1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Виды запуска асинхронного двигателя

Пуск трёхфазного асинхронного двигателя

Включение в сеть при разомкнутой обмотке ротора

В этом случае, так же как и в трансформаторе, при разомкнутой вторичной обмотке возникает апериодическая составляющая Фа, магнитного потока, которая затухает по экспоненциальному закону с постоянной времени

где L1, — индуктивность, обусловленная сцеплением полного потока со статорной обмоткой.

В трехфазном асинхронном двигателе от момента включения зависит не величина, а пространственное направление апериодической составляющей потока. Вследствие этого апериодические токи в фазах неподвижной обмотки статора зависят от момента включения. Наибольшее значение имеет апериодическая составляющая тока в фазе, напряжение которой в момент включения проходит через нуль.

Составляющие установившихся токов трехфазной обмотки статора создают установившийся поток Фу, который вращается с синхронной скоростью. Можно считать в первом приближении, что пространственное направление затухающего апериодического потока Ф, остается неизменным. Вектор результирующего потока Ф в воздушном зазоре согласно выражению равен сумме векторов Фy и Фа и перемещается по кривой OABCDE. Максимальное значение поток Ф имеет в точке В.

Вследствие большого воздушного зазора и меньшего остаточного магнетизма максимальный ток при включении в фазе статора меньше, чем у трансформатора, но все же может в несколько раз превысить номинальное значение.

Включение в сеть при замкнутой обмотке ротора.

В большинстве случаев принимают, что электромагнитные переходные процессы проходят весьма быстро по сравнению с электромеханическими процессами, связанными с механической инерцией вращающихся масс, и ими можно пренебречь, считая, что электромагнитный переходной процесс не оказывает заметного влияния на общую длительность пускового режима.

При включении электродвигателя в сеть в случае короткозамкнутой обмотки ротора происходят в основном те же процессы, что и рассмотренные при разборе короткого замыкания. В первый момент включения при неподвижном роторе в обмотках статора и ротора возникают те же составляющие токов. В дальнейшем в обмотках статора и ротора возникают затухающие периодические составляющие токов, вызван­ные вращением ротора. Если бы ротор достиг синхронной скорости, то токи в обмотках были бы аналогичны для синхронной машины с одной обмоткой на роторе

Вследствие одинаковых сопротивлений обмоток асинхронного двигателя по продольной и поперечной осям отсутствует составляющая тока idq, имеющая двойную частоту. При скольжении s в переходном режиме по обмоткам асинхронного двигателя проходят следующие составляющие токов:

  1. установившийся ток статора, имеющий частоту сети, и установившийся ток обмотки ротора, имеющий частоту скольжения s;
  2. апериодический ток статора и соответствующий ему периодический ток ротора, имеющий частоту вращения ротора (1—s); обе составляющие затухают с постоянной времени, определяемой переходными сопротивлениями обмотки статора;
  3. апериодический ток ротора и соответствующий ему периодический ток статора, имеющий частоту вращения ротора (1—s). Обе составляющие затухают с постоянной времени, определяемой переходными сопротивлениями обмотки ротора.

При изменении скольжения меняется величина и фаза токов (особенно заметно в диапазоне скольжений sK

Пуск асинхронных двигателей.

При пуске двигателя в ход по возможности должны удовлетворяться следующие ос­новные требования: процесс пуска должен быть простым и осуществляться без сложных пусковых устройств; пусковой момент должен быть достаточно большим, а пусковые то­ки – по возможности малыми, иногда к этим требованиям добавляются и другие, обус­ловленные особенностями конкретных приводов, в которых используются двигатели: не­обходимость плавного пуска, максимального пускового момента и пр.

Практически используют следующие способы пуска: непосредственное подключение обмотки статора к сети (прямой пуск); понижение напряжения, подводимого к обмотке статора при пуске; подключение к обмотке ротора пускового реостата.

Прямой пуск. Применяют для пуска асинхронных двигателей с короткозамкнутым ротором. Двигатели этого типа малой и средней мощности обычно проектируют так, что­бы при непосредственном подключении обмотки статора к сети возникающие пусковые то­ки не создавали чрезмерных электродинамических усилий и превышений температуры, опас­ных с точки зрения механической и термической прочности основных элементов машины.

Двигатели обычно пускаются с помощью электромагнитного выключателя (магнит­ного пускателя) по схеме, изображенной на рис. 70 а, и разгоняются по естественной механической характеристике (рис. 70, б) от точки соответствующей начальному моменту пуска, до точки , соответствующей условию – Ускорение при разгоне при любой частоте определяется разностью абсцисс кривых и . Если в начальный , то двигатель разогнаться не сможет.

Величину начального пускового момента можно получить из формулы (45), положив в ней :

. (55)

, (56)

называют кратностью начального пускового момента. Для двигателей с короткозамкнутым ротором мощностью 0,6-100 кВт ГОСТом установлено ; мощностью 100-1000 кВт – .

Рис. 70. Схема включения асинхронного двигателя при прямом пуске и графики изменения момента двигателя, статического момента и тока

Кроме сравнительно небольшого пускового момента недостатком данного способа пуска является также большой бросок пускового тока, в пять-семь раз превышающий номинальное значение тока.

Несмотря на указанные недостатки, пуск двигателя путем непосредственного под­ключения обмотки статора к сети весьма широко применяется благодаря простоте опера­ций пуска и хорошим технико-экономическим свойствам двигателя с короткозамкнутым ротором: низкой стоимости и высоким энергетическим показателям (КПД, и др.).

Пуск при пониженном напряжении. Такой пуск применяется для асинхронных двига­телей с короткозамкнутым ротором большой мощности, а также для двигателей средней мощности при недостаточно мощных электрических сетях. Понижение напряжения может осуществляться следующими способами:

1. Переключением обмотки статора при пуске с рабочей схемы «треугольник» на пусковую схему «звезда». Это можно осуществить с помощью трехполюсного переключателя (рис. 71, а) или контактора. При включении обмотки статора по схеме «звезда» напряжение, подаваемое на фазы этой обмотки, уменьшается в раз, что обуславливает уменьшение фазных токов в раз и линейных токов в три раза. По окончании процесса пуска и разгона двигателя до номинальной частоты вращения обмотку статора переключают обратно на схему «треугольник»;

2. Включением в цепь обмотки статора на период пуска добавочных активных (резисторов) или реактивных (реакторов) сопротивлений (рис. 71, б). При этом на ука­занных сопротивлениях создаются некоторые падения напряжения пропорциональ­ные пусковому току, вследствие чего к обмотке статора будет приложено пониженное напряжение. По мере разгона двигателя снижается ЭДС, , индуктированная в обмот­ке ротора, а следовательно, и пусковой ток. В результате этого уменьшается падение напряжения на указанных сопротивлениях и возрастает приложенное к двигателю напряжение. Таким образом, при рассматриваем способе пуска напряжение, приложенное к двигателю, автоматически растет по мере разгона ротора. После окончания разгона добавочные резисторы или реакторы замыкаются накоротко контактором ;

Рис. 71. Схемы включения асинхронного двигателя при пуске с понижением напряжения

3. Подключением двигателя к сети через понижающий автотрансформатор (рис. 71, в). Последний может иметь несколько ступеней, которые в процессе пуска двигателя переключаются соответствующей аппаратурой.

Читать еще:  Чем вредна чиповка двигателя

Недостатком указанных способов является значительное уменьшение пускового и максимального моментов двигателя, которые пропорциональны квадрату приложенного напряжения. Поэтому их можно использовать только при пуске двигателей без нагрузки.

Пуск с помощью реостата в цепи ротора. Рассматриваемый способ применяют для пуска двигателей с фазным ротором. Пусковой реостат обычно имеет три-шесть ступеней (рис. 72, а), что позволяет в процессе пуска постепенно уменьшать пус­ковое сопротивление, подчеркивая высокое значение пускового момента в период разгона двигателя.

Вначале двигатель пускается по характеристике 4 (рис. 72, б), соответствующей сопротивлению пускового реостата и развивает вращающий момент . По мере увеличения частоты вращения вращающий момент ум­еньшается и может стать меньше некоторого момента .

Рис. 72. Схема включения асинхронного двигателя при реостатном пуске (а), его пусковая диаграмма (б), графики изменения частоты вращения и тока при пуске (в)

Поэтому при часть сопротивления пускового реостата выводят, замыкая контактор . Вращающий момент при этом мгновенно возрастает до а затем с увеличением частоты вращения изменяется по характеристике 3, соответствующей сопротивлению реостата . При дальнейшем уменьшении момента до часть сопротивления реостата снова выключается контактором , и двигатель переходит на работу по характеристике 2, соответствующей сопротивлению . Таким образом, при постепенном (ступен­чатом) уменьшении сопротивления пускового реостата вращающий момент двигателя изме­няется от до частота вращения возрастает до ломанной кривой, показанной на рис. 72 б жирной кривой. В конце пуска пусковой реостат полностью выводится кон­тактором , обмотка ротора замыкается накоротко, двигатель переходит на работу по естественной характеристике 1, при этом разгон осуществляется до точки Р. Выключение отдельных ступеней пускового реостата в процессе разгона двигателя может осуществлять­ся вручную или автоматически. Таким образом, включение реостата в цепь ротора мож­но осуществить пуск двигателя при и резко уменьшить пусковой ток.

На рис. 72 в показан характер изменения тока и частоты вращения , при пуске двигателя указанным способом. Ток также изменяется по ломанной кривой между двумя крайними значениями и .

Недостатком рассмотренного способа является относительная сложность пуска и необходимость применения более сложных и дорогих двигателей с фазным ротором. Кроме того, эти двигатели имеют несколько худшие показатели рабочих характеристик, чем двигатели с короткозамкнутым ротором такой же мощности (кривые , проходят ниже). В связи с этим двигатели с фазным ротором применяют только при тяжелых усло­виях пуска (когда необходимо развивать максимально возможный пусковой момент), при малой мощности электрической сети или необходимости плавного регулирования частоты вращения.

Дата добавления: 2016-10-18 ; просмотров: 17545 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Асинхронный двигатель: принцип работы и устройство

Из всего спектра выпускаемых в настоящее время электрических моторов наибольшее распространение получил двигатель асинхронный трёхфазный. Практически половина производимой в мире электроэнергии используется именно этими машинами. Они широко применяются в металлообрабатывающей и деревообрабатывающей промышленности. Асинхронный двигатель незаменим на фабриках и насосных станциях. Без таких машин не обойтись и в быту, где они используются и в другой домашней технике, и в ручном электроинструменте.

Область применения этих электрических машин расширяется с каждым днём, так как совершенствуются и сами модели, и используемые для их изготовления материалы.

Каковы же основные части этой машины

Разобрав двигатель асинхронный трехфазный, можно наблюдать два главных элемента.

Одна из важнейших деталей — статор. На фото сверху эта часть двигателя расположена слева. Он состоит из следующих основных элементов:

1. Корпус. Он необходим для соединения всех деталей машины. Если двигатель небольшой, то корпус изготавливают цельнолитым. В качестве материала используют чугун. Применяются также сталь или сплавы алюминия. Иногда корпус малых двигателей совмещает функции сердечника. Если же двигатель имеет большие размеры и мощность, то корпус сваривают из отдельных частей.

2. Сердечник. Этот элемент двигателя запрессовывается в корпус. Служит он для улучшения качеств магнитной индукции. Выполняется сердечник из пластин электрической стали. Для того чтобы снизить потери, неизбежные при появлении вихревых токов, каждая пластина покрывается слоем специального лака.

3. Обмотка. Она размещается в пазах сердечника. Состоит из витков медной проволоки, которые собираются в секции. Соединённые в определённой последовательности, они образуют три катушки, которые в совокупности являются обмоткой статора. Подключается она непосредственно к сети, поэтому называется первичной.

Ротор — это подвижная часть двигателя. На фото он находится справа. Служит он для преобразования силы магнитных полей в механическую энергию. Состоит ротор асинхронного двигателя из следующих деталей:

1. Вал. На хвостовиках его закреплены подшипники. Они запрессовываются в щиты, крепящиеся болтами к торцовым стенкам коробки статора.

2. Сердечник, который собирается на валу. Состоит из пластин специальной стали, обладающей таким ценным свойством, как низкое сопротивление магнитным полям. Сердечник, обладая формой цилиндра, и является основой для укладки обмотки якоря. Роторная, или, как её ещё называют, вторичная обмотка получает энергию благодаря магнитному полю, которое появилось вокруг катушек статора при прохождении по ним электрического тока.

Двигатели по типу изготовления подвижной части

1. Имеющие короткозамкнутую обмотку ротора. Один из вариантов исполнения этой детали показан на рисунке.

Асинхронный двигатель с короткозамкнутым ротором имеет обмотку, сделанную из алюминиевых стержней, которые располагаются в пазах сердечника. В торцевой части они замкнуты кольцами накоротко.

2. Электродвигатели, имеющие ротор, изготовленный с контактными кольцами.

У обоих типов асинхронных двигателей конструкция статора одинаковая. Различаются они только исполнением якоря.

Каков же принцип работы

Якорь трёхфазного асинхронного двигателя, исполненный подобным образом, приводится во вращение благодаря эффекту возникновения переменного магнитного поля в статорных катушках. Чтобы понять, каким образом это происходит, необходимо вспомнить физический закон самоиндукции. Он гласит, что вокруг проводника, по которому проходит поток заряженных частиц, возникает магнитное поле. Величина его будет прямо пропорциональна индуктивности провода и интенсивности протекающего в нём потока заряженных частиц. Кроме того, это магнитное поле формирует силу с определённой направленностью. Именно она нас и интересует, так как является причиной вращения ротора. Для эффективной работы двигателя необходимо иметь мощный магнитный поток. Создаётся он благодаря специальному способу монтажа первичной обмотки.

Известно, что источник питания имеет переменное напряжение. Следовательно, магнитное поле вокруг статора будет иметь такую же характеристику, напрямую зависящую от изменения тока в подающей сети. Примечательно то, что каждая фаза смещена одна относительно другой на 120˚.

Что происходит в обмотке статора

Каждая фаза сети питания подключается к соответствующей катушке статора, поэтому возникающее вокруг них магнитное поле будет смещено на 120˚. Источник питания имеет переменное напряжение, следовательно, вокруг катушек статора, которыми располагает асинхронный двигатель, будет возникать переменное магнитное поле. Схема асинхронного двигателя собирается так, чтобы магнитное поле, возникающее вокруг катушек статора, постепенно изменялось и последовательно переходило от одной обмотки к другой. Таким образом создаётся эффект вращающегося магнитного поля. Можно вычислить его частоту вращения. Измеряться она будет в оборотах за минуту. Определяется по формуле: n=60f/p, где f — это частота переменного тока в подключенной сети (Гц), p — соответствует числу пар полюсов, смонтированных на статоре.

Читать еще:  Шаговый двигатель как трансформатор

Как работает ротор

Теперь необходимо рассмотреть, какие процессы возникают во вторичной обмотке. Асинхронный двигатель с короткозамкнутым ротором имеет конструкционную особенность. Дело в том, что к его якорной обмотке напряжение не подводится. Оно там возникает благодаря магнитоиндукционной связи с первичной обмоткой. Поэтому и происходит процесс, обратный тому, что наблюдался в статоре, в соответствии с законом, который гласит, что при пересечении проводника, а в нашем случае это короткозамкнутая обмотка ротора, магнитным потоком в нём возникает электрический ток. Откуда берётся магнитное поле? Оно возникло вокруг первичной катушки при подключении трёхфазного источника питания.

Соединим статор и ротор. Что получится?

Таким образом, имеем асинхронный короткозамкнутый двигатель с ротором, в обмотке которого проходит электрический ток. Он и будет причиной возникновения магнитного поля вокруг якорной обмотки. Однако полярность этого потока будет отличаться от созданного статором. Соответственно, и сила, образуемая им, будет вступать в противодействие с той, которая вызвана магнитным полем первичной обмотки. Это и приведёт в движение ротор, так как на нём собрана вторичная катушка, и хвостовики вала якоря закреплены в корпусе двигателя на подшипниках.

Рассмотрим ситуацию взаимодействия сил, возникающих от магнитных полей статора и ротора, с течением времени. Знаем, что магнитное поле первичной обмотки вращается и обладает определённой частотой. Созданная им сила будет перемещаться, имея аналогичную скорость. Это заставит асинхронный двигатель заработать. И его ротор будет свободно вращаться вокруг оси.

Эффект скольжения

Ситуация, когда силовые потоки ротора как бы отталкиваются от вращающегося магнитного поля статора, получила название скольжения. Следует отметить, что частота асинхронного двигателя (n1) всегда меньше той, с которой перемещается магнитное поле статора. Объяснить это можно так. Чтобы в роторной обмотке возник ток, она должна быть пересечена магнитным потоком с определённой угловой скоростью. И поэтому справедливо утверждение, что скорость вращения вала больше либо равна нулю, но меньше интенсивности перемещения магнитного поля статора. Ротор имеет частоту вращения, зависящую от силы трения в подшипниках, а также от величины отбора мощности с вала ротора. Поэтому он как бы отстаёт от магнитного поля статора. Именно из-за этого частота называется асинхронной.

Таким образом, электроэнергия питающего источника преобразовалась в кинетическую энергию вращающегося вала. Скорость его вращения прямо пропорциональна частоте тока питающей сети и количеству пар полюсов статора. Для увеличения частоты вращения якоря можно использовать частотные преобразователи. Однако работа этих устройств должна быть согласована с количеством пар полюсов.

Как подключить двигатель к источнику питания

Чтобы осуществить пуск асинхронного двигателя, его необходимо подключить к сети трёхфазного тока. Схема асинхронного двигателя собирается двумя способами. На рисунке показана схема соединения выводов двигателя, в которой статорные обмотки собраны способом «звезда».

На этом рисунке изображён другой способ соединения, именуемый «треугольник». Собираются схемы в клеммной коробке, закреплённой на корпусе.

Следует знать, что начала каждой из трёх катушек, их ещё называют обмотками фаз, именуются С1, С2, С3 соответственно. Аналогично подписываются концы, которые имеют названия С4, С5, С6. Если в клеммной коробке нет маркировки выводов, то начала и концы придётся определить самостоятельно.

Как сделать реверс

При возникновении потребности осуществить пуск асинхронного двигателя, изменив направление вращения якоря, надо просто поменять местами два провода подключаемого источника трехфазного напряжения.

Однофазный асинхронных двигателей

В быту проблематично использовать трёхфазные двигатели из-за отсутствия требуемого источника напряжения. Поэтому существует однофазный асинхронный двигатель. Он также имеет статор, но с существенным конструкционным отличием. Оно заключается в количестве и способе расположения обмоток. Это определяет и схему запуска машины.

Если однофазный асинхронный двигатель имеет статор с двумя обмотками, то расположены они будут со смещением по окружности под углом в 90˚. Катушки называются пусковой и рабочей. Соединяются они параллельно, но, чтобы создать условия для появления вращающееся магнитного поля, дополнительно вводится активное сопротивление или конденсатор. Это создаёт сдвиг фаз токов обмоток, близкий к 90˚, благодаря чему создаётся условие для образования вращающегося магнитного поля.

Если статор имеет только одну катушку, то подключённый к ней однофазный источник питания будет причиной пульсирующего магнитного поля. В замкнутой накоротко обмотке ротора появится переменный ток. Он станет причиной возникновения своего магнитного потока. Результирующая двух образовавшихся сил будет равна нулю. Поэтому для запуска двигателя, имеющего такую конструкцию, требуется дополнительный толчок. Создать его можно, подключив конденсаторную схему пуска.

Подключить двигатель к однофазной цепи

Изготовленный для работы от трёхфазного источника питания электромотор может работать и от домашней однофазной сети, но при этом существенно снизятся его характеристики, такие как КПД, коэффициент мощности. Кроме того, снизятся мощность и пусковые показатели.

Если же без подключения не обойтись, то требуется из трёх обмоток статора собрать схему, где их будет только две. Одна рабочая, а другая пусковая. Например, есть три катушки с началами С1, С2, С3 и концами С4, С5, С6 соответственно. Для создания первой (рабочей) обмотки двигателя объединяем концы С5 и С6, а их начала С3 и С2 подключаем к источнику однофазного тока, например, бытовой сети 220 вольт. Роль второй, пусковой обмотки, будет выполнять оставшаяся незадействованная катушка стартера. Она подключается к источнику питания через конденсатор, соединённый с ней последовательно.

Параметры асинхронного двигателя

При подборе таких машин, а также при дальнейшей их эксплуатации необходимо учитывать характеристики асинхронного двигателя. Они бывают энергетические — это коэффициент полезного действия, коэффициент мощности. Важно учитывать и механические показатели. Основным из них считается зависимость между скоростью вращения вала и рабочим усилием, прикладываемым к нему. Существуют ещё пусковые характеристики. Они определяют пусковой, минимальный и максимальный моменты и их соотношение. Важно также знать, каков пусковой ток асинхронного двигателя. Для наиболее эффективного использования двигателя необходимо учитывать все эти параметры.

Читать еще:  Что такое креативный двигатель

Нельзя оставить без внимания вопрос энергосбережения. В последнее время он рассматривается не только с позиции уменьшения эксплуатационных затрат. Экономичность электродвигателей снижает уровень экологических проблем, связанных с производством электроэнергии.

Перед производителями постоянно ставятся задачи разработки и выпуска энергосберегающих двигателей, повышения эксплуатационного ресурса, уменьшения шумового уровня.

Улучшить энергосберегающие показатели можно путём снижения потерь при эксплуатации. А они напрямую зависят от рабочей температуры машины. Кроме того, совершенствование этой характеристики неизбежно приведёт к увеличению срока эксплуатации двигателя.

Снизить температуру обмоток можно, применяя вентилятор наружного обдува, закреплённый на хвостовике вала ротора. Но это приводит к неизбежному повышению шума, производимого двигателем при работе. Особенно ощутим этот показатель при высокой скорости вращения ротора.

Таким образом, видно, что асинхронный двигатель имеет один существенный недостаток. Он не способен поддерживать постоянную частоту вращения вала при возрастающих нагрузках. Зато такой двигатель имеет множество преимуществ по сравнению с образцами электродвигателей других конструкций.

Во-первых, он имеет надёжную конструкцию. Работа асинхронного двигателя не вызывает никаких сложностей при его использовании.

Во-вторых, асинхронный двигатель экономичен в производстве и эксплуатации.

В-третьих, эта машина универсальна. Имеется возможность её использования в любых устройствах, которые не требуют точного поддержания частоты вращения вала якоря.

В-четвёртых, двигатель с асинхронным принципом действия востребован и в быту, получая питание только от одной фазы.

Особенности и способы пуска асинхронного двигателя

Схемы пуска двигателей в ход должны предусматривать создание большого пускового момента при небольшом пусковом токе и, следовательно, при небольшом падении напряжения при пуске. При этом может требоваться плавный пуск, повышенный пусковой момент и т. д.

На практике применяются следующие способы пуска:

1. непосредственное присоединение к сети — прямой пуск;

Прямой пуск применяется для двигателей с короткозамкнутым ротором. Для этого они проектируются так, чтобы пусковые токи, протекающие в обмотке статора, не создавали больших механических усилий в обмотках и не приводили к их перегреву. Но при прямом пуске двигателей большой мощности в сети могут возникать недопустимые, более 15%, падения напряжения, что приводит к неустойчивой работе пусковой аппаратуры (дребезжание), подгоранию контактов и практически к невозможности пуска.

2. понижение напряжения при пуске;

Применяется для двигателей средней и большой мощности при ограниченной мощности сети. На обмотку статора подается пониженное напряжение. Напряжение можно регулировать с помощью включения добавочных сопротивлений в цепь статора, автотрансформатора, полупроводникового регулятора напряжения. Также, если при нормальной работе двигателя соединены «треугольником», то при пуске они первоначально соединяются «звездой». При этом пусковые токи уменьшаются в три раза.

Основным недостатком этих методом является снижение пускового момента.

3. включение сопротивления в цепь ротора в двигателях с фазовым ротором.

Пуск двигателя с фазным ротором осуществляется путем включения пускового реостата в цепь ротора. Недостатком данного способа является его относительная сложность и необходимость применения более дорогих двигателей с фазным ротором. В связи с этим двигатели с фазным ротором применяют только при тяжелых условиях пуска, когда необходимо развивать максимально возможный пусковой момент.

32.Какими способами можно регулировать частоту вращения асинхронного двигателя?

Частота вращения асинхронного двигателя

n = n1 (1 – s) = (60f1/p) (1-s)

Из этого выражения видно, что ее можно регулировать, изменяя частоту f1 питающего напряжения, число пар полюсов р и скольжение s. Скольжение при заданных значениях момента на валу Мвн и частоты f1 можно изменять путем включения в цепь обмотки ротора реостата.

Регулирование путем изменения частоты питающего напряжения.Этот способ требует наличия преобразователя частоты, к которому должен быть подключен асинхронный двигатель. Такой способ регулирования частоты вращения ротора асинхронного двигателя является весьма перспективным.

Регулирование путем изменения числа пар полюсов. Этот способ позволяет получить ступенчатое изменение частоты вращения. Для этой цели отдельные катушки 1, 2 и 3, 4, составляющие одну фазу, переключаются так, чтобы изменялось соответствующим образом направление тока в них (например, с последовательного согласного соединения на встречное). При изменении числа полюсов изменяется частота вращения n1 магнитного поля двигателя, а следовательно, и частота вращения n его ротора. В асинхронном двигателе число полюсов ротора должно быть равно числу полюсов статора. В короткозамкнутом роторе это условие выполняется автоматически и при переключении обмотки статора никаких изменений в обмотке ротора выполнять не требуется.

Такой способ регулирования частоты вращения используется только в двигателях с коротко-замкнутым ротором.

Регулирование путем включения в цепь ротора реостата. Это способ регулирования может быть использован только для двигателей с фазным ротором. Он позволяет плавно изменять частоту вращения в широких пределах. Недостатками его являются большие потери энергии в регулировочном реостате, поэтому его используют только при кратковременных режимах работы двигателя (при пуске и пр.).

Изменение направления вращения.Для изменения направления вращения двигателя нужно изменить направление вращения магнитного поля, создаваемого обмотками статора. Это достигается изменением порядка чередования тока в фазах обмотки статора.

33.Что такое скольжение, как оно определяется и какова его роль в работе асинхронного двигателя?

Пусть под действием электромагнитного момента ротор начал вращаться с частотой вращения магнитного поля (n=n). При этом в обмотке ротора ЭДС E2 будет равна нулю. Ток в обмотке ротора I2=0, электромагнитный момент M тоже станет равным нулю. За счёт этого ротор станет вращаться медленнее, в обмотке ротора появится ЭДС, ток. Возникнет электромагнитный момент. Таким образом, в режиме двигателя ротор будет вращаться несинхронно с магнитным полем. Частота вращения ротора будет изменяться при изменении нагрузки на валу. Отсюда появилось название двигателя – асинхронный (несинхронный). При увеличении нагрузки на валу двигатель должен развивать больший вращающий момент, а это происходит при снижении частоты вращения ротора. В отличие от частоты вращения ротора частота вращения магнитного поля не зависит от нагрузки. Для сравнения частоты вращения магнитного поля n и ротора n ввели коэффициент, который назвали скольжением и обозначили буквойS. Скольжение может измеряться в относительных единицах и в процентах.

При пуске в ход асинхронного двигателя n=0,S=1. В режиме идеального холостого хода n=n,S=0. Таким образом, в режиме двигателя скольжение изменяется в пределах:

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.003 с) .

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector