0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Время пуска асинхронного двигателя на холостом ходу

Особенности и способы пуска асинхронного двигателя

Схемы пуска двигателей в ход должны предусматривать создание большого пускового момента при небольшом пусковом токе и, следовательно, при небольшом падении напряжения при пуске. При этом может требоваться плавный пуск, повышенный пусковой момент и т. д.

На практике применяются следующие способы пуска:

1. непосредственное присоединение к сети — прямой пуск;

Прямой пуск применяется для двигателей с короткозамкнутым ротором. Для этого они проектируются так, чтобы пусковые токи, протекающие в обмотке статора, не создавали больших механических усилий в обмотках и не приводили к их перегреву. Но при прямом пуске двигателей большой мощности в сети могут возникать недопустимые, более 15%, падения напряжения, что приводит к неустойчивой работе пусковой аппаратуры (дребезжание), подгоранию контактов и практически к невозможности пуска.

2. понижение напряжения при пуске;

Применяется для двигателей средней и большой мощности при ограниченной мощности сети. На обмотку статора подается пониженное напряжение. Напряжение можно регулировать с помощью включения добавочных сопротивлений в цепь статора, автотрансформатора, полупроводникового регулятора напряжения. Также, если при нормальной работе двигателя соединены «треугольником», то при пуске они первоначально соединяются «звездой». При этом пусковые токи уменьшаются в три раза.

Основным недостатком этих методом является снижение пускового момента.

3. включение сопротивления в цепь ротора в двигателях с фазовым ротором.

Пуск двигателя с фазным ротором осуществляется путем включения пускового реостата в цепь ротора. Недостатком данного способа является его относительная сложность и необходимость применения более дорогих двигателей с фазным ротором. В связи с этим двигатели с фазным ротором применяют только при тяжелых условиях пуска, когда необходимо развивать максимально возможный пусковой момент.

32.Какими способами можно регулировать частоту вращения асинхронного двигателя?

Частота вращения асинхронного двигателя

n = n1 (1 – s) = (60f1/p) (1-s)

Из этого выражения видно, что ее можно регулировать, изменяя частотуf1 питающего напряжения, число пар полюсов р и скольжение s. Скольжение при заданных значениях момента на валу Мвн и частоты f1 можно изменять путем включения в цепь обмотки ротора реостата.

Регулирование путем изменения частоты питающего напряжения.Этот способ требует наличия преобразователя частоты, к которому должен быть подключен асинхронный двигатель. Такой способ регулирования частоты вращения ротора асинхронного двигателя является весьма перспективным.

Регулирование путем изменения числа пар полюсов. Этот способ позволяет получить ступенчатое изменение частоты вращения. Для этой цели отдельные катушки 1, 2 и 3, 4, составляющие одну фазу, переключаются так, чтобы изменялось соответствующим образом направление тока в них (например, с последовательного согласного соединения на встречное). При изменении числа полюсов изменяется частота вращения n1 магнитного поля двигателя, а следовательно, и частота вращения n его ротора. В асинхронном двигателе число полюсов ротора должно быть равно числу полюсов статора. В короткозамкнутом роторе это условие выполняется автоматически и при переключении обмотки статора никаких изменений в обмотке ротора выполнять не требуется.

Такой способ регулирования частоты вращения используется только в двигателях с коротко-замкнутым ротором.

Регулирование путем включения в цепь ротора реостата. Это способ регулирования может быть использован только для двигателей с фазным ротором. Он позволяет плавно изменять частоту вращения в широких пределах. Недостатками его являются большие потери энергии в регулировочном реостате, поэтому его используют только при кратковременных режимах работы двигателя (при пуске и пр.).

Изменение направления вращения.Для изменения направления вращения двигателя нужно изменить направление вращения магнитного поля, создаваемого обмотками статора. Это достигается изменением порядка чередования тока в фазах обмотки статора.

33.Что такое скольжение, как оно определяется и какова его роль в работе асинхронного двигателя?

Пусть под действием электромагнитного момента ротор начал вращаться с частотой вращения магнитного поля (n=n0). При этом в обмотке ротора ЭДС E2 будет равна нулю. Ток в обмотке ротора I2=0, электромагнитный момент M тоже станет равным нулю. За счёт этого ротор станет вращаться медленнее, в обмотке ротора появится ЭДС, ток. Возникнет электромагнитный момент. Таким образом, в режиме двигателя ротор будет вращаться несинхронно с магнитным полем. Частота вращения ротора будет изменяться при изменении нагрузки на валу. Отсюда появилось название двигателя – асинхронный (несинхронный). При увеличении нагрузки на валу двигатель должен развивать больший вращающий момент, а это происходит при снижении частоты вращения ротора. В отличие от частоты вращения ротора частота вращения магнитного поля не зависит от нагрузки. Для сравнения частоты вращения магнитного поля n0 и ротора n ввели коэффициент, который назвали скольжением и обозначили буквойS. Скольжение может измеряться в относительных единицах и в процентах.

При пуске в ход асинхронного двигателя n=0,S=1. В режиме идеального холостого хода n=n0,S=0. Таким образом, в режиме двигателя скольжение изменяется в пределах:

форматоры бывают однофазные и трехфазные, двух- и многообмоточные.

Рис. 212. Схема включения однофазного трансформатора

Принцип действия трансформатора. Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода 2 (рис. 212) и двух расположенных на нем обмоток 1 и 3. Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемой вторичной, подключают потребители (непосредственно или через выпрямитель).

При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i1, образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е1 и е2. Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е2 по ее цепи проходит ток i2.

Коэффициент трансформации- Отношение напряжения на зажимах двух обмоток в режиме холостого кода. Коэффициент трансформации является основной характеристикой трансформатора. Он показывает, насколько изменяются основные параметры электрического тока, после того как он проходит через это устройство. Когда коэффициент трансформации больше 1 – трансформатор называется понижающим, если меньше – повышающим.

, , где

· , — входное и выходное напряжения соответственно

· , — число витков первичной и вторичной обмоток

· , — токи в первичной и вторичной цепях трансформатора

35.Какие потери мощности существуют в трансформаторе и как они определяются? Что такое внешняя характеристика трансформатора?

Основными характеристиками трансформатора являются прежде всего напряжение обмоток и передаваемая трансформатором мощность. Передача мощности от одной обмотки к другой происходит электромагнитным путем, при этом часть мощности, поступающей к трансформатору из питающей электрической сети, теряется в трансформаторе. Потерянную часть мощности называют потерями.

Читать еще:  Двигатель 2zr большой расход топлива

При передаче мощности через трансформатор напряжение на вторичных обмотках изменяется при изменении нагрузки за счет падения напряжения в трансформаторе, которое определяется сопротивлением короткого замыкания. Потери мощности в трансформаторе и напряжение короткого замыкания также являются важными характеристиками. Они определяют экономичность работы трасформатора и режим работы электрической сети.

Потери мощности в трансформаторе являются одной из основных характеристик экономичности конструкции трансформатора. Полные нормированные потери состоят из потерь холостого хода (XX) и потерь короткого замыкания (КЗ). При холостом ходе (нагрузка не присоединена), когда ток протекает только по обмотке, присоединенной к источнику питания, а в других обмотках тока нет, мощность, потребляемая от сети, расходуется на создание магнитного потока холостого хода, т.е. на намагничивание магнитопровода, состоящего из листов трансформаторной стали. Поскольку переменный ток изменяет свое направление, то направление магнитного потока также меняется. Это значит, что сталь намагничивается и размагничивается попеременно. При изменении тока от максимума до нуля сталь размагничивается, магнитная индукция уменьшается, но с некоторым запаздыванием, т.е. размагничивание задерживается (при достижении нулевого значения тока индукция не равна нулю точка N). Задерживание в перемагничивании является следствием сопротивления стали переориентировке элементарных магнитов.

При протекании магнитного потока по магнитопроводу возникают потери на вихревые токи. Как известно, магнитный поток индуктирует электродвижущую силу (ЭДС), создающую ток не только в обмотке, находящейся на стержне магнитопровода, но и в самом его металле. Вихревые токи протекают по замкнутому контуру (вихревое движение) в месте стали в направлении, перпендикулярном направлению магнитного потока. Для уменьшения вихревых токов магнитопровод собирают из отдельных изолированных листов стали. При этом чем тоньше лист, тем меньше элементарная ЭДС, меньше созданный ею вихревой ток, т.е. меньше потери мощности от вихревых токов. Эти потери тоже нагревают магнитопровод. Для уменьшения вихревых токов, потерь и нагревов увеличивают электрическое сопротивление стали путем введения в металл присадок.

Внешняя характеристика трансформатора представляет собой зависимость между вторичными током и напряжением при изменении нагрузки, неизменном значении первичного напряжения U1 и заданном коэффициенте мощности cos φ2 во вторичной цепи.

Рис. 6.3. Внешняя характеристика трансформатора

Вторичное напряжение U2 при нагрузке отличается от напряжения холостого хода на величину изменения напряжения, которое зависит от величины нагрузки.

Внешняя характеристика может быть построена как по расчетным данным активного и индуктивного падений напряжения (расчетная внешняя характеристика), так и по опытным данным (внешняя характеристика конкретного трансформатора). Построение внешней характеристики показано на рис. 6.3. По оси ординат откладывается вторичное напряжение U2, а по оси абсцисс — величина нагрузки α (в % или долях от номинальной мощности). Начальная точка внешней характеристики начинается от ординаты, равной U2НОМ, а другой ее конец, против абсциссы α = 1(т. е. при номинальной нагрузке), будет опущен против начала на величину ΔU — изменения напряжения.

Так как изменение напряжения пропорционально нагрузочному току I2 (см. § 6.1), то внешняя характеристика практически представляет прямую линию. На рис. 6.3 построены две внешние характеристики — для cos φ2=1и cos φ2= 0,8.

Положения характеристик зависят от мощности и характера нагрузки трансформатора и при малой мощности они могут поменяться местами (при активной и активно-индуктивной нагрузках).

36.Электроника. Виды электроники. Устройства информационной электроники.

Электро́ника — наука о взаимодействии электронов с электромагнитными полями и методах создания электронных приборов и устройств для преобразования электромагнитной энергии, в основном для передачи, обработки и храненияи нформации.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

35. Особенности пуска в ход асинхронных двигателей

В первый момент пуска частота вращения ротора n2 равна нулю и скольжение .

При пуске двигателя должны выполняться условия:

вращающий момент должен быть больше момента сопротивления, создаваемого рабочим механизмом;

пусковой ток Iпуск. не должен иметь большого значения (должно выполняться условие Iпуск ≤(5÷7) Iном.).

В зависимости от конструкции ротора, мощности двигателя и характера нагрузки применяются различные способы пуска:

пуск с использованием пусковых реостатов, включаемых в цепь обмотки фазного ротора;

пуск при пониженном напряжении.

При прямом пуске обмотка статора двигателя сразу включается на полное напряжение сети. При этом пусковые токи в статоре и роторе имеют максимальные значения. По мере разгона ротора скольжение уменьшается и токи уменьшаются.

Бросок тока при пуске может вызвать значительное падение напряжения в сети, что может привести к остановке рядом работающих двигателей, так как момент, развиваемый ими прямо пропорционален квадрату напряжения сети ( ). Данный способ пуска получил наибольшее применение для двигателей мощностью до 50 кВт.

Пуск с включением пускового реостата в цепь фазного ротора обеспечивается наиболее благоприятное соотношение между пусковым моментом и пусковым током. Однако этот способ пуска связан со значительными потерями мощности в пусковом реостате.

При пуске двигателя при пониженном напряжении существуют следующие способы понижения напряжения:

-переключением обмотки статора с треугольника на звезду (фазное напряжение на статоре понижается в раз);

-включением в цепь обмотки статора реактивных катушек (дросселей);

подключением двигателя к сети через понижающий автотрансформатор.

Пуск двигателя при пониженном напряжении связан с понижением пускового момента ( ), что является существенным недостатком данного способа пуска.

36. Регулирование частоты вращения асинхронных двигателей

Из выражения, по которому можно рассчитать частоту вращения ротора , следует, что n2 можно регулировать изменением какой либо из трех величин: скольжения (S), частоты тока в обмотке статора или числа пар полюсов (р) в обмотке статора.

36. Коэффициент мощности асинхронных двигателей

Кроме активной мощности Р1 двигатель потребляет реактивную мощность Q1, в основном необходимую для образования вращающегося магнитного поля. Коэффициент мощности определяется по формуле:

ри холостом ходе имеет малое значение (не превышает 0,2), так как активная мощность расходуется только на относительно небольшие потери в статоре и небольшие механические потери, а реактивная мощность имеет практически постоянное значение.

37. Принцип действия и устройство машин постоянного тока Машина постоянного тока обладает свойством обратимости, то есть может работать как в режиме генератора, так и в режиме двигателя. Она состоит из неподвижного статора и вращающегося якоря (в машинах переменного тока вращающая часть – ротор). Статор состоит из станины, главных и дополнительных полюсов, подшипниковых щитов и траверсы со щетками. Станина имеет кольцевую форму, изготовляется из стального литья и выполняет функцию магнитопровода. Главные полюсы, выполненные из ферромагнитного материала, служат для создания постоянного во времени и неподвижного в пространстве магнитного поля, они имеют специальную обмотку, называемую обмоткой возбуждения. По этой обмотке пропускается постоянный ток (ток возбуждения). В машинах малой мощности для создания поля могут использоваться постоянные магниты.

Читать еще:  Время прогрева работа двигателя на холостом ходу

Дополнительные полюсы устанавливаются между главными и служат для улучшения условий коммутации. Коммутация – это процесс переключения секций обмотки якоря из одной параллельной ветви в другую и связанные с этим явления. При плохой коммутации появляется значительное искрение под щетками, что приводит к обгоранию коллектора.

Подшипниковые щиты закрывают статор с торцов. В них впрессовываются подшипники и укрепляется щеточная траверса со щетками, изготовленными из графита или смеси графита с медью.

Якорь состоит из сердечника, обмотки и коллектора. Сердечник набран из листов электротехнической стали. В пазы сердечника укладывается медная обмотка, состоящая из последовательно и параллельно соединенных секций. Концы секций припаивают к пластинам коллектора, что образует замкнутую обмотку якоря. Коллектор набран из медных пластин клинообразной формы, изолированных друг от друга и корпуса и образующих в сборе цилиндр, который крепится на валу якоря.

Таким образом, машина постоянного тока может работать как в режиме генератора, так и в режиме двигателя. Такое свойство машин постоянного тока называется обратимостью. Переход из одного режима в другой осуществляется измене­нием направления тока в обмотке якоря.

Асинхронный двигатель с короткозамкнутым ротором

Учитывая то, что электроснабжение традиционно осуществляется путём доставки потребителям переменного тока, понятно стремление к созданию электромашин, работающих на поставляемой электроэнергии. В частности, переменный ток активно используется в асинхронных электродвигателях, нашедших широкое применение во многих областях деятельности человека. Особого внимания заслуживает асинхронный двигатель с короткозамкнутым ротором, который в силу ряда причин занял прочные позиции в применении.

Секрет такой популярности состоит, прежде всего, в простоте конструкции и дешевизне его изготовления. У электромоторов на короткозамкнутых роторах есть и другие преимущества, о которых вы узнаете из данной статьи. А для начала рассмотрим конструктивные особенности этого типа электрических двигателей.

Конструкция

В каждом электромоторе есть две важных рабочих детали: ротор и статор. Они заключены в защитный кожух. Для охлаждения проводников обмотки на валу ротора установлен вентилятор. Это общий принцип строения всех типов электродвигателей.

Конструкции статоров рассматриваемых электродвигателей ничем не отличаются от строения этих деталей в других типах электромоторов, работающих в сетях переменного тока. Сердечники статора, предназначенного для работы при трехфазном напряжении, располагаются по кругу под углом 120º. На них устанавливаются обмотки из изолированной медной проволоки определённого сечения, которые соединяются треугольником или звездой. Конструкция магнитопровода статора жёстко крепится на стенках цилиндрического корпуса.

Строение электродвигателя понятно из рисунка 1. Обратите внимание на конструкцию обмоток без сердечника в короткозамкнутом роторе.

Рис. 1. Строение асинхронного двигателя с КЗ Ротором

Немного по-другому устроен ротор. Конструкция его обмотки очень похожа на беличью клетку. Она состоит из алюминиевых стержней, концы которых замыкают короткозамыкающие кольца. В двигателях большой мощности в качестве короткозамкнутых обмоток ротора можно увидеть применение медных стержней. У этого металла низкое удельное сопротивление, но он дороже алюминия. К тому же медь быстрее плавится, а это не желательно, так как вихревые токи могут сильно нагревать сердечник.

Конструктивно стержни расположены поверх сердечников ротора, которые состоят из трансформаторной стали. При изготовлении роторов сердечники монтируют на валу, а проводники обмотки впрессовывают (заливают) в пазы магнитопровода. При этом нет необходимости в изоляции пазов сердечника. На рисунке 2 показано фото ротора с КЗ обмотками.

Рис. 2. Ротор асинхронного двигателя с КЗ обмотками

Пластины магнитопроводов таких роторов не требуют лаковой изоляции поверхностей. Они очень просты в изготовлении, что удешевляет себестоимость асинхронных электродвигателей, доля которых составляет до 90% от общего числа электромоторов.

Ротор асинхронно вращается внутри статора. Между этими деталями устанавливаются минимальные расстояния в виде воздушных зазоров. Оптимальный зазор находится в пределах от 0,5 мм до 2 мм.

В зависимости от количества используемых фаз асинхронные электродвигатели можно разделить на три типа:

  • однофазные;
  • двухфазные;
  • трёхфазные.

Они отличаются количеством и расположением обмоток статора. Модели с трехфазными обмотками отличаются высокой стабильностью работы при номинальной нагрузке. У них лучшие пусковые характеристики. Зачастую такие электродвигатели используют простую схему пуска.

Двухфазные двигатели имеют две перпендикулярно расположенных обмотки статора, на каждую из которых поступает переменный ток. Их часто используют в однофазных сетях – одну обмотку подключают напрямую к фазе, а для питания второй применяют фазосдвигающий конденсатор. Без этой детали вращение вала асинхронного электродвигателя самостоятельно не начнётся. В связи с тем, что конденсатор является неотъемлемой частью двухфазного электромотора, такие двигатели ещё называют конденсаторными.

В конструкции однофазного электродвигателя используют только одну рабочую обмотку. Для запуска вращения ротора применяют пусковую катушку индуктивности, которую через конденсатор кратковременно подключают к сети, либо замыкают накоротко. Эти маломощные моторчики используются в качестве электрических приводов некоторых бытовых приборов.

Принцип работы

Функционирование асинхронного двигателя осуществляется на основе свойства трёхфазного тока, способного создавать в обмотках статора вращающее магнитное поле. В рассматриваемых электродвигателях синхронная частота вращения электромагнитного поля связана прямо пропорциональной зависимостью с собственной частотой переменного тока.

Существует обратно пропорциональная зависимость частоты вращения от количества пар полюсов в обмотках статора. Учитывая то, что сдвиг фаз составляет 60º, зависимость частоты вращения ротора (в об/мин.) можно выразить формулой:

В результате действия магнитной индукции на сердечник ротора, в нём возникнет ЭДС, которая, в свою очередь, вызывает появление электрического тока в замкнутом проводнике. Возникнет сила Ампера, под действием которой замкнутый контур начнёт вращение вдогонку за магнитным полем. В номинальном режиме работы частота вращения ротора немного отстаёт от скорости вращения создаваемого в статоре магнитного поля. При совпадении частот происходит прекращение магнитного потока, ток исчезает в обмотках ротора, вследствие чего прекращается действие силы. Как только скорость вращения вала отстанет, переменными токами магнитных полей, возобновляется действие амперовой силы.

Разницу частот вращения магнитных полей называют частотой скольжения: ns=n1–n2, а относительную величину s, характеризующую отставание, называют скольжением.

s = 100% * ( ns / n1) = 100% * (n1 — n2) / n1 , где ns частота скольжения; n1, n2 – частоты вращений статорных и роторных магнитных полей соответственно.

Читать еще:  Что свистит в двигателе шевроле авео

С целью уменьшения гармоник ЭДС и сглаживания пульсаций момента силы, стержни короткозамкнутых витков немного скашивают. Взгляните ещё раз на рис. 2 и обратите внимание на расположение стержней, выполняющих роль обмоток ротора, относительно оси вращения.

Скольжение зависит от того, какую механическую нагрузку приложено к валу двигателя. В асинхронных электромоторах изменение параметров скольжения происходит в диапазоне от 0 до 1. Причём в режиме холостого хода набравший обороты ротор почти не испытывает активного сопротивления. S приближается к нулю.

Увеличение нагрузки способствует увеличению скольжения, которое может достигнуть единицы, в момент остановки двигателя из-за перегрузки. Такое состояние равносильно режиму короткого замыкания и может вывести устройство из строя.

Относительная величина отставания соответствующая номинальной нагрузке электрической машины называется номинальным скольжением. Для маломощных электромоторов и двигателей средней мощности этот показатель изменяется в небольших пределах – от 8% до 2%. При неподвижности ротора электродвигателя скольжение стремится к 0, а при работе на холостом ходу оно приближается к 100%.

Во время запуска электромотора его обмотки испытывают нагрузку, что приводит к резкому увеличению пусковых токов. При достижении номинальных мощностей электрические двигатели с короткозамкнутыми витками самостоятельно восстанавливают номинальную частоту ротора.

Обратите внимание на кривую крутящего момента скольжения, изображённую на рис. 3.

Рис. 3. Кривая крутящего момента скольжения

При увеличении крутящего момента коэффициент s изменяется от 1 до 0 (см. отрезок «моторная область»). Возрастает также скорость вращения вала. Если скорость вращения вала превысит номинальную частоту, то крутящий момент станет отрицательным, а двигатель перейдёт в режим генерации (отрезок «генерирующая область»). В таком режиме ротор будет испытывать магнитное сопротивление, что приведёт к торможению мотора. Колебательный процесс будет повторяться, пока не стабилизируется крутящий момент, а скольжение не приблизится к номинальному значению.

Преимущества и недостатки

Повсеместное использование асинхронных двигателей с короткозамкнутыми роторами обусловлено их неоспоримыми преимуществами:

  • стабильностью работы на оптимальных нагрузках;
  • высокой надёжностью в эксплуатации;
  • низкие эксплуатационные затраты;
  • долговечностью функционирования без обслуживания;
  • сравнительно высокими показателями КПД;
  • невысокой стоимостью, по сравнению с моделями на основе фазных роторов и с другими типами электромоторов.

Из недостатков можно отметить:

  • высокие пусковые токи;
  • чувствительность к перепадам напряжений;
  • низкие коэффициенты скольжений;
  • необходимость в применении устройств, таких как преобразователи частоты, пусковые реостаты и др., для улучшения характеристик электромотора;
  • ЭД с короткозамкнутым ротором нуждаются в дополнительных коммутационных управляющих устройствах, в случаях, когда возникает необходимость регулировать скорость.

Электродвигатели данного типа имеют приличную механическую характеристику. Несмотря на недостатки, они лидируют по показателям их применения.

Основные технические характеристики

В зависимости от класса электродвигателя, его технические характеристики меняются. В рамках данной статьи не ставится задача приведения параметров всех существующих классов двигателей. Мы остановимся на описании основных технических характеристик для электромоторов классов 56 А2 – 80 В2.

В этом небольшом промежутке на линейке моделей эелектромоторов с короткозамкнутыми роторами можно отметить следующее:

Мощность составляет от 0,18 кВт (класс 56 А2) до 2,2 кВт (класс 80 В2).

Ток при максимальном напряжении – от 0,55 А до 5А.

КПД от 66% до 83%.

Частота вращения вала для всех моделей из указанного промежутка составляет 3000 об./мин.

Технические характеристики конкретного двигателя указаны в его паспорте.

Подключение

Статорные обмотки трёхфазного АДКР можно подключать по схеме «треугольник» либо «звезда». При этом для звёздочки требуется напряжение выше, чем для треугольника.

Обратите внимание на то, что электродвигатель, подключенный разными способами к одной и той же сети, потребляет разную мощность. Поэтому нельзя подключать электромотор, рассчитанный на схему «звезда» по принципу треугольника. Но с целью уменьшения пусковых токов можно коммутировать на время пуска контакты звезды в треугольник, но тогда уменьшится и пусковой момент.

Схемы включения понятны из рисунка 4.

Рис. 4. Схемы подключения

Для подключения трёхфазного электрического двигателя к однофазному току применяют фазосдвигающие элементы: конденсаторы, резисторы. Примеры таких подключений смотрите на рисунке 5. Можно использовать как звезду, так и треугольник.

Рис. 5. Примеры схем подключений в однофазную сеть

С целью управления работой двигателя в электрическую цепь статора подключаются дополнительные устройства.

Время пуска асинхронного двигателя на холостом ходу

Самым простым способом пуска асинхронных двигателей является прямое их включение в сеть. Однако при этом, как было выяснено, в момент пуска в цепи двигателя появляется большой

пусковой ток. В маломощных сетях этот ток может вызвать кратковременное понижение напряжения, что вредно отражается на работе некоторых приемников энергии, включенных в эту сеть.

В целях уменьшения пускового тока на практике применяют специальные способы пуска двигателей.

Рассмотрим простейшие из них.

Пуск двигателей с помощью пускового реостата в цепи статора.

Реостат включают последовательно с обмотками статора (рис. 5-15).

При пуске реостат полностью вводится, а затем по мере разгона ротора вручную или автоматически (центробежные пускатели) выводится, при этом сопротивление реостата уменьшает ток, но это приводит к уменьшению вращающего момента. Такой способ может быть применен лишь в тех случаях, если двигатель пускается в ход без нагрузки. Этот способ неэкономичен особенно для двигателей большой мощности из-за большого расхода энергии в пусковых реостатах. В настоящее время для этих целей широко применяют регулирование тока с помощью тиристоров.

Пуск двигателей переключением обмоток со звезды на треугольник. В момент пуска обмотки статора включают звездой, пока скорость ротора не станет близкой к номинальной, а затем соединение обмоток переключают на треугольник (рис. 5-16). Пусковой ток при этом уменьшается в три раза. Покажем это.

Пусть линейное напряжение сети , а полное сопротивление каждой из обмоток двигателя . Найдем пусковой ток (ток в линейном проводе) при соединении звездой и треугольником.

Для случая соединения звездой фазное напряжение

это и есть пусковой ток, так как для звезды .

Для случая соединения треугольником и ток фазы

это и есть пусковой ток для соединения треугольником.

Этот способ можно применять лишь в тех случаях, когда у двигателя выведены наружу все шесть концов его обмоток, обмотки двигателя могут быть включены в данную сеть треугольником, и когда электродвигатель пускают в ход без нагрузки или с нагрузкой не более 40% номинальной.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты