Электростартер

Самолеты стали оснащаться электрическими системами около 1930, питание от батареи и небольшой ветряной генератор . Первоначально системы были недостаточно мощными, чтобы приводить в действие стартерные двигатели. Внедрение моторных генераторов решило проблему.

Внедрение электростартерных двигателей для авиационных двигателей повысило удобство за счет увеличения веса и сложности. Они были необходимостью для летающих лодок с высоко установленными, недоступными двигателями. Стартер, работающий от бортовой аккумуляторной батареи, заземленного источника питания или и того, и другого, приводится в действие ключом или переключателем в кабине. Ключевая система обычно облегчает переключение магнето.

В холодных условиях трение, вызванное вязким моторным маслом, вызывает большую нагрузку на систему запуска. Другой проблемой является нежелание топлива испаряться и сгорать при низких температурах. Были разработаны системы разбавления масла (смешивание топлива с моторным маслом) и использовались предпусковые подогреватели двигателя (включая разжигание пожаров под двигателем). Система подкачивающего насоса Ki-Gass использовалась для облегчения запуска британских двигателей.

Самолеты, оснащенные воздушными винтами с регулируемым шагом или с постоянной скоростью , запускаются с малым шагом, чтобы уменьшить воздушные нагрузки и ток в цепи стартера.

Многие легкие самолеты оснащены сигнальной лампой включения стартера в кабине, что является обязательным требованием летной годности для защиты от риска того, что стартер не отключится от двигателя.

Коффман стартер

Стартер Коффмана представлял собой устройство, работающее от взрывного патрона, горящие газы работали либо непосредственно в цилиндрах для вращения двигателя, либо через редукторный привод. Впервые представленный на дизельном двигателе Junkers Jumo 205 в 1936 году, стартер Coffman не получил широкого распространения среди гражданских операторов из-за высокой стоимости патронов.

Пневматический стартер

В 1920 году Рой Федден разработал систему газового запуска поршневого двигателя, которая использовалась в двигателе Bristol Jupiter к 1922 году. Система, которая использовалась в ранних двигателях Rolls-Royce Kestrel, направляла воздух высокого давления от наземного агрегата через распределитель с приводом от распределительного вала к распределителю. цилиндров через обратные клапаны , система имела недостатки, которые удалось преодолеть путем перехода на электрический запуск.

Запуск в полете

Когда поршневой двигатель необходимо запустить в полете, можно использовать электродвигатель стартера. Это нормальная процедура для моторных планеров , которые взлетали с выключенным двигателем. Во время фигур высшего пилотажа на более ранних типах самолетов нередко возникало отключение двигателя во время маневров из-за конструкции карбюратора . Без установленного электростартера двигатели можно перезапустить путем пикирования самолета для увеличения воздушной скорости и скорости вращения «ветряного» пропеллера.

Инерционный стартер

В инерционном стартере авиационного двигателя используется предварительно повернутый маховик для передачи кинетической энергии на коленчатый вал, обычно через редукторы и муфту, чтобы предотвратить условия чрезмерного крутящего момента. Были использованы три варианта: ручной, электрический и их комбинация. Когда маховик полностью находится под напряжением, либо вытягивается ручной трос, либо используется соленоид для включения стартера.

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания (поршневой двигатель – ПД), в котором тепловая энергия расширяющихся газов, образовавшаяся в результате взрыва топливовоздушной смеси в замкнутом объёме, преобразуется в механическую работу поступательного движения поршня за счёт расширения рабочего тела (газообразных продуктов сгорания топлива) в цилиндре, в который вставлен поршень. Поступательное движение поршня преобразуется во вращение коленчатого вала кривошипно-шатунным механизмом. В качестве топлива в поршневых двигателях внутреннего сгорания используются: жидкости (дизельное топливо, бензин, спирты); сжиженные горючие газы. Эффективный кпд поршневого двигателя не превышает 60%. Остальная тепловая энергия распределяется между теплом выхлопных газов и нагревом конструкции двигателя. Поскольку последняя характеристика весьма существенна, поршневые двигатели нуждаются в системе интенсивного охлаждения. Различают следующие системы охлаждения: воздушные (двигатель АШ-62), отдающие избыточное тепло окружающему воздуху через ребристую внешнюю поверхность цилиндров; используются в двигателях сравнительно небольшой мощности (десятки кВт) или в более мощных авиационных двигателях, работающих в быстром потоке воздуха; жидкостные (двигатель АМ-35А), в которых охлаждающая жидкость (вода, масло или антифриз) прокачивается через рубашку охлаждения (каналы, созданные в стенках блока цилиндров) и затем поступает в радиатор охлаждения, где теплоноситель охлаждается потоком воздуха, созданным вентилятором.

С момента зарождения авиации и до конца Второй мировой войны поршневые двигатели были основным типом авиационных двигателей, образующих в сочетании с движителем – воздушным винтом – силовые установки ЛА (Ла-5 с мотором жидкостного охлаждения М-105П; Як-3 с двигателем ВК-105ПФ2; МиГ-3 с мотором АМ-35А). В целях повышения высоты и скорости полёта в поршневых авиационных двигателях нашли применение системы наддува, что позволило в 1940-х гг. повысить мощность силовых установок до 3000–3500 кВт. Однако характерное для винтомоторных силовых установок падение тяги с ростом скорости полёта не позволяло самолётам с поршневыми авиационными двигателями достигать скоростей выше 700–750 км/ч, что сохранило применение поршневых авиационных двигателей только в самолётах лёгкой авиации [Як-18Т (двигатель М-14П), Ил-103 (двигатель Teledyne Continental Motors IO-360ES), Бе-103 (двигатель ТСМ IO-360)]; самолётах спортивной авиации [Су-26 (двигатель М-14Х), Су-31(М-14ПФ), Як-52 (двигатель М-14Х)]; самолётах авиации общего назначения [Ан-2 (двигатель АШ-62), Ан-14 (двигатель АИ-14РФ)].

Читать еще:  Что такое двигатели sochi

История развития авиадвигателей

Первый самолет, который запустили братья Райт, имел двигатель с 4-мя цилиндрами. Конечно же, это значительно более простая конструкция, чем те, которые используются сейчас. И, как отмечают эксперты, без эволюции самолетного двигателя было бы невозможно развитие авиаотрасли вообще – примитивные первые моторы просто бы не потянули огромные и мощные машины, летающие сегодня.

Первый авиационный двигатель создал Джон Стрингфеллоу – он считается изобретателем специального двигателя на пару, предназначенный для неуправляемой модели. Но, как показала практика, паровые двигатели не подошли для авиации – они оказались чрезмерно тяжелыми.

C 1903 года началась, как назвали ее эксперты и аналитики, настоящая война моторов. Чарльз Тэйлор поставил на лайнер братьев Райт двигатель, так называемой рядной конструкции – в нем цилиндры находятся один за другим. Есть здесь аналогия с простым автомотором.

Однако практически сразу же был создан другой мотор – звездообразный с радиальным расположением цилиндров. Такие варианты широко применялись до самого появления реактивных двигателей.

Цилиндры в ряд не давали двигателю необходимой мощности, которая требовалась для самолетов. В 1906 году появился двигатель, где цилиндры разместились под прямым углом друг к другу. Также такой вариант мотора имел впрыск. Далее промышленность развивалась, прием достаточно активно. Вследствие этого авиаотрасль имеет современные и мощные моторы.

Паровые двигатели

Бурный энергетический рост реактивных двигателей и успех их применения отбросили на второй план, а то и вовсе отправили в небытие ряд направлений двигателестроения. Самолёты с паровыми двигателями распространения не получили. На заре авиации, ещё в эпоху до двигателей внутреннего сгорания, попытки подняться в воздух на паровом двигателе были малоуспешны (самолёт Можайского в 1883, паролёт «Эол» Клемана Адера в 1890). Это была эпоха «попрыгунчиков» – самолётов, которые «подлетали» при встречном ветре. Низкая тяговоружённость не позволяла им взлететь. В 1933 у братьев Бесслер взлетел самолёт Airspeed 2000 с паровым приводом. Самолёт летал как почтовый до 1936. Во-первых, мощность двигателя не зависела от высоты полёта и степени разрежённости воздуха – это было вечной проблемой бензиновых и дизельных двигателей. Во-вторых, самолёт был совершенно бесшумным – только свист пропеллера. Особенно была отмечена способность самолёта к реверсивному ходу и быстрому торможению. Современные паровые двигатели хотя и не нашли применения в современной авиации, но заслуживают внимания с точки зрения перспектив развития на новом витке диалектической спирали развития авиации. Их черты прослеживаются в ядерных силовых установках.

Как запускается двигатель самолета? Рассказывает пилот самолета.

Реактивный двигатель — это очень интересная вещь, а запуск его необычен. Попробую как можно короче и проще объяснить вам что там, да как.

Если посмотреть на разрез турбины, то мы увидим, что внутренности у нас состоят только лишь из камеры сгорания, компрессоров и самого вентилятора, именно его вы и видите на фото сверху. Т.е. подразумевается, что все это дело должно вращаться воедино. И да, оно на самом деле так и есть, но только когда двигатель запущен.

Как все это заставить начать вращаться?

Да-да, это и является самым сложным моментом. Турбина способна сама поддерживать свое вращение. Пламя будет гореть само в камере сгорания, соответственно, и лопатки вращаться. Нужно только топлива не забывать подавать.

Но изначально вентилятор не вращается, поэтому и двигатель не может начать работать. Какого-либо дополнительного двигателя для раскрутки тут тоже нет. Как тогда все это дело запускается?

Да очень просто!

Для этого используется вспомогательная силовая установка — ВСУ. Это третий, очень похожий, реактивный двигатель в самолете. Только размер его гораздо меньше. Он сам запускается от электрического привода. А свои обороты поддерживает самостоятельно, после раскрутки. Жжет керосин, конечно же.

Но ВСУ — очень маленький двигатель, поэтому и раскрутить его просто. Наши же под крыльями — огромны, и раскручивать их очень тяжело. Именно поэтому была придумана система, которая отбирает часть воздуха от ВСУ и под большим давлением «выдувает» его на турбины. От этого напора лопатки начинают раскручиваться.

В момент, когда вращение становится достаточно быстрым, подаются искра и топливо в основной двигатель. Тем самым он начинает работать уже самостоятельно. Чуть позже отключают отбор воздуха и двигатель начинает работу сам, без поддержки.

Если вам понравилась статья — подписывайтесь на мой канал и ставьте палец вверх, мне всегда очень приятно!

Пуск тягового двигателя

При включении тягового двигателя в сеть последовательно с обмоткой якоря включается пусковой реостат. При отсутствии пускового реостата в первый момент, когда якорь неподвижен, ток, потребляемый двигателем, /= и/г^, где г в — сопротивление обмоток двигателя.

Так как сопротивление гдв мало (0,18 Ом), ток, потребляемый из сети, был бы во много раз больше допустимого. От такого тока могли бы пострадать обмотка якоря, коллектор, щетки. Поэтому последовательно с обмоткой якоря О Я (рис. 45) и обмоткой возбуждения ОБ приходится включать пусковой реостат сопротивлением г, что дает возможность снизить пусковой ток до допустимого значения.

В этом случае начальный пусковой ток в цепи якоря

Как только якорь начнет вращаться, в его обмотке будет наводиться э.д.с. Согласно правилу правой руки наведенная э.д.с. Е будет направлена против приложенного к тяговому двигателю напряжения и, следовательно, против тока в обмотке якоря.

При вращении якоря тягового двигателя с включенным пусковым реостатом потребляемый из сети ток

По мере увеличения частоты вращения якоря э.д.с. будет расти, и, если не уменьшать сопротивление пускового реостата, ток, потребляемый двигателем, будет падать. Так как при пуске и разгоне вагона следует поддерживать наибольший допустимый для двигателей ток, сопротивление пускового реостата следует по мере разгона уменьшать.

Если ток во время разгона окажется больше максимально допустимого, то может возникнуть боксование колес.

Чтобы сила тяги была наиболее постоянной во время пуска, пусковые реостаты должны иметь большое число ступеней (секций), отключаемых по мере разгона. Если число ступеней мало, то при отключении каждой из них значительно меняется ток, что приводит к резкому изменению силы тяги, и возникающий толчок вызывает неприятные ощущения у пассажиров.

Наиболее экономичен режим пуска, при котором вагон быстро набирает полную скорость: при этом меньше расход электроэнергии на нагрев пусковых реостатов, так как они в течение меньшего времени находятся под током.

Во время пуска секции реостата постепенно замыкаются накоротко (выводятся) специальными выключателями, называемыми контакторами.

Для увеличения числа ступеней пускового реостата при минимальном числе контакторов в процессе пуска применяют параллельное и смешанное соединение отдельных секций. Это позволяет добиться довольно плавного изменения общего сопротивления секций реостата в цепи тяговых двигателей. На рис. 46 приведен пример соединения секций реостата при пуске тяговых двигателей.

Очередность замыкания и размыкания контакторов 1, 2, 3 и 4, определяющая комбинацию соединения секций пускового реостата, поясняется таблицей включения контакторов (табл. 1). Кружок, поставленный в клетке таблицы, показывает, что на данной ступени регулирования соответствующий контактор включен. В последней графе таблицы поясняется порядок выведения секций пускового реостата. Знак «+» указывает на последовательное соединение секций, а знак «II» — на параллельное.

Как видно из табл. 1, благодаря применению последовательнопараллельного соединения секций удается при четырех контакторах получить семь ступеней регулирования сопротивления пускового реостата. Максимальное сопротивление реостата подбирают таким, чтобы пусковой ток не превышал допустимое значение и двигатель при этом создавал требуемый пусковой момент (требуемую силу тяги при пуске).

На рис. 47, а и б показана реостатная характеристика 1, по которой осуществляется пуск двигателя. По мере возрастания частоты вращения якоря развиваемый им пусковой момент М и ток 1 постепенно уменьшаются. Когда ток и пусковой момент уменьшатся до минимальных допустимых значений (соответственно 1 . и -‘Чшп /> выводят первую секцию пускового реостата. При этом ток и пусковой момент резко возрастают и снова достигают максимально допустимых значений.

Читать еще:  Щелчки при работе дизельного двигателя

Рис. 47. Пусковые характеристики тягового двигателя п (/) (а) и п (М) (б)

После выведения первой секции пускового реостата пуск производится по реостатной характеристике 2, расположенной выше характеристики 1. Когда ток и пусковой момент уменьшаются до минимальных значений, выводится вторая секция реостата; ток и пусковой момент снова возрастают до максимальных значений, и пуск осуществляется по реостатной характеристике 3.

Постепенное выведение секций пускового реостата осуществляется до тех пор, пока двигатель не начнет работать по естественной, или, как ее еще называют, автоматической характеристике 4.

В процессе пуска происходят некоторые колебания тока и пускового момента (силы тяги), однако при большом числе ступеней эти колебания не оказывают вредного влияния на работу подвижного состава. Можно считать, что пуск тягового двигателя происходит при некотором среднем значении момента, при котором он развивает постоянное ускорение в процессе пуска.

Естественную характеристику называют автоматической, потому, что при работе по ней тяговый двигатель автоматически изменяет развиваемый им вращающий момент и частоту вращения в зависимости от изменения момента сопротивления. В процессе же пуска при работе на реостатных характеристиках вращающий момент двигателя может регулироваться независимо от момента сопротивления и обычно бывает больше него.

Развиваемый тяговым двигателем при пуске вращающий момент зависит от включенного в цепь якоря сопротивления и от скорости его выведения: чем больше вращающий момент двигателя по сравнению с моментом сопротивления, тем большее ускорение развивает двигатель и тем быстрее заканчивается процесс пуска.

По окончании пуска реостат полностью выводится из цепи, так как он рассчитан на кратковременную работу.

Контрольные вопросы 1. Для чего предназначен пусковой реостат?

2. Что представляет собой пусковой реостат?

3. Для чего пусковой реостат имеет большое число ступеней?

Электропоезда метрополитена

  • Введение
  • Кузов вагона
  • Оборудование салона
  • Тележки. Рамы тележек
  • Колесные пары
  • Буксовые узлы
  • Рессорное подвешивание кузова
  • Тяговая передача и узел подвешивания редуктора
  • Карданная муфта
  • Узлы подвешивания тягового двигателя и бруса токоприемника
  • Тормозное оборудование
  • Автосцепка
  • Механическая часть. Узел подвешивания автосцепки
  • Пневматическая и электрическая части
  • Порядок сцепления и расцепления вагонов. Уход за автосцепкой
  • Тяговые двигатели. Мотор-компрессоры
  • Устройство тягового двигателя
  • Работа тягового двигателя
  • Пуск тягового двигателя
  • Регулирование частоты вращения якоря тягового двигателя и изменение направления его вращения
  • Электрическое торможение
  • Мотор-компрессоры
  • Уход за двигателями
  • Электрические аппараты и приборы
  • Токоприемники
  • Главный разъединитель
  • Заземляющие устройства
  • Главный предохранитель
  • Электропневматические вентили
  • Индивидуальные контакторы
  • Групповые контакторы
  • Реле управления и защиты
  • Выключатели
  • Регулятор давления
  • Резисторы, электрические печи и индуктивные шунты
  • Плавкие предохранители
  • Соединительные устройства
  • Измерительные приборы
  • Аккумуляторная батарея
  • Радиооборудование
  • Виды схем, принципы их построения
  • Условные графические и буквенные обозначения
  • Способы управления тяговыми двигателями
  • Перечень электрооборудования силовых цепей вагона Е
  • Силовые цепи вагона Е в тяговом режиме
  • Силовые цепи вагона Е в тормозном режиме
  • Перечень электрооборудования силовых цепей вагона ЕжЗ
  • Силовые цепи вагона ЕжЗ в тяговом режиме
  • Силовые цепи вагона ЕжЗ в тормозном режиме
  • Общие сведения о схеме цепей управления
  • Цепи управления вагона Е в тяговом режиме
  • Цепи управления вагона Е в тормозном режиме
  • Цепи управления вагона ЕжЗ в тяговом режиме
  • Цепи управления вагона ЕжЗ в тормозном режиме
  • Резервное управление поездом
  • Система АЛС — АРС. Контроль эффективности торможения и бдительности машиниста
  • Общие сведения о схеме вспомогательных цепей
  • Вспомогательные цепи высокого напряжения
  • Вспомогательные цепи низкого напряжения
  • Защита электрических цепей вагона
  • Цепи сигнализации неисправностей
  • Система планово-предупредительного ремонта
  • Причины производственного травматизма
  • Электротравматизм и его предупреждение
  • Правила безопасной работы с инструментами и приспособлениями
  • Правила безопасности при осмотре и ремонте вагонного оборудования
Электродинамический тормоз электровозов ЧС2 Т и ЧС200

Рассмотрены устройство и работа основного электронного оборудования, применяемого в электродинамическом (реостатном) тормозе системы «Шкода». Применительно к электродинамическому тормозу электровозов ЧС2 Т и его модификации на скоростном электровозе ЧС200

Тип запуска генератора: ручной запуск, электростартер, дистанционный или автоматика

Современная жизнь немыслима без использования электричества. Это милые сердцу просмотры фильмов или развлекательных программ по телевизору, игры на компьютере, мобильные телефоны и многое другое. Бесперебойное снабжение энергией для дома предоставляет либо централизованное энергоснабжение, либо, как альтернативный вариант, миниэлектростанции. Рассмотрим варианты их запуска в работу, чем они отличаются и какой из них можно посчитать идеальным. Тип запуска генератора — это один из основных вопросов на сегодня, подробнее статья: Как выбрать генератор.

Содержание статьи:

  • Ручной запуск
  • Электрический стартер
  • Дистанционный тип
  • Автоматический ввод резерва

РУЧНОЙ ЗАПУСК

Ручной запуск генератора считается самым простым и бюджетным. Используется он, в основном, на генераторах, которые характеризуются небольшой мощностью (бензиновые генераторы для дома до 4 кВт). Более мощные генераторы заводить с помощью ручного стартера достаточно сложно, так как в цилиндре возникает большая компрессия. Дизельные генераторы заводятся на порядок сложнее, чем бензиновые. Необходимо неслабое усилие, чтобы завести с помощью ручного стартера генератор, мощностью более 5 кВт.
Принцип работы ручного стартера очень прост – оператору необходимо дернуть тросик посильнее, в процессе чего произойдет поворот коленвала, и двигатель генератора начнет работать.

Преимущества ручного стартера:

  • основным преимуществом такой простой процедуры является низкая стоимость агрегата;
  • компактное устройство небольшой мощности не требует особых знаний и не нуждается в большой физической силе. При определенной сноровке и качественном топливе ручной пуск не доставляет особых хлопот.

Недостатки:

  • отрицательной стороной запуска вручную является необходимость прикладывать недюжинную силу на бензиновых генераторах повышенной мощности;
  • система может поспорить по части эффективности с электрической, особенно в зимний период времени, когда дизельным двигателям необходим предварительный прогре;
  • нет возможности установки ATS.

ЭЛЕКТРИЧЕСКИЙ СТАРТЕР

Запуск электростанции с мощным двигателем происходит при помощи электрического устройства. Внешне электростартер напоминает пуск двигателя автомобиля. Ключ вставляется в замок зажигания и, поворачивая его по часовой стрелке, оператор запускает двигатель – все очень просто. Генераторы с электрическим стартом, стоят дороже, но они (практически все) имеют так же и ручной старт, который может использоваться как резервный. Наличие ручного стартера дает пользователю возможность выбора, каким типом запуска воспользоваться для включения генераторной установки.
В некоторых моделях электростарт бывает выполнен в виде кнопки «СТАРТ». То есть независимо от времени года, пользователь может быть абсолютно уверенным, что генераторная установка запустится. Встроенный аккумулятор отвечает за быстрый и легкий старт двигателя.

Преимущества:

  • благодаря удобству электростарта, с запуском генератора может справиться даже женщина; к тому же для этого не нужно иметь каких-либо специальных навыков;
  • возможность установки системы автоматического запуска.

Некоторые минусы:

  • необходимо следить за зарядным устройством станции – в случае длительно простоя генератора без работы, батарея может разрядиться.

Профессиональные генераторы с бензиновым двигателем до 15 кВт максимальной мощности и дизельные установки до 8 кВт полной мощности укомплектовываются двумя системами запуска. Это предоставляет большую свободу действия для владельца — благодаря комбинированной системе запуска можно запускать генератор с помощью того или иного типа запуска в зависимости от ситуации.

ДИСТАНЦИОННЫЙ ТИП

Тот же запуск от электрического стартера, только более модернизированный. Запуск происходит с помощью небольшого брелка с антенной, которая позволяет управлять установкой на расстоянии. Принцип, как у автомобильной сигнализации — двигатель заводится после нажатия на кнопку, расположенную на брелке. Аналогично происходит и отключение работы.

Положительные моменты:

  • управление электростанцией выполняется очень легко и просто, брелок срабатывает на расстоянии нескольких десятков метров;
  • есть возможность настройки работы генеартора по расписанию или же в зависимости от изменения температуры окружающей среды.

Недостатки дистанционного управления:

  • небольшая ограниченность приема — на очень большом расстоянии пульт запуска не сработает;
  • постоянная поддержка полного заряда аккумуляторных батарей.

АВТОМАТИЧЕСКИЙ ВВОД РЕЗЕРВА

Старт двигателя электрогенератора без участия оператора является более совершенной системой. Функция АВР, благодаря встроенному исполнительному блоку и выносному микропроцессору, отвечает за своевременный запуск двигателя миниэлектростанции в случае исчезновения напряжения в стационарной сети энергопитания. Микроконтроллер отслеживает показания тока в сети и работу всех блоков генератора, направляет движение питания от генератора к потребителям. От скорости срабатывания системы резервного ввода зависит стоимость генераторной установки.

Читать еще:  Toyota supra характеристики двигателя

На данный момент есть станции со скоростью срабатывания до 5 миллисекунд. Уникальный блок успевает за доли секунды проверить наличие напряжения, запустить двигатель электростанции, причем, дизельный двигатель необходимо прогреть в прохладную погоду, направить движение тока. Сложная система берет полностью всю нагрузку на себя. Электронный блок продолжает отслеживать параметры внешнего напряжения. Как только в центральной сети появится питание, станция отключается от сети и переходит в дежурный режим.

Очевидные достоинства:

  • в стандартный набор функций входит постоянное наблюдение за параметрами сети, переключение, при необходимости нагрузки с внутренней сети на внешнюю и наоборот, подзарядка аккумулятора для автоматического включения двигателя. Усовершенствованные модели могут обладать еще целым рядом дополнительных опций, которые осуществляют контроль моточасов, отключение потребителей, которые вызывают перегрузку, могут управляться через сети интернет ресурсом и через мобильный телефон и многое другое;
  • достижение максимального числа оборотов двигателя через несколько секунд;
  • настройка собственных параметров по желанию потребителя.

Отрицательные стороны:

  • большая стоимость;
  • необходимость в постоянном техническом обслуживании и большим затратам на топливо и масло;
  • поддержка необходимых условий окружающего воздуха: температуры и влажности.

Что выбрать из такого большого разнообразия предложений предстоит разобраться самому владельцу. Учитывая возможности и физические данные домочадцев, если в нужный момент хозяина не будет дома.

Полный видео-обзор «Как выбрать генератор» можно посмотреть тут .

Способы запуска электродвигателя постоянного тока

Хорошие тяговые характеристики электрических машин постоянного тока сделали их неотъемлемым элементом большинства устройств промышленной и бытовой механизации. Но вместе с тем возникает и существенная проблема значительных пусковых токов, в сравнении с асинхронными электродвигателями, работающих на переменном напряжении. Именно поэтому многие специалисты детально изучают способы запуска электродвигателя постоянного тока, прежде чем включить агрегат.

Прямой пуск

Из всех электродвигателей постоянного тока основная градация при выборе способа их запуска должна учитывать мощность устройства.

В целом выделяют три вида пуска:

  • малой мощности;
  • средней;
  • большой мощности.

Для прямого запуска подойдут только маломощные электродвигатели, которые потребляют до 1кВт электроэнергии в сети. При прямых запусках электродвигателя все напряжение сразу подается на рабочую обмотку. Это обуславливает возникновение максимального пускового тока из-за отсутствия естественной компенсации за счет ЭДС противодействия.

С физической точки зрения ситуация в обмотках ротора будет выглядеть следующим образом: в момент подачи напряжения сила тока в обмотках равна нулю, поэтому его значение будет определяться по формуле:

U – приложенная к выводам номинальное напряжение, Rобм – сопротивление катушки.

В этот момент величина токовой нагрузки электродвигателя постоянного тока является максимальной, он может отличаться от номинального значения в 1,5 – 2,5 раза. После этого протекание тока обуславливает генерацию ЭДС противодействия, которая компенсирует пусковую нагрузку до установки номинальной мощности, тогда ток станет:

В мощных устройствах сопротивление обмоток якоря может равняться 1 или 0,5 Ом, из-за чего ток при запуске электродвигателя может достигнуть 200 – 500 А, что в 10 – 50 раз будет превышать допустимые величины. Это, в свою очередь, может привести к термическому отпуску металла, деформации проводников, разрушению колец или щеток скользящего контакта. Поэтому двигатели постоянного тока средней и большой мощности должны вводиться в работу реостатным запуском или путем подачи заведомо пониженного напряжения, прямой пуск для них крайне опасен.

Пуск с помощью пускового реостата

В этом случае в цепь вводится переменное сопротивление, которое на начальном этапе обеспечивает снижение токовой нагрузки, пока вращение ротора не достигнет установленных оборотов. По мере стабилизации ампеража до стандартной величины в реостате уменьшается сопротивление от максимального значения до минимального.

Расчет электрической величины в этом случае будет производиться по формуле:

В лабораторных условиях уменьшение нагрузки может производиться вручную – посредством перемещения ползунка реостата. Однако в промышленности такой метод не получил широкого распространения, так как процесс не согласовывается с токовыми величинами. Поэтому применяется регулировка по току, по ЭДС или по времени, в первом случае задействуется измерение величины в обмотках возбуждения, во втором, на каждую ступень применяется выдержка времени.

Оба метода используются для запуска электродвигателей:

  • с последовательным;
  • с параллельным возбуждением;
  • с независимым возбуждением.

Запуск ДПТ с параллельным возбуждением

Такой запуск электродвигателя осуществляется посредством включения и обмотки возбуждения, и якорной к напряжению питания электросети, друг относительно друга они располагаются параллельно. То есть каждая из обмоток электродвигателя постоянного тока находятся под одинаковой разностью потенциалов. Этот метод запуска обеспечивает жесткий режим работы, используемый в станочном оборудовании. Токовая нагрузка во вспомогательной обмотке при запуске имеет сравнительно меньший ток, чем обмотки статора или ротора.

Для контроля пусковых характеристик сопротивления вводятся в обе цепи:

Рис 1. Запуск ДПТ с параллельным возбуждением

На начальном этапе вращения вала позиции реостата обеспечивают снижение нагрузки на электродвигатель, а затем их обратно выводят в положение нулевого сопротивления. При затяжных запусках выполняется автоматизация и комбинация нескольких ступеней пусковых реостатов или отдельных резисторов, пример такой схемы включения приведен на рисунке ниже:

Рис. 2. Ступенчатый пуск двигателя параллельного возбуждения

  • При подаче напряжения питания на электродвигатель ток, протекающий через рабочие обмотки и обмотку возбуждения, за счет магазина сопротивлений Rпуск1, Rпуск2, Rпуск3 нагрузка ограничивается до минимальной величины.
  • После достижения порогового значения минимума токовой величины происходит последовательное срабатывание реле K1, K2, K3.
  • В результате замыкания контактов реле K1.1 шунтируется первый резистор, рабочая характеристика в цепи питания электродвигателя скачкообразно повышается.
  • Но после снижения ниже установленного предела замыкаются контакты K2.2 и процесс повторяется снова, пока электрическая машина не достигнет номинальной частоты вращения.

Торможение электродвигателя постоянного тока может производиться в обратной последовательности за счет тех же резисторов.

Запуск ДПТ с последовательным возбуждением

На рисунке выше приведена принципиальная схема подключения электродвигателя с последовательным возбуждением. Ее отличительная особенность заключается в последовательном соединении катушки возбуждения Lвозбуждения и непосредственно мотора, переменное сопротивление Rякоря также вводится последовательно.

По цепи обеих катушек протекает одинаковая токовая величина, эта схема обладает хорошими параметрами запуска, поэтому ее часто используют в электрическом транспорте. Такой электродвигатель запрещено включать без усилия на валу, а регулирование частоты осуществляется в соответствии с нагрузкой.

Пуск ДПТ с независимым возбуждением

Подключение электродвигателя в цепь с независимым возбуждением производится путем ее запитки от отдельного источника.

Рис. 4. Запуск ДПТ с независимым возбуждением

На схеме приведен пример независимого подключения, здесь катушка Lвозбуждения и сопротивление в ее цепи Rвозбуждения получают питание отдельно от обмоток двигателя током независимого устройства. Для обмоток двигателя также включается регулировочный реостат Rякоря. При этом способе запуска машина постоянного тока не должна включаться без нагрузки или с минимальным усилием на валу, так как это приведет к нарастанию оборотов и последующей поломке.

Пуск путем изменения питающего напряжения

Одним из вариантов снижения токовой нагрузки при запуске электродвигателя является уменьшение питающего номинала посредством генератора постоянного напряжения или управляемого выпрямителя.

С физической точки зрения установка реостата обеспечивает тот же эффект, но с увеличением мощности электродвигателя возрастает и постоянная токовая нагрузка, существенно повышаются потери на реостатах. Поэтому снижение постоянного напряжения выполняет отдельное устройство на базе микросхемы, пример которого приведен на рисунке ниже:

Рис. 5. Схема пуска с изменением питающего напряжения

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector