4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В каких случаях применяются двигатели с фазным ротором

Принцип действия асинхронного двигателя

Лабораторная работа №1

ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК АД С ФАЗНЫМ РОТОРОМ.

Цель работы:Определить влияние величины сопротивления в цепи фазного ротора на чистоту фазного ротора.

Теоретические положения

.Устройство асинхронной машины

Обмотка статора 2 представляет собой трехфазную (или в общем случае многофазную) обмотку, катушки которой размещены равномерно по окружности статора.

Рисунок. 5.1 — Электромагнитная схема асинхронной машины

Фазы обмотки статора , и соединяют в звезду или треугольник и Асинхронные машины используют главным образом в качестве электрических двигателей трехфазного тока. По конструкции двигатели подразделяют на два основных типа: с фазным ротором (их иногда называют двигателями с контактными кольцами) и с короткозамкнутым ротором. Эти двигатели имеют одинаковую конструкцию статора и отличаются лишь формой выполнения ротора.

Двигатели с короткозамкнутым ротором . На статоре расположена трехфазная обмотка (одно- или двухслойная), которая при подключении к сети трехфазного тока создает вращающееся магнитное поле. Обмотка ротора выполнена в виде «беличьей клетки». Такая обмотка является короткозамкнутой и никаких выводов не имеет. Беличья клетка состоит из медных или алюминиевых стержней, замк­нутых накоротко с торцов двумя кольцами Стержни этой обмотки вставляют в пазы сердечника ротора без какой-либо изоляции.. В двигателях боль­шой мощности беличью клетку выполняют из медных стержней, концы которых вваривают в короткозамыкающие кольца В двигателях малой и средней мощности бе­личью клетку получают путем заливки расплавленного алюминиевого сплава в пазы сер­дечника ротора Вместе со стержнями беличьей клетки отливают короткозамыкающие кольца и торцевые лопасти, осуществляющие вентиляцию машин. Особенно пригоден для этой цели алюминий, так как он обладает малым удельным весом, легко­плавкостью и достаточно высокой электропроводностью.

Рисунок. 5.2 — Конструкция короткозамкнутого ротора:

1 – сердечник ротора; 2 – стержни; 3 – короткозамыкающие кольца; 4 – лопасти вентилятора.

В электрическом отношении беличья клетка представляет собой многофазную об­мотку, соединенную звездой и замкнутую накоротко.

Число фаз обмотки равно числу пазов ротора , причем в каждую фазу вхо­дят один стержень и прилегающие к нему участки короткозамыкающих колец.

Двигатели с фазным ротором обмотка статора выполнена таким же образом, как и в двигателях с короткозамкнутым ротором. Ротор имеет трехфазную обмотку с тем же числом полюсов. Об­мотку ротора обычно соединяют звездой, три конца которой выводят к трем контактным кольцам, которые крепятся на валу машины. С помощью металлографических щеток, скользящих по контактным кольцам, в цепь обмотки ротора включают пусковой или пускорегулирующий реостат с целью ограничения пускового тока и увеличения пускового момента.

Рисунок. 5.3 — Асинхронный двигатель с фазным ротором (а), и схема его включения (б):

4 – сердечник ротора, 7 – кольца, 8 – пусковой реостат.

Принцип действия асинхронного двигателя

Электромагнитная схема асинхронной машины отличается от схемы трансформатора тем, что первичная обмотка размешена на неподвижном статоре, а вто­ричная — на вращающемся роторе 3. Между ротором и статором имеется воздушный зазор. При питании трехфазным током обмотки статора создаётся вращающееся магнитное поле, частота вращения которого (синхронная) . Если ротор неподвижен или вращается с частотой, меньшей , то вращающееся поле индук­тирует в проводниках ротора ЭДС и по ним проходит ток, который, взаимодействуя с магнитным потоком, создает электромагнитный момент.

Относительную разность частот вращения маг­нитного поля статорной обмотки и ротора называют скольжением:

.

Скольжение часто выражают в процентах:

.

Очевидно, что при двигательном режиме:

.

Если ротор асинхронной машины разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты, большей частоты вращения магнитного поля то изменится направление ЭДС в проводниках ротора и ак­тивной составляющей тока ротора, т.е. асинх­ронная машина перейдет в генераторный режим При этом изменит свое направление и магнитный момент , который станет тормозящим. В данном режиме асинхронная машина получает механическую энергию от первичного двигателя, превращает её в электрическую и отдаёт в сеть. В генераторном режиме .

Если изменить направление вращения рото­ра (или магнитного поля) так, чтобы магнитное поле и ротор вращались в противопо­ложных направлениях, то ЭДС и активная составляющая тока в провод­никах ротора будут направлены так же, как в двигательном режиме, т.е. машина бу­дет получать из сети активную мощность. Однако в таком режиме электромагнитный момент направлен против вращения ротора, т.е. является тормозящим. Этот режим ра­боты асинхронной машины называют электромагнитным торможением. В режиме электро­магнитного торможения направление вращения ротора является отрицательным (по отно­шению к направлению магнитного поля, поэтому , а .

На практике чаще всего встречается двигательный режим асинхронной машины.

Описание схемы.

Асинхронный двигатель М получает питание от источника переменного3-х фазного тока “G1” через трансформаторную группу “А2”и автомат “А6”. В цепь ротора АД введено пускорегулировочное сопротивление- блок “А9”. В качестве нагрузочного узла применяется генератор постоянного тока независимого возбуждения. Обмотка возбуждения получает питание от регулируемого источники питания “G2”. В качестве нагрузочного сопротивления в цепи якоря генератора применяется блок “A10”. Для контроля тока и напряжения в цепи якоря применяется амперметр А2 и вольтметр V2; для контроля тока в цепи статора применяется амперметр “A1”, для контроля мощности – измеритель мощности “P2”. Для контроля скорости применяется прибор “n”- Р5 и датчик скорости “B”.

Испытуемый двигатель, генератор и тахогенератор находятся на одном валу.

Данные по аппаратуре приведены в таблице 5.1.

Перечень аппараты.

Рисунок 5.11 – Принципиальная схема опытной установки

Асинхронный двигатель с фазным ротором

Надёжность электродвигателя это одно из важнейших качеств его. Обычно она связана с простотой конструкции. Чем проще конструкция, тем надёжнее движок. Эта зависимость подтверждается асинхронными электродвигателями. Они получили самое широкое распространение из всех электродвигателей именно по причине простоты устройства и надёжности. В них реализован самый простой способ получения крутящего момента на валу движка. Максимум магнитного поля статора перемещается вокруг вала, вызывая его ответную реакцию.

Причины появления фазного ротора в асинхронном двигателе

Реакция ротора вызвана током, который возникает в нём. Ведь по своей сути статор является первичной обмоткой трансформатора. А ротор – его вторичная обмотка. При неподвижном роторе величина тока в нём максимальна. Это объясняется тем, что скорость перемещения максимума магнитного поля статора относительно вала получается максимальной. Такой режим асинхронного движка аналогичен включению трансформатора с вторичной обмоткой замкнутой накоротко.

А поскольку обмотки взаимосвязаны магнитопроводом, который в асинхронном двигателе разделён на железо вращающейся части его и сердечник статора, в обмотке статора тоже получается максимум величины тока. Если мощность электросети недостаточна для того, чтобы при пуске асинхронных движков поддержать напряжение в пределах необходимого значения, применяются меры по уменьшению пускового тока этих двигателей. Это делается либо при помощи специальных схем, которые позволяют регулировать токи в обмотках статора, либо использованием асинхронных движков специальной конструкции – с фазным ротором.

Как устроен фазный ротор?

Фазный ротор содержит обмотки в виде катушек с витками. Эти катушки соединены по схеме «звезда». Конец каждой обмотки соединён с ответствующим кольцом. При подаче напряжения на статор на каждом кольце появляется напряжение. В скользящем контакте с кольцом находится щётка, которая даёт возможность подключения внешних элементов. Эти элементы являются частью схемы управления. Она получается более простой, по сравнению с теми схемами, которыми движок управляется со стороны статора. Чаще всего схема управления содержит набор резисторов.

Они подключаются по мере разгона вала. Хотя такой способ управления пуском асинхронного двигателя не самый экономичный, он наиболее часто применяется на практике в силу своей простоты и минимума коммутационных помех. Ограничение тока ротора это не только возможность плавного запуска двигателя, но и ограничение скорости вращения вала. Но тогда более рациональным решением будет использование индуктивностей вместо резисторов. Иллюстрации, показывающие особенности конструкции асинхронного движка с фазным ротором показаны далее.

При автоматическом управлении лучше всего применять реле или полупроводниковые коммутаторы, которые параллельно стартовому резистору подключают новые резисторы, постепенно уменьшая их суммарное сопротивление до нуля с шунтированием всех резисторов последним коммутатором или контактами реле. Для наиболее плавного пуска необходимо использовать реостат 1, который на схеме слева включён в электрической цепи ротора и своими ползунками 5 соединён с кольцами 2 через клеммы щёток 3. Движок начинает работать после замыкания контактов рубильника 4. При этом ползунки реостата должны быть установлены в положение «Пуск».

В этом положении сопротивлении реостата максимально. Вал движка начинает вращаться. Перемещение ползунка будет приводить к разгону вала до максимальной скорости, которая появится при нулевом значении сопротивлении реостата. Однако есть ещё одно следствие такой регулировки двигателя с фазным ротором. Меняется связь крутящего момента и скольжения. Этот эффект показан на графике ниже. При определённой величине сопротивления в цепи ротора максимум крутящего момента смещается в сторону более высоких оборотов движка, как на кривой 2. Кривая 1 соответствует нулевому значению сопротивления в цепи фазного ротора.

Читать еще:  Двигатель cawa сколько масла

При нулевом сопротивлении кольца, по сути, замкнуты накоротко. Щётки и кольца из-за трения изнашиваются. А поскольку после завершения разгона вала этот узел фактически не используется его целесообразно исключить из процесса работы. По этой причине асинхронный двигатель с фазным ротором предусматривает специальный механизм. Он отодвигает щётки от колец и одновременно замыкает последние накоротко. В результате кольца и щётки работают намного дольше по сравнению с тем вариантом, который предусматривает их непрерывный контакт.

Простота и надёжность асинхронных двигателей основана на конструкции ротора. Но именно это обстоятельство и создаёт проблемы с их эксплуатацией. Большие пусковые токи в некоторых случаях неприемлемы настолько, что оправдывается более сложная и дорогостоящая намоточная конструкция ротора с кольцами и щётками. Тогда и применяют асинхронный двигатель с фазным ротором. Но более сложная конструкция и цена их в сравнении с асинхронными двигателями с короткозамкнутым ротором оправдывается также и тем, что они позволяют получить величину крутящего момента в рабочем режиме при меньших габаритах и массе. Поэтому эти особенности делают асинхронные двигатели с фазным ротором в ряде случаев наиболее предпочтительными.

Устройство асинхронных электродвигателей с фазным ротором

Основными частями любого асинхронного двигателя является неподвижная часть — статор и вращающая часть, называемая ротором.

Статор трехфазного асинхронного двигателя состоит из шихтованного магнитопровода, запрессованного в литую станину. На внутренней поверхности магнитопровода имеются пазы для укладки проводников обмотки. Эти проводники являются сторонами многовитковых мягких катушек, образующих три фазы обмотки статора. Геометрические оси катушек сдвинуты в пространстве друг относительно друга на 120 градусов.

Фазы обмотки можно соединить по схеме »звезда» или «треугольник» в зависимости от напряжения сети. Например, если в паспорте двигателя указаны напряжения 220/380 В, то при напряжении сети 380 В фазы соединяют «звездой». Если же напряжение сети 220 В, то обмотки соединяют в «треугольник». В обоих случаях фазное напряжение двигателя равно 220 В.

Ротор трехфазного асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали и насаженный на вал. В зависимости от типа обмотки роторы трехфазных асинхронных двигателей делятся на короткозамкнутые и фазные.

Доливо-Добровольский первым создал двигатель с короткозамкнутым ротором и исследовал его свойства. Он выяснил, что у таких двигателей есть очень серьёзный недостаток — ограниченный пусковой момент. Доливо-Добровольский назвал причину этого недостатка — сильно закороченный ротор. Им же была предложена конструкция двигателя с фазным ротором.

На рис. приведен вид асинхронной машины с фазным ротором в разрезе: 1 — станина, 2 — обмотка статора, 3 — ротор, 4 — контактные кольца, 5 — щетки.

У фазного ротора обмотка выполняется трёхфазной, аналогично обмотке статора, с тем же числом пар полюсов. Витки обмотки закладываются в пазы сердечника ротора и соединяются по схеме звезда. Концы каждой фазы соединяются с контактными кольцами, закреплёнными на валу ротора, и через щётки выводятся во внешнюю цепь. Контактные кольца изготавливают из латуни или стали, они должны быть изолированы друг от друга и от вала. В качестве щёток используют металлографитовые щётки, которые прижимаются к контактным кольцам с помощью пружин щёткодержателей, закреплённых неподвижно в корпусе машины. На рис. приведено условное обозначение асинхронного двигателя с короткозамкнутым (а) и фазным (б) ротором.

В асинхронных электродвигателях большей мощности и специальных машинах малой мощности для улучшения пусковых и регулировочных свойств применяются фазные роторы. В этих случаях на роторе укладывается трехфазная обмотка с геометрическими осями фазных катушек (1), сдвинутыми в пространстве друг относительно друга на 120 градусов.

Фазы обмотки соединяются звездой и концы их присоединяются к трем контактным кольцам (3), насаженным на вал (2) и электрически изолированным как от вала, так и друг от друга. С помощью щеток (4), находящихся в скользящем контакте с кольцами (3), имеется возможность включать в цепи фазных обмоток регулировочные реостаты (5).

Асинхронный двигатель с фазным роторомимеет лучшие пусковые и регулировочные свойства, однако ему присущи большие масса, размеры и стоимость, чем асинхронному двигателю с короткозамкнутым ротором.

15. Правило Буравчика: Если поступательные движения буравчика совпадает с направлением тока в проводе, то вращение рукоятки буравчика укажет направление магнитных силовых линий.

Интенсивность магнитного поля, т. е.способность его производить работу, определяется величиной, называемой магнитной индукцией.В = F/(i·l)

Напряженность электрического поля — это отношение силы, действующей на заряд, к величине заряда.

Напряженность — векторная физическая величина, численно равная отношению

силы, действующей на заряд, помещенный в данную точку данного поля, к величине этого заряда.

Магнитная индукция — это векторная физическая величина, являющаяся силовой характеристикой магнитного поля, численно равная максимальному вращающему моменту, действующему на контур с единичным магнитным моментом, и направленная вдоль положительной нормали к контуру.

Произведение магнитной индукции B однородного поля и площадки S, перпендикулярной вектору этой индукции, называется магнитным потоком. Ф = В S

Характеристики магнитного поля

Магнитная индукция В — векторная величина, характеризующая магнитное поле и определяющая силу, действующую на движущуюся заряженную частицу со стороны магнитного поля. Эта характеристика является основной характеристикой магнитного поля, так как определяет электромагнитную силу, а также ЭДС индукции в проводнике, перемещающемся в магнитном поле.

Единицей магнитной индукции является вебер, деленный на квадратный метр, или тесла (Тл):[В] =1Вб/1 м 2 = 1 Тл.

Абсолютная магнитная проницаемость среды μa — величина, являющаяся коэффициентом, отражающим магнитные свойства среды:

где μ = 4π*10 -7 (Ом*с)/м — магнитная постоянная, характеризующая магнитные свойства вакуума.

Единицу Ом*секунда (Ом*с) называют генри (Гн) Таким образом, [μ]=Гн/м.

Величину μr, называют относительной магнитной проницаемостью среды. Она показывает, во сколько раз индукция поля, созданного током в данной среде, больше или меньше, чем в вакууме, и является безразмерной величиной.

Для большинства материалов проницаемость μr постоянна и близка к единице. Для ферромагнитных материалов μr является функцией тока, создающего магнитное поле, и достигает больших значений (10 2 -10 5 ).

Напряженность магнитного поля Н — векторная величина, которая не зависит от свойств среды и определяется только токами в проводниках, создающими магнитное поле.

Магнитный поток Ф — поток магнитной индукции.

Магнитный поток Ф через площадку S в однородном магнитном поле равен произведению нормальной составляющей вектора индукции Вn на площадь S площадки: Ф=ВnS=BS cos β

Магнитное напряжение (рисунок 3.3, а) в однородном магнитном поле определяется как произведение проекции H вектора Н на отрезок АВ и длину этого отрезка ℓ:

При прохождении электрического тока по про­воднику в окружающем пространстве возникает магнитное поле.

16. Принцип действия однофазного трансформатора. При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i1, образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е1 и е2. Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е2 по ее цепи проходит ток i2.

Э. д. с, индуцированная в каждом витке первичной и вторичной обмоток трансформатора, согласно закону электромагнитной индукции зависит от магнитного потока, пронизывающего виток, и скорости его изменения. Магнитный поток каждого трансформатора является определенной величиной, зависящей от напряжения и частоты изменения переменного тока в источнике, к которому подключен трансформатор. Постоянна также и скорость изменения магнитного потока, она определяется частотой изменения переменного тока.

Трансформатор не может осуществить преобразование напряжения постоянного тока. При подключении его первичной обмотки к сети постоянного тока в трансформаторе создается постоянный по величине и направлению магнитный поток, который не может индуцировать э. д. с. в первичной и вторичной обмотках. Поэтому не будет происходить передачи электрической энергии из первичной обмотки во вторичную.

При подключении первичной обмотки трансформатора к сети переменного тока через эту обмотку проходит некоторый ток, называемыйтоком холостого хода. При включении нагрузки по вторичной обмотке трансформатора начинает проходить ток, при этом увеличивается и ток, проходящий по первичной обмотке. Чем больше нагрузка трансформатора, т. е. электрическая мощность и ток i2, отдаваемые его вторичной обмоткой подключенным к ней приемникам, тем больше электрическая мощность и ток i1, поступающие из сети в первичную обмотку.

На замкнутом магнитопроводе, выполненном из магнитомягкой листовой стали, расположены две (или более) катушки (обмотки). К одной из обмоток подводится электрическая энергия от источника переменного тока. Эта обмотка называется первичной. От другой, вторичной, обмотки с числом витков W2 энергия отводится к приемнику. Все величины, относящиеся к этим обмоткам (токи, напряжения, мощности и т.п.) называются соответственно первичными или вторичными.

17. Вещества, обладающие большой магнитной проницаемостью и способные усиливать внешнее магнитное поле называются ферромагнетиками. К ним относятся: сталь, железо, никель, кобальт, их сплавы и др. В ферромагнетиках имеются группы молекул с самопроизвольным намагничиванием, называемые доменами.

Читать еще:  Двигатель ваз 21083 карбюратор схема

Процесс, в результате которого ферромагнетик приобретает магнитные свойства, называется намагничиванием.

Петлей гистерезисаназывают кривые, отражающие изменение намагниченности ферромагнетика под воздействием циклически изменяющегося внешнего магнитного поля.

18Коэффициент полезного действия (КПД) определяется как отношение полезной, или отдаваемой, мощности P2к потребляемой мощности P1

100 %.×или в процентах Электрическая мощность, потребляемая двигателем из сети P1=Pя+Pв, где Pя=UнIя– мощность якорной цепи,

Механическая мощность на валу двигателя, отдаваемая приводному механизму P2=ωМ.

Современные машины постоянного тока имеют высокий КПД, который в зависимости от мощности, колеблется в пределах ηн = 0,75÷0,96. Высшее значение КПД относится к машинам большей мощности.

Потери мощности в электрических машинах.Преобразование
механической энергии в электрическую в генераторе и электрической энергии в механическую в двигателе сопровождается некоторыми потерями энергии, которые выделяются в виде тепла, нагревая электрическую машину.

19Если внести проводник с током в магнитном поле (рис. 86, а), то в результате сложения магнитных полей магнита и проводника произойдет усиление результирующего магнитного поля с одной стороны проводника (на чертеже сверху) и ослабление магнитного поля с другой стороны проводника (на чертеже снизу). В результате действия двух магнитных полей произойдет искривление

магнитных линий, и они, стремясь сократиться, будут выталкивать проводник вниз, (рис. 86, б).

Сила, действующая на проводник с током, помещенный в магнитное поле, называется электромагнитной силой. Направление этой силы можно определить по «правилу левой руки»: если левую руку расположить в магнитном поле так, чтобы магнитные линии, выходящие из северного полюса, как бы входили в ладонь, а четыре вытянутых пальца совпадали с направлением тока в проводнике, то большой отогнутый палец руки покажет направление действия силы

Если близко один к другому расположены проводники с токами одного направления, то магнитные линии этих проводников, охватывающие оба проводника, обладая свойством продольного натяжения и стремясь сократиться, будут заставлять проводники притягиваться (рис. 90, а).

Магнитные линии двух проводников с токами разных направлений в пространстве между проводниками направлены в одну сторону. Магнитные линии, имеющие одинаковое направление, будут взаимно отталкиваться. Поэтому проводники с токами противоположного направления отталкиваются один от другого .

20.Трансформаторомназывают статическое электромагнитное устройство, имеющее две или большее число индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.Основное назначение трансформаторов — изменять напряжение переменного тока.

Магнитопровод. Магнитопровод в трансформаторе выполняет две функции: во-первых, он составляет магнитную цепь, по которой замыкается основной магнитный поток трансформатора, а во-вторых, он предназначен для установки и крепления обмоток, отводов, переключателей. Магнитопровод имеет шихтованную конструкцию, т.е. он состоит из тонких (обычно толщиной 0,5 мм) стальных пластин, покрытых с двух сторон изолирующей пленкой (например, лаком). Такая конструкция магнитопровода обусловлена стремлением ослабить вихревые токи, наводимые в нем переменным магнитным потоком, а, следовательно, уменьшить величину потерь энергии в трансформаторе.

Силовые трансформаторы выполняются с магнитопроводами трех типов: стержневого, броневого и бронестержневого.

В трансформаторах большой мощности применяют бронестержневую конструкцию магнитопровода (рис. 1.5), которая хотя и требует повышенного расхода электротехнической стали, но позволяет уменьшить высоту магнитопровода <Нбс [1] , краем которой является этот контур [2] [3] [4] .

В формуле — магнитный поток, — сила тока в контуре, — индуктивность.

Вихревыми токами (также токами Фуко) называются электрические токи, возникающие вследствие электромагнитной индукции в проводящей среде (обычно в металле) при изменении пронизывающего ее магнитного потока.

Двигатели с фазным ротором — регулирование координат

Дополнительные возможности управлять координатами асинхронного электропривода появляются, если ротор выполнен не короткозамкнутым, а фазным , т.е. если его обмотка состоит из катушек, похожих на статорные, соединенных между собой и выведенных на кольца, по которым скользят щетки, связанные с внешними устройствами. Схематически трехфазная машина с фазным ротором показана на рис. 10,а. Фазный ротор обеспечивает дополнительный канал, по которому можно воздействовать на двигатель, — в этом его очевидное достоинство, но очевидна и плата за него: существенное усложнение конструкции, бo льшая стоимость, наличие скользящих контактов. Именно эти негативные особенности привели к тому, что в общем объёме производства асинхронные двигатели с фазным ротором составляют небольшую долю.

Рис. 10. Асинхронный двигатель с фазным ротором (а), схема (б) и характеристики (в) и (г) реостатного регулирования

К щеткам на кольцах в цепи ротора можно подключать как пассивные цепи, например, резисторы, так и активные, содержащие источники энергии; последняя возможность широко используется в электроприводах большой мощности (сотни — тысячи киловатт).

Как и в электроприводе постоянного тока это простейший способ регулирования: в каждую фазу ротора включают одинаковые резисторы с сопротивлением R д — рис. 10,б. Тогда общее активное сопротивление фазы ротора составит R 2 = R р + R д , а искусственные характеристики приобретут вид, представленный на рис. 10,в,г: предельное значение тока ротора Iў 2 пред и критический момент М к в соответствии с (8) и (11) не изменяется, а s к в соответствии с (12) растет пропорционально R 2 :

. (18)

Последнее соотношение для критического скольжения, очевидно, выполняется и для скольжения при любом М = const , оно похоже на (3.16), а реостатные механические характеристики похожи на таковые для двигателя постоянного тока. Показатели реостатного регулирования скорости асинхронных двигателей с фазным ротором практически те же, что у электропривода постоянного тока.

1. Регулирование однозонное — вниз от основной скорости.

2. Диапазон регулирования (2-3):1, стабильность скорости низкая.

3. Регулирование ступенчатое. С целью устранения этого недостатка иногда используются схемы, в которых роторный ток выпрямляется и сглаживается реактором, а резистор, включаемый за выпрямителем, шунтируется управляемым ключом — транзистором с управляемой скважностью, благодаря чему достигается плавность регулирования, а при использовании обратных связей формируются жесткие характеристики.

4. Допустимая нагрузка М доп = М н , поскольку Ф ” Ф н и при мало меняющемся cos j 2 I 2доп ” I 2н .

5. С энергетической точки зрения реостатное регулирование в асинхронном электроприводе столь же неэффективно, как и в электроприводе постоянного тока — потери в роторной цепи при M = const пропорциональны скольжению:

,

а распределение этих потерь определяется в соответствии с (18) соотношением сопротивлений — собственно в роторной обмотке рассеивается мощность , а в дополнительных резисторах — мощность .

6. Капитальные затраты, как и в электроприводе постоянного тока, сравнительно невелики.

Интересные перспективы открывает включение в роторную цепь активных элементов, при f 1 = const появляется возможность не потерять, а истратить полезно мощность скольжения , отдав её либо в сеть, либо на вал двигателя. Электроприводы такого типа называют каскадами или каскадными схемами.

Простейшая схема машино — вентильного каскада, иллюстрирующая общую идею, показана на рис. 11,а. ЭДС машины постоянного тока Е должна быть направлена встречно ЭДС роторного выпрямителя Е d , что достигается соответствующей полярностью машины. Тогда

где R э — эквивалентное активное сопротивление контура выпрямитель — якорь машины.

Рис. 11. Схема (а), характеристики (б) и (в) и энергетическая диаграмма (г) машино-вентильного каскада

Поскольку E d =kE 1 s , а Е 1 ” U 1 = const , то до некоторого скольжения sў , определяемого уровнем ЭДС машины постоянного тока Еў (рис. 11,б), ток I d = 0 , а следовательно, I 2 = 0 , и машина М1 не развивает момента. При s>sў ток начнет расти в соответствии с приведенным выше уравнением, вызывая увеличение момента (рис. 11,в). Мощность возвратится в сеть (рис. 11,г); знаки приближенного равенства показывают, что мы не учитываем электрических потерь в сопротивлениях контура выпрямитель — якорь и механических в машинах М2 и М3 .

Меняя ток возбуждения машины М2 , а следовательно величину Е , можно изменять скольжение, при котором начинается рост тока I d , и, следовательно, регулировать скорость (рис. 11,в).

Иногда вместо двух дополнительных электрических машин, возвращающих энергию скольжения в сеть, используется один статический преобразователь-инвертор, ведомый сетью.

Энергия скольжения не обязательно должна возвращаться в сеть, есть каскады, в которых она отдается машиной М2 на вал главного асинхронного двигателя.

Каскадные схемы используются при очень больших мощностях (тысячи киловатт) и малых диапазонах регулирования — (1,1-1,2):1.

Электропривод с машиной двойного питания

Каскадные схемы предполагали управление координатами в цепи выпрямленного тока ротора. Вместе с тем существует и другая возможность — включение в цепь ротора преобразователя частоты (рис. 12,а). Структуры такого типа называют электроприводами с машинами двойного питания.

Рис. 12. Схема (а) и характеристики (б) машины двойного питания

Поскольку при преобразовании энергии поля должны быть неподвижны относительно друг друга, должны выдерживаться следующие соотношения скоростей и частот:

; (19)

f 1 = f 2 + f , (20)

где — угловые скорости поля статора и поля ротора относительно соответственно статора и ротора; f 1 , f 2 — частоты напряжения статора и ротора; f — частота, соответствующая угловой скорости ротора.

Читать еще:  Ваз 2109 закипел двигатель возможные причины и устранение

Из (19) и (20) следуют богатые возможности управления скоростью ротора : действительно, фиксируя f 1 , т.е. , и управляя , можно получать любые f и теоретически в неограниченном диапазоне (рис. 12,б); знаком “-” для f 2 и обозначено изменение чередования фаз, чему соответствует изменение направления вращения поля.

Если частота f 2 задается независимо от , механические характеристики представляются горизонтальными линиями (рис. 12,б), и в этом смысле машина подобна синхронной, которую мы рассмотрим далее. При изменении момента нагрузки меняется угол q между осями полей статора и ротора — как бы по-разному растягивается “магнитная пружина”. Наибольший момент М max определяется предельной силой магнитной связи статора и ротора — при превышении моментом нагрузки этой величины нарушаются условия (19), “магнитная пружина” рвется, поля перестают быть неподвижными относительно друг друга, машина не развивает среднего момента и либо останавливается при реактивном М с , либо вращается со скоростью, определяемой активным М с ; это, разумеется, аварийный режим.

Возможно и другое построение системы: частота f 2 может быть связана со скоростью ротора. В этом случае характеристики будут похожи на характеристики машины постоянного тока — будут иметь наклон, который можно трактовать как скольжение; видом связи можно формировать характеристики любого вида.

В рассматриваемой системе очень многообразны энергетические режимы — они определяются соотношением частот f 1 и f 2 , относительным направлением вращения полей, направлением действия (знаком) момента сопротивления. На рис. 12,б в качестве примера приведена диаграмма, иллюстрирующая режимы на одной из характеристик в предположении, что потери малы и не учитываются.

Асинхронный двигатель с короткозамкнутым ротором и фазным ротором

Статор современного асинхронного электродвигателя имеет невыраженные полюсы, т. е. внутренняя поверхность статора сделана совершенно гладкой.

Чтобы уменьшить потери на вихревые токи, сердечник статора набирают из тонких штампованных стальных листов. Собранный сердечник статора закрепляют в стальном корпусе.

В пазы статора закладывают обмотку из медной проволоки. Фазовые обмотки статора электродвигателя соединяются «звездой» или «треугольником», для чего все начала и концы обмоток выводятся на корпус — на специальный изоляционный щиток. Такое устройство статора очень удобно, так как позволяет включать его обмотки на разные стандартные напряжения.

Ротор асинхронного двигателя, подобно статору, набирается из штампованных листов стали. В пазы ротора закладывается обмотка.

В зависимости от конструкции ротора асинхронные электродвигатели делятсяна двигатели с короткозамкнутым ротором и фазным ротором.

Обмотка короткозамкнутого ротора сделана из медных стержней, закладываемых в пазы ротора. Торцы стержней соединены при помощи медного кольца. Такая обмотка называется обмоткой типа «беличьей клетки». Заметим, что медные стержни в пазах не изолируются.

В некоторых двигателях «беличью клетку» заменяют литым ротором.

Асинхронный двигатель с фазным ротором (с контактными кольцами) применяется обычно в электродвигателях большой мощности и в тех случаях; когда необходимо, чтобы электродвигатель создавал большое усилие при трогании с места. Достигается это тем, что в обмотки фазного двигателя включается пусковой реостат.

Короткозамкнутые асинхронные двигатели пускаются в ход двумя способами:
1) Непосредственным подключением трехфазного напряжения сети к статору двигателя. Этот способ самый простой и наиболее популярный.

2) Снижением напряжения, подводимого к обмоткам статора. Напряжение снижают, например, переключая обмотки статора со «звезды» на «треугольник».

Пуск двигателя в ход происходит при соединении обмоток статора «звездой», а когда ротор достигнет нормального числа оборотов, обмотки статора переключаются на соединение «треугольником».

Ток в подводящих проводах при этом способе пуска двигателя уменьшается в 3 раза по сравнению с тем током, который возник бы при пуске двигателя прямым включением в сеть с обмотками статора, соединенными «треугольником». Однако этот способ пригоден лишь в том случае, если статор рассчитан для нормальной работы при соединении его обмоток «треугольником».

Наиболее простым, дешевым и надежным является асинхронный электродвигатель с короткозамкнутым ротором, но этот двигатель обладает некоторыми недостатками — малым усилием при трогании с места и большим пусковым током. В пазах ротора с короткозамкнутой обмоткой размещены алюминиевые или медные стержни. По торцам стержни замкнуты алюминиевыми или медными кольцами. Статор и ротор набирают из листов электротехнической стали, чтобы уменьшить потери на вихревые токи.

Недостатки короткозамкнутого ротора в значительной мере устраняются применением фазного ротора, но применение такого ротора значительно удорожает двигатель и требует пускового реостата. Фазный ротор имеет трехфазную обмотку (для трехфазного двигателя). Концы фаз соединены в общий узел, а начала выведены к трем контактным кольцам, размещенным на валу. На кольца накладывают неподвижные контактные щетки. К щеткам подключают пусковой реостат. После пуска двигателя сопротивление пускового реостата плавно уменьшают до нуля

Контрольные вопросы

1. Что означает понятие статор с невыраженными полюсами?

2. Как в зависимости от конструкции ротора делятся асинхронные электродвигатели?

3. Какая обмотка называется обмоткой типа «беличьей клетки»?

4. Где применяется асинхронный двигатель с фазным ротором?

5. Перечислите недостатки короткозамкнутого ротора.

Тема 7. Полупроводниковые приборы

Электропроводность полупроводников.

Электронно-дырочный переход

Полупроводникаминазываются материалы, имеющие на внешнем уровне по 4 электрона. Особенностью полупроводников является то, что каждый электрон образует общую орбиту с электроном соседнего атома.

Химическую связь двух соседних атомов называют ковалентнойили парноэлектронной.

При отсутствии примесей и температуре, близкой к абсо­лютному нулю, все валентные электроны атомов в кристалле полупроводника взаимно связаны и свободных электронов нет, полупроводник не обладает проводимостью.

При повышении температуры или при облучении увеличивается энергия электронов, что приводит к частичному нарушению ковалентных связей и появлению сво­бодных электронов.

Уже при комнатной температуре под действи­ем внешнего электрического поля свободные электроны переме­щаются и в кристалле возникает электрический ток.

Электропровод­ность, обусловленная перемещением свободных электронов, называ­ется электронной проводимостью полупроводника или n-проводимостью.

При появлении свободных электронов в ковалентных связях образуется свободное не заполненное электроном место — «электронная дырка». Так как дыр­ка возникла в месте отрыва электрона от атома, то в области ее образования возника­ет избыточный положительный заряд. При наличии дырки какой-либо из электронов со­седних связей может занять место дырки и нормальная ковалентная связь в этом месте восстановится, но будет нарушена в том месте, откуда ушел электрон. Новую дырку займет следующий электрон и т. д.

Перемещение дырок подобно перемещению положительных зарядов и называется дырочной электропроводностью или р-проводимостью. Под действием внешнего электрического поля дырки перемещаются в направлении сил поля, т. е. противоположно перемещению элек­тронов.

Процесс образования пары электрон-дырка называется генерацией.

Таким образом, при электронной проводимости один свободный электрон проходит весь путь в кристалле, а при дырочной прово­димости большое число электронов поочередно замещают друг друга в ковалентных связях и каждый из них проходит свой отрезок пути.

В кристалле чистого полупроводника при нарушении ковалент­ных связей возникает одинаковое число свободных электронов и дырок. Одновременно с этим происходит обратный процесс — ре­комбинация, при которой свободные электроны заполняют дырки, образуя нормальные ковалентные связи.

При определенной темпе­ратуре число свободных электронов и дырок в единице объема полупроводника в среднем остается постоянным.

При повышении температуры число свободных электронов и дырок сильно воз­растает, и проводимость полупроводника значительно увеличивается, т. е. полупроводники имеют отрицательный температурный коэффициент сопротивления.

Электропроводность полупроводника при отсут­ствии в нем примесей называется собственной.

Свойства полупроводника в сильной степени меняются при наличии в нем ничтожного малого количества примесей. Вводя в кристалл полупроводника атомы других элементов можно получить в кристалле преобладание свободных электронов над дырками и наоборот.

Например, при замещении в кристаллической решетке атома полупроводника атомом 5-валентного вещества (фосфор, мышьяк, сурьма) четыре электрона этого вещества образуют заполненные связи с соседними атомами полупроводника, а пятый окажется свободным, т.е. число электронов увеличится. Такая примесь называется донорной, полупроводник – n-типа.

При замещении атома полупроводника атомом 3-валентного вещества (алюминий, индий, галлий) его электроны образуют ковалентные связи с тремя соседними атомами полупроводника, а связи с четвертым атомом не будет, т.к. четвертого электрона у примеси нет. Создание связи возможно, если недостающий четвертый электрон будет получен от ближайшего атома полупроводника. Но в этом случае появится дырка. Такая примесь вызывает преобладание дырочной проводимости и называется акцепторной.

Носители заряда, определяющие собой тип проводимости в примесном полупроводнике, называются основными, противоположного знака – не основными.

1. Какие материалы называются полупроводниками?

2. Какую связь называют ковалентной или парноэлектронной?

3. Как влияет изменение температуры на поведение электронов?

4. Дайте определение электронной проводимости.

5. Дайте определение генерации.

6. Дайте определение дырочной проводимости.

7. Опишите процесс рекомбинации.

8. Дайте определение собственной электропроводности.

9. Дайте определение донорной примеси.

10. Дайте определение акцепторной примеси.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector