0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В чем плюсы и минусы паровых двигателей

Как моют двигатель паром: преимущества и недостатки

Необходимость помыть двигатель автомобиля является процедурой, которая периодически становится актуальной по нескольким причинам. Прежде всего, двигатель моют после аварийных ситуаций, которые привели к его сильному загрязнению. Также поддержание подкапотного пространства в чистоте позволяет определить появление возможных течей и быстрее локализовать проблему. Другими словами, облегчается визуальный профилактический осмотр во время эксплуатации ТС или диагностирование определенной неисправности.

Рекомендуем также прочитать статью о том, как помыть двигатель своими руками в домашних условиях. Из этой статьи вы узнаете об особенностях и нюансах во время самостоятельной домашней мойки мотора.

Еще одной причиной, когда двигатель лучше помыть, считается сильное загрязнение силового агрегата и навесного оборудования, что приводит к ухудшению теплообмена. Если мотор покрыт толстым слоем пыли, моторного масла и других загрязнений, тогда двигатель нуждается в мойке. Очистка двигателя может быть осуществлена различными способами, начиная от ручной «деликатной» мойки с использованием специальных средств и заканчивая мойкой двигателя Керхером при помощи воды под давлением и активных очистителей. Отметим, что каждый из этих способов имеет ряд определенных минусов, в результате чего большую популярность на этом фоне набрала мойка двигателя паром.

Мойка мотора и последствия: опасно ли мыть двигатель паром

Перед тем, как поговорить о мойке мотора паром, давайте взглянем на все доступные способы очистки ДВС. Начнем с мойки двигателя Керхером, так как данная услуга очень распространена. Вполне очевидно, что попадание воды в подкапотное пространство является нежелательным. С проблемой заливания водой электрооборудования, короткого замыкания, появления ошибок и отказа двигателя заводиться после непрофессиональной мойки мотора Керхером хорошо знакомы многие водители. Так происходит на автомойке, нередко проблемы возникают и после попыток отмыть двигатель от грязи аппаратом высокого давления своими руками в собственном гараже.

Обратите внимание, это вовсе не значит, что двигатель нельзя мыть Керхером, водой под давлением и любым другим подобным способом. Дело в том, что данную процедуру нужно осуществлять правильно. С учетом трудоемкости процесса на большинстве автомоек попросту пренебрегают элементарными правилами.

Владельца заранее предупреждают о том, что никакой ответственности за возможные последствия после мойки двигателя Керхером автосервис не несет, то есть все действия осуществляются на свой страх и риск. Затем силовой агрегат моют так же, как и кузов, нанося шампунь и обильно поливая струей воды пространство под капотом. При самостоятельной мойке главной причиной неполадок обычно является неосведомленность автолюбителей о возможных проблемах или сознательное несоблюдение правил подготовки автомобиля к мойке двигателя.

Рекомендуем также прочитать статью, как помыть двигатель автомобиля Керхером. Из этой статьи вы узнаете о том, как нужно подготавливать двигатель к мойке под давлением, чтобы избежать возможных проблем.

Что касается ручной мойки, то есть без использования воды под давлением, такая процедура менее рискованна, но зачастую оказывает исключительно косметический эффект. Дело в том, что на большинстве современных авто доступ ко многим элементам под капотом сильно затруднен. Получается, добраться до многих скрытых или труднодоступных поверхностей и полостей под капотом руками и щеткой крайне проблематично.

С учетом вышесказанного становится понятно, что безопасного способа относительно быстро и одновременно качественно отмыть агрегат до определенного момента попросту не существует. Отметим, что ситуация изменилась в лучшую сторону после того, как на рынке автоуслуг появилось предложение мойки двигателя паром. Главным преимуществом является сведение к минимуму количества воды, которая попадает под капот. Теперь рассмотрим плюсы и минусы этого процесса более подробно.

Почему лучше помыть двигатель паром

Начнем с явных преимуществ. Мойка двигателя паром заслуженно считается намного более безопасной сравнительно с мойкой Керхером в том виде, в каком эту услугу предлагают на автомойках и мелких автосервисах. После очистки паром можно не так сильно переживать о том, заведется ли двигатель.

Пар имеет лучшую способность проникновения в труднодоступные места. В результате такая мойка более качественная. Параллельно с этим практически полностью отсутствует риск залить генератор, электрические контакты, предохранители, ЭБУ и другое электрооборудование.

Дело в том, что для мойки паром используется парогенератор. Среднее давление пара в устройстве составляет около 9 атмосфер. В привычном Керхере давление воды может находиться на отметке от 150 бар и выше. Общая процедура мойки мотора паром выглядит так:

  • подкапотное пространство проходит обработку активным очистительным средством;
  • затем очиститель вместе с размякшей грязью и отложениями удаляется паром из парогенератора;
  • по окончании мойки подкапотное пространство дополнительно просушивается для удаления остатков влаги;

Еще одним плюсом такой очистки можно считать то, что пар имеет меньшую плотность и более высокую температуру. По этой причине именно паром легче удаляются потеки масла, горючего, слои засохшей грязи и т.п, но общее увлажнение не такое интенсивное. В результате качество мойки хорошее, воды меньше и времени требуется не так много.

Теперь о недостатках. Прежде всего, главным минусом можно считать стоимость услуги мойки двигателя паром. Цена может быть до двух или даже трех раз дороже обычной мойки Керхером, а также быть наравне или превышать по стоимости (иногда заметно) аналогичную профессиональную мойку ДВС водой под давлением с предварительной подготовкой автомобиля (гидроизоляция отдельных агрегатов и узлов под капотом).

Дороговизна обусловлена относительной новизной способа, высокой стоимостью самого парогенератора, а также необходимостью специальной подготовки персонала в целях повышения квалификации специалистов. Дело в том, что на выходе пар может иметь температуру около 150 градусов по Цельсию и выше. По этой причине с оборудованием нужно уметь правильно работать, что позволит снизить риск получения серьезных ожогов и других травм. Добавим, что по указанной выше причине рекомендуется отказаться от попыток помыть двигатель паром самому при условии отсутствия необходимой подготовки и опыта.

Стоит обратить внимание и на тот факт, что мойка паром никак не означает, что процессы окисления и коррозии не будут возникать или начнут протекать менее интенсивно (при наличии таковых). Пар является той же водой, влажность под капотом после очистки неизбежно повышается. По этой причине следует использовать диэлектрические составы и специальные консерванты ржавчины, которые рекомендованы к применению как при мойке паром, так и при любых других способах очистки силового агрегата и мойки автомобиля под капотом.

Подведем итоги

Если сравнить все доступные способы очистки, мойка паром может считаться самой безопасной для двигателя. Также данный способ позволяет существенно экономить время и быстро придать моторному отсеку товарный вид. Использование «мягких» очищающих составов в сочетании с очисткой паром дает качественный и, зачастую, самый лучший эффект.

Напоследок добавим, что риск испортить внешний вид или повредить детали из пластика и резины в подкапотном пространстве намного меньше, чем после мойки с использованием агрессивных очистителей для ручной очистки.

Плюсы и минусы у различных типов двигателей: обзор

Основная специфика этих устройств заключается в том, что возгорание происходит прямо внутри рабочей камеры, в результате чего, энергия горения превращается в механические силы. Суть работы таких двигателей в том, что внутри цилиндров, под давлением, возникает горение топливно-воздушной смеси, которая воспламеняется различными способами.

Каждый тип ДВС хорош по-своему, хотя идеала нет

Самые распространенные типы двигателей внутреннего сгорания в мире – это четырехцилиндровый рядный, четырехцилиндровый оппозитный, рядный шестицилиндровый, V6 и V8 – имеют свои плюсы и минусы. Вот все, что вам нужно знать о них, в одной удобной подборке…

Смотрите также: Двигатели, в которых могут загнуться клапаны: зачем они нужны

Какой мотор сделает больше мощности: 4,0-литровый V6 или 4,0-литровый V8? Ответ не так прост и очевиден. При обсуждении различных двигателей их тип не является наиболее серьезным фактором, влияющим на то, сколько энергии они произведут. Приложите к созданию инженерную изобретательность, и ваш четырехцилиндровый двигатель сможет получить столько же мощности, сколько среднестатистический V12. Так что же заставляет производителей выбирать различные компоновки двигателей? Вот преимущества и недостатки каждого из вариантов движков.

Предыстория вопроса

Автолюбители со стажем хорошо помнят, как резко увеличилось количество дизельных авто в середине и в конце 90-х. Разрушился стереотип о том, что работающие на дизеле движки устанавливались только на «промышленную» технику.

Читать еще:  Высокие обороты холостого хода на прогретом двигателе ваз

Сегодня автопроизводители предлагают нам самые разные дизельные моторы. ГК FAVORIT MOTORS, один из крупнейших дилеров Москвы, занимается продажей и сервисным обслуживанием как бензиновых, так и дизельных автомобилей. Это дает возможность каждому выбрать вариант на свой вкус.


Рядные четырехцилиндровые силовые агрегаты

Начнем с одного из самых распространенных двигателей – рядного четырехцилиндрового. Есть причина, по которой он так распространен. В основном потому, что это так просто: один блок цилиндров, одна головка цилиндров и один клапанный механизм. Вот все, что вам нужно о нем знать:

Преимущества:

Четырехцилиндровый рядный двигатель негабаритен и компактен, значит, его легко расположить под капотом практически любого автомобиля;

Он также немного весит сам по себе, а за счет того, что на этот тип мотора ставится всего лишь один выпускной коллектор, вес дополнительно уменьшается;

Поскольку у него только одна головка цилиндров, это означает наличие меньшего количества движимых частей по сравнению с моторами с развалом. Это означает меньшие энергопотери и уменьшает вероятность неисправностей;

Двигатель хорошо сбалансирован, поскольку два внешних поршня движутся в противоположном направлении от внутренних двух поршней (см. рисунок выше);

Четырехцилиндровые двигатели просты в обслуживании и починке. Головка блока – это высшая точка, которая делает доступ к свечам и приводу клапанов незатруднительным;

Четырехцилиндровые двигатели требуют менее высоких производственных затрат.

Минусы:

Несмотря на то что первичные силы сбалансированы идеально, этого нельзя сказать о так называемых вторичных силах, действующих на работу мотора, что в конечном счете ограничивает размеры двигателя;

Рядные четверки редко превышают объем 2,5 литра;

В больших по объему четырехцилиндровых двигателях возникает необходимость балансировки валов для снижения уровня вибрации из-за тех самых вторичных сил;

Высокий центр тяжести по сравнению с некоторыми компоновками оппозитных H4;

Не такие «неубиваемые», как некоторые версии V6 и V8.

Смотрите также: Типы расположения двигателей автомобилей | Интересные факты

Вот краткое видео, объясняющее принцип работы четырехцилиндрового двигателя:

Резюме

Преимущества бензинового двигателя:

  • Проще конструкция
  • Легче по весу
  • Двигатель дешевле
  • Возможность эксплуатации на высоких оборотах
  • Проще в сервисном обслуживании
  • Меньше шума
  • Легче заводится при низких температурах
  • Менее требователен к качеству топлива
  • Более широкие возможности для переоборудования на газ
  • Выше пожаро- и взрывоопасность
  • Более требователен к качеству масел
  • Хуже тяга на низах
  • Выше расход топлива с ростом нагрузки

Горизонтально-оппозитный

С точки зрения производительности существует не так много вариантов, столь же привлекательных, как двигатель с горизонтально уложенными противоположно расположенными цилиндрами. Оппозитный силовой агрегат не столь частый гость под капотом автомобилей, но с технической точки зрения это логичный выбор для вашего гоночного автомобиля.

Преимущества:

Первичные и вторичные силы хорошо сбалансированы. Это плавный в работе двигатель;

Баланс позволяет снизить вес коленчатого вала, что уменьшает инерционные потери от вращения;

Низкий центр тяжести обеспечивает лучшую управляемость автомобиля.

Минусы:

Размер: это очень широкие двигатели;

Оппозитные двигатели когда-то использовались в Формуле 1 именно из-за своих преимуществ в производительности, но ввиду их большой ширины они препятствовали работе с воздушным потоком вокруг кузова болида и с тех пор больше не используются;

Сложность: две головки цилиндров системы привода клапанов;

Во время работы наблюдается дисбаланс в плоскости из-за смещения поршней по отношению к коленчатому валу;

Обслуживание может быть сложным, если под капотом теснота.

Низкий расход топлива

У атмосферного двигателя значительная часть энергии сгоревших газов теряется вместе с горячими выхлопными газами. Наддувный двигатель использует температуру и давление выпускных газов, срабатывая их в турбине. Меньше энергии пропадает зря, значит, больше используется для движения автомобиля. Но, повторюсь, при условии спокойной манеры вождения.

Турбодвигатели совершенствуются и захватывают все новые модельные ряды автомобилей самых разных производителей на всех континентах. Вначале они оккупировали дороги старушки Европы. Япония давно и массово загружает ими внутренний рынок. США и Корея немного более сдержанны в распространении турбированных двигателей. Зато Китай в последнее время массово пересаживается на турбонаддув. Так что за наддувными двигателями будущее. Если, конечно, их не вытеснят электрокары.

  • Самые надежные двигатели (из тех, что еще продаются) мы собрали тут.

Фото: фирмы-производители

Рядный шестицилиндровый

Объект привязанности инженеров, рядная шестерка является результатом прикрепления двух дополнительных цилиндров к рядному четырехцилиндровому двигателю. BMW любит их, Toyota частенько использовала такие двигатели тоже, сделав один из самых известных своих моторов – 2JZ. Так что такого особенного в этой шестерке?

Преимущества:

Рядная шестерка изначально сбалансирована;

Компоновка в сочетании с порядком воспламенения смеси в цилиндрах создает практически самый «гладкий» в работе мотор. В плане уменьшения вибраций круче могут быть только V12 и оппозитные 12-цилиндровые моторы, которые являются следующим шагом в эволюции, так как они представляют собой сдвоенные шестицилиндровые моторы, соединенные вместе;

Но по сравнению с «V»-образными компоновками производственные затраты на один блок со всеми цилиндрами в одной плоскости весомо снижаются;

Простой дизайн, легко работать с двигателем и чинить его. Также как с рядным четырехцилиндровым мотором.

Минусы:

Капот должен соответствовать длине силового агрегата, автомобиль должен быть средних размеров;

Не идеальное решение для переднеприводных автомобилей;

Высокий центр тяжести, особенно в сравнении с оппозитными моторами;

Конструкция не настолько жесткая, как «V»-образные двигатели, так как мотор – длинный и достаточно узкий.

Вот краткое видеообъяснение принципа работы шестицилиндрового мотора:

Преимущества и недостатки турбированного двигателя

Турбированный двигатель впервые увидел мир в 905 году, а на «легковушки» турбины стали устанавливать только в середине 20-го века. Принцип двигателя оснащенного турбиной заключается в том, что турбина рационально использует выхлоп автомобиля, посредством которого происходит нагнетание дополнительного воздуха в цилиндры, который способствует лучшему сгоранию топливно-воздушной смеси. Как вы знаете, чем больше воздуха, тем лучше будет гореть, по тому же принципу устроен и турбомотор, турбина под высоким давлением нагнетает воздух в цилиндры, благодаря чему сгорание топливной смеси происходит с большим КПД, в результате двигатель получает больше мощности минимум на 10%.

Теперь разрежьте эту прямую «шестерку» пополам и соедините два блока цилиндров общим коленвалом. Думаете, инженеры здесь перемудрили? Зачем делать «V»-образник, если уже есть отличный рядный силовой агрегат? Ну, для автомобилей Формулы 1 он подходит, значит, у него есть свои преимущества.

Преимущества:

Они компактны и могут легко использоваться как для переднеприводных, так и для заднеприводных автомобилей;

Компоновка позволяет сделать более объемные версии, чем есть у четырехцилиндровых двигателей, что типично означает больше мощности;

Это жесткая конструкция во всех смыслах;

Формула 1 решила использовать V6, а не рядные четырехцилиндровые моторы в сезоне 2014 года, потому что они хотели интегрировать двигатель в качестве дополнительного ребра жесткости в конструкции автомобиля.

Минусы:

2 головки цилиндров означают добавление к стоимости, сложности и весу;

Дополнительные инерция и трение (больше движимых частей);

Высокий центр тяжести против плоских оппозитных двигателей;

Стоимость часто больше, чем у рядных четырехцилиндровых движков;

Дисбаланс требует дополнительного веса на противовесах коленчатого вала, разгружая коренные подшипники от центробежных сил инерции первого порядка неуравновешенных масс;

Два выпускных коллектора также означают дополнительный вес.

Различия (разновидности) двигателей GDI. Марки автомобилей, где используется GDI

Предпосылки создания и массового перехода большинства ведущих автопроизводителей на системы впрыска, аналогичных GDI, были достаточно предсказуемы. Экологические нормы, требующие усовершенствования систем выхлопа отработанных газов, а также глобальная задача по созданию экономичных двигателей.

В двигателях GDI реализованы несколько типов смесеобразования топливовоздушной смеси. Это позволило выполнить задачи по экономии топлива, более полному сгоранию смеси и дополнительно увеличить мощность. В совокупности такой двигатель получился благодаря доработанной системе прямого впрыска, где немалую роль играет электронная начинка. Блок управления через датчики, раскиданные по системе, оперативно реагирует на малейшие изменения поведения автомобиля и подстраивает работу топливной системы под необходимые требования водителя.

Плюсы и минусы использования тепловых двигателей | Плюсы и минусы

Cкачать: Школьный проект “Тепловые машины в жизни человека”

  1. Роль тепловых двигателей в развитии теплоэнергетики и транспорта. Тепловые двигатели и охрана природы
  2. Разновидностей тепловых двигателей
  3. Рецензии
  4. Двигатель внутреннего сгорания
  5. Преимущества использования тепловых двигателей
  6. Изготовление ДВС
  7. Вид модели снаружи
  8. Литература
  9. Недостатки тепловых двигателей
  10. Аннотация к презентации
  11. Применение ДВС
  12. Низкий КПД
  13. Загрязнение окружающей среды
  14. Методы борьбы с вредными воздействиями тепловых двигателей на окружающую среду
  15. Литература
Читать еще:  Что такое гипер двигатель

Роль тепловых двигателей в развитии теплоэнергетики и транспорта. Тепловые двигатели и охрана природы

Тепловые двигатели необходимы для получения электроэнергии, для приведения в движение большинства транспортных машин.

Наибольшее значение имеет применение мощных паровых турбин на электростанциях для вращения роторов генераторов. Паровые турбины устанавливают также на атомных электростанциях, где для получения пара высокой температуры используется энергия атомных ядер.

На современном транспорте используются все виды тепловых двигателей. В автомобилях, тракторах, самоходных комбайнах, тепловозах применяются поршневые двигатели внутреннего сгорания, в авиации — газовые турбины, на космических ракетах — реактивные двигатели.

Тепловые двигатели оказывают некоторые вредные воздействия на окружающую среду:

    КПД тепловых двигателей η

Вид модели снаружи

Вид модели внутри

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 165.

Недостатки тепловых двигателей

Помимо плюсов тепловые машины имеют и недостатки.

Аннотация к презентации

Посмотреть и скачать бесплатно презентацию по теме “Тепловые двигатели и их роль в жизни человека”. pptCloud.ru — каталог презентаций для детей, школьников (уроков) и студентов.

Применение ДВС

Тепловое расширение нашло свое применение в различных современных технологиях. В частности можно сказать о применении теплового расширения газа в теплотехники. Так, например, это явление применяется в различных тепловых двигателях, т. е. в двигателях внутреннего и внешнего сгорания:
* Роторных двигателях;
* Реактивных двигателях;
* Турбореактивных двигателях;
* Газотурбинные установки;
* Двигателях Ванкеля;
* Двигателях Стирлинга;
* Ядерные силовые установки.

Тепловое расширение воды используется в паровых турбинах и т. д. Все это в свою очередь нашло широкое распространение в различных отраслях народного хозяйства. Например, двигатели внутреннего сгорания наиболее широко используются:
* Транспортные установки;
* Сельскохозяйственные машины.

В стационарной энергетике двигатели внутреннего сгорания широко используются:
* На небольших электростанциях;
* Энергопоезда;
* Аварийные энергоустановки.

ДВС получили большое распространение также в качестве привода компрессоров и насосов для подачи газа, нефти, жидкого топлива и т. п. по трубопроводам, при производстве разведочных работ, для привода бурильных установок при бурении скважин на газовых и нефтяных промыслах.
Турбореактивные двигатели широко распространены в авиации. Паровые турбины – основной двигатель для привода электрогенераторов на ТЭС. Применяют паровые турбины также для привода центробежных воздуходувок, компрессоров и насосов.
Существуют даже паровые автомобили, но они не получили распространения из–за конструктивной сложности.
Тепловое расширение применяется также в различных тепловых реле, принцип действия, которых основан на линейном расширении трубки и стержня, изготовленных из материалов с различным температурным коэффициентом линейного расширения.

Низкий КПД

Конструкция двигателей такого типа предполагает использование внутренней энергии топлива. Часть этой энергии переходит в механическое действие, то есть совершает полезную работу. Но большая часть расходуется впустую.

Отношение энергии потраченной в пустую к энергии совершающей полезную работу и называют коэффициентом полезного действия.

Постоянно ведущиеся разработки позволяют улучшать этот коэффициент. Однако до сих пор нет возможности преодолеть даже порог в 50%. Это значит, что более половины энергии, затраченной на функционирование двигателя, не совершает полезной работы.

Это приводит к тому, что топливо не может расходоваться максимально эффективно.

Загрязнение окружающей среды

Одним из самых больших недостатков в настоящее время является загрязнение окружающей среды. В процессе горения выделяются вредные вещества: азот, сера. Вместе с ними в атмосферу попадают и другие вредные вещества, а также металлы, которые добавляются в топливо, чтобы улучшить его качество.

Стоит обратить внимание и на то, что происходит выделение большого количества тепла. Это сильно влияет на изменение климата планеты. Такие изменения принято называть глобальным потеплением. К сожалению, глобальное потепление может грозить тяжелыми последствиями для экологии.

Немаловажно и то, что для своего функционирования двигатели поглощают большие объемы кислорода, взамен возвращая углекислый газ.

Если учесть, насколько тепловые машины распространены в мире, становится понятно как велико их негативное влияние на глобальную экологическую обстановку.

Для сохранения экологии начинают приниматься меры по ограничению применения тепловых двигателей. Например, в некоторых странах ограничивается использование автомобилей на определенных территориях. Ужесточаются требования к уровню экологического загрязнения теми или иными двигателями.

Методы борьбы с вредными воздействиями тепловых двигателей на окружающую среду

Один из способов уменьшения путей загрязнения окружающей среды связан с использованием в автомобилях вместо карбюраторных бензиновых двигателей дизелей, в топливо которых не добавляют соединения свинца.
Перспективными являются разработки автомобилей, в которых вместо бензиновых двигателей применяются электродвигатели или двигатели, использующие в качестве топлива водород.
Другой способ заключается в увеличении КПД тепловых двигателей. В Институте нефтехимического синтеза им. А. В. Топчиева РАН разработаны новейшие технологии превращения углекислого газа в метанол (метиловый спирт) и диметиловый эфир, увеличивающие в 2–3 раза производительность аппаратов при значительном уменьшении электроэнергии. Здесь был создан реактор нового типа, в котором производительность увеличена в 2–3 раза.
Введение этих технологий снизит накопление углекислого газа в атмосфере и поможет не только создать альтернативное сырьё для синтеза многих органических соединений, основой для которых сегодня служит нефть, но и решить упомянутые выше экологические проблемы.

Литература

1. Хрестоматия по физике: А. С. Енохович – М.: Просвещение, 1999
2. Детлаф А. А., Яворский Б. М. Курс физики: – М., Высшая школа., 1989.
3. Кабардин О. Ф. Физика: Справочные материалы: Просвещение 1991.
4. Интернет–ресурсы.

Авторы работы:
Кайгородов Илья,
Филипчук Евгений,
ученики 10 класса

Руководители работы:
Шаврова Т. Г. учитель физики,
Бачурин Д. Н. учитель информатики.

Муниципальное общеобразовательное учреждение
“Первомайская средняя общеобразовательная школа №2”
Бийского района Алтайского края

Двигатели Хонда ВТЕК (Honda VTEC): особенности, характеристики, плюсы и минусы

Практически каждый автолюбитель хоть бы раз в жизни встречал символы под капотом той или иной машины в виде аббревиатур — VTEC или I-VTEC. Но что означает данная маркировка, знает не каждый любитель автомобилей. Сокращенное понятие VTEC расшифровывается, как «Variable Valve Timing and Lift Electronic Control», что переводится, как электронная система изменения фаз газораспределения и высоты подъема клапанов в силовой установке. Основным предназначением электронной системы регулировки фаз газораспределения является оптимизация прохождения топливно-воздушной смеси в камеры сгорания двигателя.

Впервые электронная система изменения фаз газораспределения появилась в 1989 году и дойдя до нашего времени успела уже 2 раза серьезно усовершенствоваться. Поэтому сегодня мы можем видеть на некоторых новых машинах 3-е поколение системы. Сама по себе технология VTEC использует в своей работе возможности электроники и механики, что дает силовой установке очень эффективно управлять возможностями одновременно 2-ух распределительных валов, а в упрощенных двигателях формата SOHC — одним распредвалом. Система осуществляет контроль числа оборотов с диапазонами мотора таким образом, что компьютер автомобиля может активировать и подключить к работе дополнительные кулачки. Делается это для того, чтобы подобрать наиболее оптимальный режим работы.

1. ПРИНЦИП ДЕЙСТВИЯ И УСТРОЙСТВО МОТОРОВ С СИСТЕМОЙ VTEC

Главной особенностью двигателей с системой VTEC в сравнение с традиционными силовыми установками является достижение максимального крутящего момента на более низких оборотах. Если брать характеристики разных моторов, то хорошо видно, что у одних максимум крутящего момента достигается на пониженных оборотах в диапазоне от 1800 до 3000, а у других на более повышенных, например в диапазоне от 3500 до 4500 оборотов в минуту.

Вышеописанные моменты в разнице достижения максимальных оборотов двигателями объясняется тем, что в случае более эффективного наполнения топливом камер сгорания цилиндров, дает возможность получения высокого крутящего момента на низких оборотах. Кроме того, получение высокого крутящего момента при определенных оборотах также зависит от конструкции выпускного тракта и тех или иных настроек газораспределительного механизма автомобиля. Другими словами говоря, эффективность силовой установки напрямую определяется фазами газораспределения. Справочно заметим, что данные фазы образуются благодаря особому профилю кулачков распределительного вала.

Чтобы более детально представлять принцип работы двигателя с системой VTEC, возьмем для примера двс, который работает при 20 оборотах в минуту, то есть впускные и выпускные клапана установки задействованы 10 раз в минуту, то есть достаточно редко. Для снятия же максимального крутящего момента при таких оборотах, впускной клапан обязан открываться почти в начале такта всасывания, то есть, когда поршень начинает свое движение от верхней мертвой точки, а затем закрывается в момент возврата поршня в нижнюю мертвую точку. По точно такой же схеме функционирует выпускной клапан, то есть никаких задержек с опережениями в работе клапанного механизма быть не должно, в противном случае крутящий момент снизится.

Читать еще:  Gps трекер обороты двигателя

Вот именно при всем вышеописанном алгоритме работы происходит оптимальное наполнение камер сгорания цилиндров топливно-воздушной смесью и эффект от работы мотора получается наивысшим. По такому сценарию и функционирует двигатель с системой VTEC.

Цифры, которые мы привели выше для примера являются бутафорией, в реальности же частота вращения двигателя может увеличиваться до 3500-4000 оборотов в минуту и впускной с выпускным клапана в таком варианте открываются, а затем закрываются уже при показателях в 1800-2000 раз в минуту или примерно 30-35 раз за 1 секунду, что считается довольно часто. При таком режиме работы мотора на всасывание поршнем новой порции заряда, времени остается очень мало.

Вот поэтому только к моменту, когда поршень силовой установки достигает нижней мертвой точки, скорость подачи топлива, а следовательно и ее расход через проходное сечение выпускных клапанов достигают максимальных значений. В этот момент впускной клапан закрывается и основная доля порции свежего топлива, больше не может проникнуть в камеры сгорания, так как она просто на просто натыкается на закрытый клапан, который преждевременно захлопывается. В этом случае мотор начинает, как бы глохнуть, в результате чего мощность временно незначительно снижается, а максимальные обороты уменьшаются. Вся эта схема работы — заслуга фаз газораспределения системы VTEC.

Справочно заметим, что последнее 3-е поколение двигателей работающих в паре с системой VTEC имеют усредненные регулировки фаз газораспределения, которые рассчитаны на разные случаи жизни. Усредненные настройки фаз газораспределения получаются благодаря специальному профилю кулачков распределительного вала. Кроме того, конструкторы и инженеры доработали систему до такой степени, что для того, чтобы двигатель функционировал в оптимальных условиях на разных оборотах был сконструирован особый газораспределительный механизм.

В такой системе распредвал снабжается разными кулачками, как для низких, так и для высоких оборотов коленвала мотора. Благодаря чему достигается различный момент для открытия и закрытия кулачков, а также образуется высокая мощность на повышенных оборотах силовой установки.

2. КАКИЕ ДВИГАТЕЛИ ОСНАЩАЮТСЯ VTEC? ОСОБЕННОСТИ И ПОКОЛЕНИЯ СИСТЕМ ВТЕК

Первым двигателем, который стал работать с технологией VTEC стал мотор с системой SOHC, которая обладает одним распредвалом в механизме газораспределения и применяется только для впускных клапанов. Эффективность данного двигателя и системы VTEC незначительно ниже, чем у DOHC VTEC. Однако конструкция и ремонтопригодность намного проще, что также сказалось на компактных габаритах с массой силовой установки.

С течением времени двигатель SOHC стал снабжаться усовершенствованной системой VTEC-E, которая способна максимально снижать расход потребляемого топлива, что в свою очередь вызывает улучшение экологических показателей. Такой двигатель на низких оборотах функционирует на обедненной смеси, которая проникает в камеры цилиндров только через один единственный впускной клапан. Когда топливно-воздушная смесь попадает в камеры, то она завихряется и обеспечивается ее устойчивое сгорание. В том случае, если происходит увеличение оборотов двигателя, то автоматически срабатывает система VTEC-E, которая блокирует сразу впускной и выпускной клапана. После чего начинается совместная работа мотора и экономичной системы.

Затем через определенное количество времени японские инженеры с компании Honda, на автомобили которой в основном и устанавливается система VTEC, разработали газораспределительный механизм SOHC 3-stage. В паре с этим двигателем и начала действовать технология VTEC. Силовая установка SOHC 3-stage имеет 3 режима работы, в отличие от обычного «СОХСа», который имеет только 2 режима. Заметим, что в зоне низких оборотов, система VTEC в тандеме с таким мотором обеспечивает экономичный режим функционирования двигателя на обедненной смеси и в этом случае применяется только одни единственных впускной клапан.

На средних же оборотах к работе подключается 2-ой клапан, однако фазы газораспределения и высота подъема клапанов не меняется. Кроме того, в таком алгоритме работы, силовая установка достигает высокого крутящего момента. Что касается режима высоких оборотов, то тут два клапана управляются 1-им центральным кулачком, который отвечает за снятие с мотора максимальной мощности.

После чего на свет появилась силовая установка с 2-мя распредвалами и известной почти каждому автолюбителю своей маркировкой DOHC. Данный двигатель также стал активно использоваться компанией Honda для своих автомобилей совместно с технологией VTEC. Фундаментом для конструирования такого мотора стал широко используемый в автомобилестроении 4-х клапанный механизм газораспределения. В двигателях DOHC VTEC предусмотрено для каждого ряда клапанов, как впускных, так и выпускных специальное устройство в виде отдельного распредвала.

Следующей особенностью мотора является то, что на каждые 2 клапана приходиться по 3 кулачка, расположенных на распредвале. Два боковых кулачка нужны для функционирования силовой установки в случае возникновения низких и средних оборотов, а центральный необходим для высоких оборотов. Воздействие кулачков на клапана осуществляется при помощи рокера, которых также 3 единицы на 2 клапана.

Кроме того, рокеры снабжены гидравлически управляемыми небольшими поршнями, в задачу которых входит сдвигание и соединение механизма в одно целое при появлении определенного воздействия на них. Что касается среднего рокера, то он скомпонован специальной пружиной. Данная пружина обеспечивает систематический контакт кулачка с рокером на низких, а также средних оборотах.

Справочно заметим, что когда силовая установка DOHC VTEC функционирует на низких оборотах, то рокеры находятся в не заблокированном состоянии и каждый из них производит независимое движение, которое соответствует траектории кулачка. Что касается среднего кулачка, то он вращается с остальными компонентами, но участия в процессе работы газораспределительного механизма участия не принимает.

После того, как мотор переходит в режим повышенных оборотов, то автомобильный компьютер электронного типа отдает команду своему исполняющему узлу на повышение давления масла, с целью приведения в движение небольших поршней системы, которые расположены в рокерах для передвижения последних. Это в свою очередь приводит к полной блокировке рокеров. Для чего все это нужно? Дело в том, что после таких незамысловатых действий, все элементы вышеописанной группы, станут полностью подконтрольными центральному кулачку. Благодаря этому центральный кулачок теперь будет самостоятельно управлять функционированием сразу 2-ух клапанов системы.

Следующей технологией, которой стали снабжаться двигатели с механизмом изменения фаз газораспределения и высоты подъема клапанов, стала система VTC, которая непрерывно стала регулировать момент начала открытия впускных клапанов. Такая конструкция устройств получила название i-VTEC и стала базироваться на проверенном временем двигателе DOHS (DOHS i-VTEC). В силовых установках снабженных такой системой, фазы открытия впускных клапанов устанавливаются в зависимости от нагрузки мотора и настраиваются при помощи изменения угла впускного распредвала относительно выпускного.

Исходя из мнений специалистов, использование системы VTEC дает возможность более эффективно наполнять камеры сгорания цилиндров топливно-воздушной смесью. Это в свою очередь отражается в увеличении конечной мощности мотора, которая повышается в среднем на 20-25 процентов, а крутящий момент примерно на 10-15 процентов. Кроме того, благодаря такой системе происходит оптимизация расхода топлива и его дальнейшее снижение, в среднем на 15-20 процентов, что является довольно существенной экономией.

В заключении отметим, что вышеописанные двигатели в сочетании с технологией VTEC в принципе не представляют из себя вечных или сверхъестественных моторов, но эффект, который они дают в процессе функционирования просто удивляет. Силовые установки VTEC являются основными для японских автомобилей Honda и они прекрасно умеют подстраиваться под различную нагрузку, выдавая оптимальную мощность при небольшом рабочем объеме. Кроме того, как мы сказали ранее, такие двигатели не перестают удивлять своей экономичностью, особенно на холостом и малом ходах.

ИСТОЧНИК МАТЕРИАЛА — НАШ КАНАЛ ЯНДЕКС ДЗЕН

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector