Шаговые двигатели механические характеристики
VI Международная студенческая научная конференция Студенческий научный форум — 2014
ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ ШАГОВЫХ ДВИГАТЕЛЕЙ В ПРОМЫШЛЕННОСТИ
- Авторы
- Файлы работы
- Сертификаты
Шаговые двигатели имеют давнее и широкое применение в самых различных устройствах, особенно нас интересует область применения в специальном и промышленном оборудовании.
Для начала разберёмся, что собой представляет шаговый двигатель, его строгое определение такого: шаговый двигатель – это электромеханическое устройство, которое преобразует электрические импульсы в дискретные механические перемещения.
По сути же, шаговый двигатель является точечным механизмом: он совершает именно такие действия, и их количество, какие нужно в соответствии со строгим регламентом. Отличительная особенность этих двигателей – это возможность без датчика обратной связи осуществлять позиционирование по положению. Он относится к классу так называемых «бесколлекторных» двигателей постоянного тока. Такие двигатели как непосредственно и любые другие бесколлекторные электрические машины, имеют достаточно высокую надёжность и высокий срок службы, что в свою очередь позволяет применять их в самых разных индустриальных сферах. Если сравнивать обычные электродвигатели постоянного тока с шаговыми двигателями, то последние требуют более сложных схем управления, выполняющие абсолютно все коммутации обмоток.
Достоинство шагового двигателя заключается в том, что последовательная активация обмоток двигателя порождает дискретные угловые перемещения (шаги) ротора, а угол поворота ротора определяется числом импульсов, которые поданы на двигатель, что и обеспечивает ему полное выполнение действий и повторяемость их совершения. Хорошие шаговые двигатели имеют точность 3-5 % от величины шага. К счастью, эта ошибка не накапливается от шага к шагу в процессе работы. Ещё к достоинствам шагового двигателя относятся: возможность быстрого старта, остановки, реверсирования (возвратного действия), высокая надёжность, точность; также зависимость положения от входных импульсов обеспечивает позиционирование без возвратного действия. Имеется возможность получения очень низких скоростей вращения для нагрузки, присоединённой непосредственно к валу двигателя без промежуточного редуктора. Так как скорость пропорциональна частоте входных импульсов, можно перекрыть довольно большой диапазон скоростей. Срок службы шагового двигателя фактически определяется сроком службы подшипников.
Когда требуется позиционирование и точное управление скоростью, а требуемый момент и скорость не выходят за допустимые пределы, то шаговый двигатель является наиболее экономичным решением. Как и для обычных двигателей, для повышения момента может быть использован понижающий редуктор. Однако для шаговых двигателей редуктор не всегда подходит. В отличие от коллекторных двигателей, у которых момент растет с увеличением скорости, шаговый двигатель имеет больший момент на низких скоростях. К тому же, шаговые двигатели имеют гораздо меньшую максимальную скорость по сравнению с коллекторными двигателями, что ограничивает максимальное передаточное число и, соответственно, увеличение момента с помощью редуктора.
К сожалению, шаговым двигателям присуще явление резонанса, возможна потеря контроля положения ввиду работы без обратной связи, а потребление энергии не уменьшается даже без нагрузки. Затруднена работа на высоких скоростях, невысокая удельная мощность, относительно сложная схема управления. Когда требуется прецизионное позиционирование и точное управление скоростью, а требуемый момент и скорость не выходят за допустимые пределы, то шаговый двигатель является наиболее экономичным решением.
По большей части описанная характеристика касается, пожалуй, тех шаговых двигателей, что имеются в принтерах и сканерах, но имеет влияние и в конвейерном производстве.
Сегодня существует три основных вида шаговых двигателей:
Гибридные – наиболее часто используемые во фрезерных станках с числовым программным управлением;
С постоянными магнитами;
Двигатели, имеющие переменное магнитное сопротивление.
Гибридные двигатели являются более дорогими, чем двигатели с постоянными магнитами, зато они обеспечивают меньшую величину шага, больший момент и большую скорость. Типичное число шагов на оборот для гибридных двигателей составляет от 100 до 400 (угол шага 3.6 – 0.9 град.). Гибридные двигатели сочетают в себе лучшие черты двигателей с переменным сопротивлением и двигателей с постоянными магнитами.
Его применение особенно широко в станках с ЧПУ (числовое программное управление) по дереву, для воздушно-плазменной резки, фрезеровочные станки и другие.
Также шаговые двигатели используют для управления чертёжной головкой чертёжных автоматов, в устройствах контроля профилей кошмовальных станков, которые используют для контроля данных на перфоленте копировальных станков с цифровым программным управлением – шаговый двигатель служит для управления звёздочкой, передвигающей ленту.
К другим областям применения относятся факсимиле, устройство, предназначенное для передачи документов и чертежей на расстояние с помощью телефонных линий, называются факсимиле-машинами.
Документ, навернутый на барабан, сканируется и поворачивается (субсканирование), затем делится на графические элементы, которые переводятся в электрические сигналы фотоэлектрической считывающей головкой. Сигналы затем посылаются по линиям передач к принимающему устройству. Принимаемые сигналы демодулируют и воспроизводят записывающим пером. Горизонтальное сканирование и повороты барабана повторяются воспринимающим устройством. Шаговые двигатели используют при управлении барабаном для субсканирования как в передающем, так и в принимающем устройстве.
Полуавтоматическое устройство для монтажа плат – весь монтаж программируется и запоминается на перфоленте. Как только нажатием кнопки запускается программа монтажа, лампочка индикатора указывает первый из требуемых проводников. Одновременно с этим запускаются два шаговых двигателя, обеспечивающие перемещение по горизонтальной и вертикальной осям и определяется отверстие, в которое вставляется монтируемый проводник. Оба двигателя задействуются сразу, как только очередной монтаж выполнен.
Шаговые двигатели используют в космических летательных аппаратах, запускаемых для научного исследования планет. На сканирующей платформе располагают различные приборы, например, телевизионные камеры и ультрафиолетовые спектрометры. Шаговые двигатели применяют для их наведения на нужную цель. На аппарате Mariner использовали четырехфазные двигатели с постоянными магнитами 11-го калибра (27 мм в диаметре) с углом шага 90град. Зубчатая передача электропривода с передаточным отношением 9081:1, заключенная в металлический контейнер, обеспечивает на каждом шаге двигателя поворот вала на 0,1792 м-рад (около 0.1 град.).
Какие электродвигатели лучше: серво или шаговые?
Одним из наиболее важных решений, которые принимают инженеры при разработке любого типа процесса управления движением, является выбор двигателя (в нашем случае электродвигателя). Правильный выбор двигателя, как по типу, так и по размеру, является обязательным условием эффективности работы конечной машины. Кроме того, «уложиться в бюджет» так же является не самой последней задачей.
Один из первых вопросов, на который нужно ответить при принятии решения: какой тип электродвигателя будет лучшим? Требуется ли для применения высокопроизводительный серводвигатель? Будет ли недорогой шаговый двигатель лучше? Или, может быть, стоит рассмотреть третий, средний вариант?
Ответы начинаются с потребностей конкретного приложения. Перед определением типа электрической машины, которая идеально подходит для любого конкретного применения, необходимо учесть множество факторов.
Требования
Сколько рабочих циклов в минуту нужно сделать двигателю? Какой крутящий момент нужен? Какая максимальная скорость требуется?
Эти критические вопросы не могут быть решены просто путем выбора двигателя с заданной мощностью из каталога.
Выходная мощность электрической машины представляет собой комбинацию крутящего момента и скорости, которая может быть рассчитана путем умножения скорости, крутящего момента и констант, вносящих поправки в режим работы электрической машины (естественно это все очень поверхностно. Необходимы точные математические расчеты для каждого типа электродвигателя).
Однако из-за характера этого расчета существует множество различных комбинаций крутящего момента и скорости (кратковременная работа с перегрузкой или недогрузкой), которые влияют на выходную мощность. Таким образом, разные двигатели с одинаковой номинальной мощностью могут работать по-разному из-за комбинации скорости и крутящего момента.
Инженеры должны знать, насколько быстро должен двигаться груз определенного размера, прежде чем уверенно выбирать двигатель, который будет работать лучше. Выполняемая работа также должна попадать в кривую крутящего момента / скорости двигателя. Эта кривая (механическая характеристика электродвигателя) показывает, как крутящий момент двигателя изменяется в зависимости от скорости. Используя предположения «наихудшего случая» (другими словами, определяя максимальный / минимальный крутящий момент и скорость, которые потребуются для работы), инженеры могут быть уверены, что выбранный двигатель имеет механическую характеристику, способную приводить в движение груз при этом не выходить с номинального режима работы (например, перегрев, если мощность электрической машины занижена).
Инерция нагрузки является еще одним фактором, который следует учитывать, прежде чем погрузиться в процесс принятия решения о выборе двигателя. Необходимо рассчитать коэффициент инерции, который представляет собой сравнение инерции нагрузки и инерции двигателя. Одно эмпирическое правило гласит, что если инерция нагрузки в 10 раз превышает инерцию ротора, то настройка электрический машины может быть куда более сложной и производительность производственного механизма может ухудшиться. Но это правило варьируется не только от технологии к технологии, но и от поставщика к поставщику и даже от продукта к продукту. Важность точности позиционирования рабочего органа также повлияет на это решение. Некоторые механизмы поддерживают соотношение 30: 1, в то время как прямые привода работают до 200: 1. Многим инженерам не нравится определять размер двигателя, который превышает соотношение 10 к 1.
Наконец, существуют ли физические ограничения, которые ограничивают тип электродвигателя. Электрические машины бывают разных форм и размеров. В некоторых случаях электродвигатели являются большими и громоздкими, и есть определенные операции, которые не могут вместить двигатель определенного размера. Прежде чем принять обоснованное решение о наилучшем типе машины, ее массогабаритные показатели должны быть оценены и поняты.
Как только инженеры ответят на все эти вопросы — скорость, крутящий момент, мощность, инерция нагрузки и массогабаритные показатели, — они смогут сосредоточиться на наиболее эффективном по размеру двигателе. Однако процесс принятия решений на этом не заканчивается. Инженеры также должны выяснить, какой тип электродвигателя лучше всего подходит для применения. В течение многих лет выбор типа сводился к одному из двух вариантов для большинства применений: серводвигатель или шаговый двигатель с разомкнутым контуром управления.
Серводвигатели и шаговые двигатели
Принципы работы серводвигателей и шаговых двигателей без обратной связи аналогичны. Однако между этими двумя «аналогичными» понятиями есть ключевые различия, которые инженеры должны понять, прежде чем решить, какой двигатель идеально подходит для данного применения.
В традиционных сервоприводах контроллер отправляет команды на привод двигателя через импульс управления или аналоговую команду, связанную с положением, скоростью или крутящим моментом. Некоторые элементы управления могут использовать метод на основе шины данных, который в новейших элементах управления обычно представляет собой метод связи на основе Ethernet. Затем система управления электропривода передает соответствующий ток на каждую фазу двигателя. Обратная связь от двигателя возвращается к системе управления двигателя, при необходимости, к главному контроллеру. Привод полагается на эту информацию для правильной коммутации фаз и для отправки точной информации о динамическом положении вала двигателя. Таким образом, серводвигатели считаются двигателями с замкнутым контуром и содержат встроенные энкодеры, а данные о положении вала часто передаются в контроллер. Эта обратная связь дает контроллеру много информации для управления электрической машиной. Контроллер может в различной степени вносить коррективы в операции, если что-то работает не так, как должно быть. Этот тип важной информации является преимуществом, которое не могут предложить шаговые двигатели без обратной связи.
Шаговые двигатели также работают по командам, посылаемым на электропривод, чтобы определять пройденное расстояние и скорость. Как правило, этот сигнал является командой шага и направления. Однако степперы с разомкнутым контуром управления не могут обеспечивать обратную связь, поэтому их органы управления не могут должным образом оценить ситуацию и внести коррективы для улучшения работы электрической машины.
Например, если крутящего момента двигателя недостаточно, чтобы выдержать нагрузку, двигатель может остановиться или пропустить определенные шаги. Когда это произойдет, машина не перейдет на следующую позицию. Учитывая характеристики разомкнутого контура шагового двигателя, это неточное позиционирование не будет адекватно передано обратно на контроллер, чтобы он мог вносить корректировать шаги в реальном времени.
Кажется, что серводвигатель имеет явные преимущества с точки зрения эффективности и производительности, так почему же кто-то выбрал шаговый двигатель? Есть несколько причин. Наиболее распространенным является цена; эксплуатационные бюджеты являются важными факторами при принятии любого проектного решения. По мере сокращения бюджетов необходимо принимать решения по сокращению ненужных расходов. Таким образом, если преимущества серводвигателя не оправдывают его стоимость, стандартного шагового двигателя может быть вполне достаточно.
С чисто эксплуатационной точки зрения шаговые двигатели значительно проще в эксплуатации, чем серводвигатели. Управление шаговым двигателем намного проще для понимания и настройки. Большинство обслуживающего персонала согласятся с тем, что если нет причин чрезмерно усложнять операции, не нужно ничего усложнять.
Преимущества двух разных типов двигателей очень разные. Серводвигатели идеальны, если вам нужен двигатель со скоростью более 3000 об / мин и высоким крутящим моментом. Тем не менее, для применения, которое требует только скорости нескольких сотен об / мин или меньше, серводвигатель не всегда является лучшим выбором. Серводвигатели могут быть не эффективными для низкоскоростных применений.
Низкоскоростные приложения — то, где шаговые двигатели «сияют» как лучшее возможное решение. Шаговые двигатели предназначены для работы на низкой скорости при высоком крутящем моменте. По самой природе их конструкции они могут управляться и работать до предела скорости. Ограничение скорости обычных шаговых двигателей обычно составляет менее 1000 об / мин, тогда как серводвигатели могут иметь номинальные скорости до 3000 об / мин и выше, иногда даже свыше 7000 об / мин.
Если «степпер» имеет «правильный» размер, он может быть идеальным выбором. Однако, когда шаговый двигатель работает в конфигурации с разомкнутым контуром и что-то идет не так, операторы могут не получить все данные, необходимые для решения возникшей проблемы.
Решение проблемы отсутствия обратной связи
За последние несколько десятилетий было предложено несколько различных подходов для решения традиционных проблем с шаговыми двигателями без обратной связи. Подсоединение двигателя к датчику при включении питания или даже несколько раз во время применения было одним из способов. Несмотря на простоту, это замедляет работу и не решает проблемы, возникающие во время обычных рабочих процессов.
Добавление обратной связи для определения, если двигатель «глохнет» или находится в нерабочем положении — это еще один подход. Инженеры в компаниях по управлению движением создали функции «обнаружения сваливания» и «поддержания положения». Было даже несколько подходов, которые пошли еще дальше, рассматривая шаговые двигатели так же, как сервоприводы, или, по крайней мере, имитируя их с помощью причудливых алгоритмов.
В широком спектре электрических машин — между сервоприводами и шаговыми двигателями с разомкнутым контуром управления — лежит несколько новая технология, известная как шаговый двигатель с замкнутым контуром. Это лучший и наиболее экономичный способ решения проблемы приложений, требующих точности позиционирования и низких скоростей. Применяя устройства обратной связи с высоким разрешением, чтобы «замкнуть петлю», инженеры могут наслаждаться «лучшим из обоих миров».
Шаговые двигатели с замкнутым контуром управления впитали в себя все преимущества шаговых двигателей: простота использования, простота и возможность стабильной работы на низких скоростях с точной остановкой. Кроме того, они по-прежнему предлагают возможности обратной связи серводвигателей. К счастью, это не должно сопровождаться самым большим недостатком сервопривода: большим ценником.
Ключ всегда был в принципе работы шаговых двигателей без обратной связи. У них обычно есть две катушки, иногда пять, с магнитным балансированием, происходящим между ними. Движение нарушает этот баланс, приводя к тому, что вал двигателя электрически отстает, но оператор не может знать, насколько он отстает. Точка остановки повторяется для шаговых машин с разомкнутым контуром, но не для всех нагрузок. Установка энкодера на степпер и замыкание контура обратной связи обеспечивает некоторое динамическое управление. Это позволяет операторам точно позиционировать рабочий орган при различных нагрузках.
Эти преимущества от использования шаговых двигателей с обратной связью для определенных применений резко увеличили популярность этих двигателей в сообществе инженеров электроприводчиков. В частности, в двух наиболее популярных отраслях — производстве полупроводников и медицинских приборов — наблюдается явное увеличение использования шаговых двигателей с обратной связью. Инженеры в этих отраслях должны точно знать, где расположен вал двигателя с нагрузкой, независимо от того, приводят ли они в действие ремень или шариковый винт. Обратная связь в этих электроприводах позволяет им точно знать, где находится вал. Они также могут обеспечить лучшую производительность, чем сервоприводы на более низких скоростях.
Как правило, любое приложение, которому требуется гарантированная производительность при меньших затратах, чем у серводвигателя, и возможность работать на относительно низких скоростях, является хорошим кандидатом для шаговых двигателей с обратной связью.
Помните, что операторы должны убедиться, что привод или рабочие.органы управления поддерживают шаговые двигатели с обратной связью. «Исторически», вы могли получить степпер с энкодером на задней панели, но система управления не поддерживала энкодеры. Вам необходимо будет провести калибровку обратной связи и убедиться, что контроллер электродвигателя получает обратную связь с допустимой задержкой. В новых шаговых приводах с обратной связью это не требуется. Шаговые приводы с замкнутым контуром могут динамически и автоматически управлять позицией и скоростью без привлечения контроллеров.
Электропривод с шаговым двигателем
Главная > Учебное пособие >Физика
Электропривод с шаговым двигателем
Система управления с шаговыми двигателями
Контроллер шагового двигателя
Шaговые двигатели уже давно и успешно применяются в самых разнообразных устройствах. Их можно встретить в дисководах, принтерах, плоттерах, сканерах, факсах, а также в разнообразном промышленном и специальном оборудовании. В настоящее время выпускается множество различных типов шаговых двигателей на все случаи жизни. Однако правильно выбрать тип двигателя – это еще полдела. Не менее важно правильно выбрать схему драйвера и алгоритм его работы, который зачастую определяется программой микроконтроллера. Цель этой статьи – систематизировать сведения об устройстве шаговых двигателей, способах управления ими, схемах драйверов и алгоритмах. В качестве примера приведена практическая реализация простого и дешевого драйвера шагового двигателя на основе микроконтроллера семейства AVR
Что такое шаговый двигатель, и зачем он нужен?
Шаговый двигатель – это электромеханическое устройство, которое преобразует электрические импульсы в дискретные механические перемещения. Так, пожалуй, можно дать строгое определение. Наверное, каждый видел, как выглядит шаговый двигатель внешне: он практически ничем не отличается от двигателей других типов. Чаще всего это круглый корпус, вал, несколько выводов (рис. 1).
Рис. 1. Внешний вид шаговых двигателей семейства ДШИ-200.
Однако шаговые двигатели обладают некоторыми уникальными свойствами, что делает порой их исключительно удобными для применения или даже незаменимыми.
Чем же хорош шаговый двигатель?
Угол поворота ротора определяется числом импульсов, которые поданы на двигатель двигатель обеспечивает полный момент в режиме остановки (если обмотки запитаны) прецизионное позиционирование и повторяемость. Хорошие шаговые двигатели имеют точность 3-5% от величины шага. Эта ошибка не накапливается от шага к шагу возможность быстрого старта/остановки/реверсирования высокая надежность, связанная с отсутствием щеток, срок службы шагового двигателя фактически определяется сроком службы подшипников однозначная зависимость положения от входных импульсов обеспечивает позиционирование без обратной связи возможность получения очень низких скоростей вращения для нагрузки, присоединенной непосредственно к валу двигателя без промежуточного редуктора может быть перекрыт довольно большой диапазон скоростей, скорость пропорциональна частоте входных импульсов. Но не все так хорошо.
шаговым двигателем присуще явление резонанса
возможна потеря контроля положения ввиду работы без обратной связи
потребление энергии не уменьшается даже без нагрузки
затруднена работа на высоких скоростях
невысокая удельная мощность
относительно сложная схема управления
Шаговые двигатели относятся к классу бесколлекторных двигателей постоянного тока. Как и любые бесколлекторные двигатели, они имеют высокую надежность и большой срок службы, что позволяет использовать их в критичных, например, индустриальных применениях. По сравнению с обычными двигателями постоянного тока, шаговые двигатели требуют значительно более сложных схем управления, которые должны выполнять все коммутации обмоток при работе двигателя. Кроме того, сам шаговый двигатель – дорогостоящее устройство, поэтому там, где точное позиционирование не требуется, обычные коллекторные двигатели имеют заметное преимущество. Справедливости ради следует отметить, что в последнее время для управления коллекторными двигателями все чаще применяют контроллеры, которые по сложности практически не уступают контроллерам шаговых двигателей.
Одним из главных преимуществ шаговых двигателей является возможность осуществлять точное позиционирование и регулировку скорости без датчика обратной связи. Это очень важно, так как такие датчики могут стоить намного больше самого двигателя. Однако это подходит только для систем, которые работают при малом ускорении и с относительно постоянной нагрузкой. В то же время системы с обратной связью способны работать с большими ускорениями и даже при переменном характере нагрузки. Если нагрузка шагового двигателя превысит его момент, то информация о положении ротора теряется и система требует базирования с помощью, например, концевого выключателя или другого датчика. Системы с обратной связью не имеют подобного недостатка.
При проектировании конкретных систем приходится делать выбор между сервомотором и шаговым двигателем. Когда требуется прецизионное позиционирование и точное управление скоростью, а требуемый момент и скорость не выходят за допустимые пределы, то шаговый двигатель является наиболее экономичным решением. Как и для обычных двигателей, для повышения момента может быть использован понижающий редуктор. Однако для шаговых двигателей редуктор не всегда подходит. В отличие от коллекторных двигателей, у которых момент растет с увеличением скорости, шаговый двигатель имеет больший момент на низких скоростях. К тому же, шаговые двигатели имеют гораздо меньшую максимальную скорость по сравнению с коллекторными двигателями, что ограничивает максимальное передаточное число и, соответственно, увеличение момента с помощью редуктора. Готовые шаговые двигатели с редукторами хотя и существуют, однако являются экзотикой. Еще одним фактом, ограничивающим применение редуктора, является присущий ему люфт. Возможность получения низкой частоты вращения часто является причиной того, что разработчики, будучи не в состоянии спроектировать редуктор, применяют шаговые двигатели неоправданно часто. В то же время коллекторный двигатель имеет более высокую удельную мощность, низкую стоимость, простую схему управления, и вместе с одноступенчатым червячным редуктором он способен обеспечить тот же диапазон скоростей, что и шаговый двигатель. К тому же, при этом обеспечивается значительно больший момент. Приводы на основе коллекторных двигателей очень часто применяются в технике военного назначения, а это косвенно говорит о хороших параметрах и высокой надежности таких приводов. Да и в современной бытовой технике, автомобилях, промышленном оборудовании коллекторные двигатели распространены достаточно сильно. Тем не менее, для шаговых двигателей имеется своя, хотя и довольно узкая, сфера применения, где они незаменимы.
Виды шаговых двигателей
Существуют три основных типа шаговых двигателей:
двигатели с переменным магнитным сопротивлением
двигатели с постоянными магнитами
Определить тип двигателя можно даже на ощупь: при вращении вала обесточенного двигателя с постоянными магнитами (или гибридного) чувствуется переменное сопротивление вращению, двигатель вращается как бы щелчками. В то же время вал обесточенного двигателя с переменным магнитным сопротивлением вращается свободно. Гибридные двигатели являются дальнейшим усовершенствованием двигателей с постоянными магнитами и по способу управления ничем от них не отличаются. Определить тип двигателя можно также по конфигурации обмоток. Двигатели с переменным магнитным сопротивлением обычно имеют три (реже четыре) обмотки с одним общим выводом. Двигатели с постоянными магнитами чаще всего имеют две независимые обмотки. Эти обмотки могут иметь отводы от середины. Иногда двигатели с постоянными магнитами имеют 4 раздельных обмотки.
В шаговом двигателе вращающий момент создается магнитными потоками статора и ротора, которые соответствующим образом ориентированы друг относительно друга. Статор изготовлен из материала с высокой магнитной проницаемостью и имеет несколько полюсов. Полюс можно определить как некоторую область намагниченного тела, где магнитное поле сконцентрировано. Полюса имеют как статор, так и ротор. Для уменьшения потерь на вихревые токи магнитопроводы собраны из отдельных пластин, подобно сердечнику трансформатора. Вращающий момент пропорционален величине магнитного поля, которая пропорциональна току в обмотке и количеству витков. Таким образом, момент зависит от параметров обмоток. Если хотя бы одна обмотка шагового двигателя запитана, ротор принимает определенное положение. Он будет находится в этом положении до тех пор, пока внешний приложенный момент не превысит некоторого значения, называемого моментом удержания. После этого ротор повернется и будет стараться принять одно из следующих положений равновесия.
Двигатели с переменным магнитным сопротивлением
Шаговые двигатели с переменным магнитным сопротивлением имеют несколько полюсов на статоре и ротор зубчатой формы из магнитомягкого материала (рис. 2). Намагниченность ротора отсутствует. Для простоты на рисунке ротор имеет 4 зубца, а статор имеет 6 полюсов. Двигатель имеет 3 независимые обмотки, каждая из которых намотана на двух противоположных полюсах статора. Такой двигатель имет шаг 30 град.
Рис. 2. Двигатель с переменным магнитным сопротивлением.
При включени тока в одной из катушек, ротор стремится занять положение, когда магнитный поток замкнут, т.е. зубцы ротора будут находиться напротив тех полюсов, на которых находится запитанная обмотка. Если затем выключить эту обмотку и включить следующую, то ротор поменяет положение, снова замкнув своими зубцами магнитный поток. Таким образом, чтобы осуществить непрерывное вращение, нужно включать фазы попеременно. Двигатель не чувствителен к направлению тока в обмотках. Реальный двигатель может иметь большее количество полюсов статора и большее количество зубцов ротора, что соответствует большему количеству шагов на оборот. Иногда поверхность каждого полюса статора выполняют зубчатой, что вместе с соответствующими зубцами ротора обеспечивает очень маленькое значения угла шага, порядка нескольких градусов. Двигатели с переменным магнитным сопротивлением довольно редко используют в индустриальных применениях.
Двигатели с постоянными магнитами
Двигатели с постоянными магнитами состоят из статора, который имеет обмотки, и ротора, содержащего постоянные магниты (рис. 3). Чередующиеся полюса ротора имеют прямолинейную форму и расположены параллельно оси двигателя. Благодаря намагниченности ротора в таких двигателях обеспечивается больший магнитный поток и, как следствие, больший момент, чем у двигателей с переменным магнитным сопротивлением.
Рис. 3. Двигатель с постоянными магнитами.
Показанный на рисунке двигатель имеет 3 пары полюсов ротора и 2 пары полюсов статора. Двигатель имеет 2 независимые обмотки, каждая из которых намотана на двух противоположных полюсах статора. Такой двигатель, как и рассмотренный ранее двигатель с переменным магнитным сопротивлением, имеет величину шага 30 град. При включении тока в одной из катушек, ротор стремится занять такое положение, когда разноименные полюса ротора и статора находятся друг напротив друга. Для осуществления непрерывного вращения нужно включать фазы попеременно. На практике двигатели с постоянными магнитами обычно имеют 48 – 24 шага на оборот (угол шага 7.5 – 15 град).
Разрез реального шагового двигателя с постоянными магнитами показан на рис. 4.
Рис. 4. Разрез шагового двигателя с постоянными магнитами.
Для удешевления конструкции двигателя магнитопровод статора выполнен в виде штампованного стакана. Внутри находятся полюсные наконечники в виде ламелей. Обмотки фаз размещены на двух разных магнитопроводах, которые установлены друг на друге. Ротор представляет собой цилиндрический многополюсный постоянный магнит.
Принцип действия шаговых двигателей Комментировать
Шаговым электродвигателем принято называть синхронное силовое устройство, включающее в себя статор, ротор и обмотки на статоре.
Принцип действия шаговых двигателей заключается в подаче электрического тока на обмотку статора, далее происходит фиксация ротора, в случае последовательной подачи тока – шаговое движение ротора силовой установки.
Более дорогие силовые установки с ротором, выполненным из магнитотвердых материалов, позволяют осуществлять фиксацию позиционирования ротора без подачи тока на обмотки, а также генерируют повышенные значения крутящего момента (по сравнению с аналогичными машинами без магнитов).
NEMA 08 FL20STH30-0604 A Шаговый двигатель
NEMA 11 FL28STH32-0956 A Шаговый двигатель
NEMA 14 FL35ST26-0284 A Шаговый двигатель
NEMA 16 FL39ST20-0404 A Шаговый двигатель
NEMA 17 FL42STH25-0404 A Шаговый двигатель
NEMA 23 FL57ST41-1106 A Шаговый двигатель
NEMA 42 FL110STH99-5504 A Шаговый двигатель
Какие бывают шаговые двигатели?
В зависимости от типа исполнения роторной части шагового двигателя можно разделить ШД на следующие типы:
Реактивные шаговые двигатели
Шаговые двигатели с постоянными магнитами
Гибридные шаговые двигатели
Биполярные и униполярные шаговые двигатели
Если первые два типа силовых установок отличаются типом исполнения ротора (магнитотвердый или магнитомягкий материал), то гибридные силовые установки являются обладателями и тех и других характеристик, благодаря чему имеют улучшения тактико-технические характеристики, а также пониженные значения потерь. Условное разделение роторной части гибридной установки на две половины производится посредствам специального магнита. Благодаря зубцам, имеющим пониженные значения сопротивления в точечных положениях, системы обладают улучшенными значениями момента.
Биполярный шаговый двигатель
Силовые установки биполярного типа обладают двумя обмотками (одна – на одну фазу) и четырьмя выводами. Чтобы управлять направлением магнитного поля, используется специальный драйвер, обеспечивающий управление направлением движения электрического тока. Биполярная силовая установка обладают повышенными показателями удельной мощности и момента в сравнении с униполярными.
Униполярный шаговый двигатель
В конструкции униполярной установки используется одна обмотка на фазу, из каждой фазы исходит отвод. Таким образом управление магнитным полем значительно упрощено, в прочем, как и сам драйвер. Предусмотрено объединение средних выводов во внутренней части силовой системы. Общее количество обмоток может достигать восьми. Используя различные типы соединения обмоток униполярный двигатель может работать в режиме биполярного. Какой бы режим работы фиговой системы не был выбран, важно соблюдать предельную мощность.
Конструкция униполярной системы подразумевает использование 50% всей обмотки в любой момент работы. Оставшаяся часть обмотки в сердечнике не используется, таким образом толщина провода должна быть сужена, как минимум, на 50%. Достичь повышенных значений магнитного поля можно путем наращивания значения тока и физического увеличения количества витков в обмотке. Однако любое подобное «раскачивание» установки должно учитывать возникающие потери на обмотке, которые в униполярных моделях из-за тонкости обмотки являются распространенным явлением.
Преимущества
В первую очередь, популярность всех шаговых силовых машин следует обуславливать точностью исполнения поставленной задачи. При повороте на заданный угол соблюдается абсолютная точность работы. Динамичный и недорогой шаговый двигатель – это идеальное решение для организации автоматизации процессов выделенных систем и ее субчастей, для которых не принципиальна динамичность исполнения.
Недостатки
Зачастую, во время исполнения рабочего цикла существует вероятность возникновения широко известной проблемы, когда проскальзывает ротор. Как правило, это явление обусловлено некорректно выполненными настройками программного обеспечения, а также достижения пограничной с резонансной скорости вращения.