4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вся схема магнитного двигателя

Вся схема магнитного двигателя

Машиной постоянного тока с возбуждением от постоянных магнитов, называется такой двигатель постоянного тока, в котором вращающееся магнитное поле образуется от постоянных магнитов. Отличительной особенностью ДПТ на постоянных магнитах от ДПТ с электромагнитным возбуждением является устройство магнитной системы. Такие электродвигатели так же называется «высокомоментными», позволяющие получать огромные крутящие моменты без промежуточных передач (редуктора), выдерживать перегрузки (20-50 кратный номинальному) при малых оборотах.

Исполнения магнитных систем двигателя постоянного тока на постоянных магнитах бывают:

1) радиальное расположение магнитов с полюсными наконечниками и без (см. рисунок 2,3) – целесообразно в многополюсных машинах, где число пар полюсов 2р>4. Однако, малая длина магнитов вдоль линий магнитного поля заметно усиливает размагничивающее действие магнитодвижущей силы (МДС) якоря. Для ослабления данного действия применяют полюсные наконечники (из магнитно-мягкого материала) как на рисунке 3, и к тому же изготовлять магниты из материала который имеет большую коэрцитивную силу (ферритбариевый магнит).

2) тангенциально расположенные магниты (рисунок 4) – применяют когда число пар полюсов 2р=2, такому расположению магнитов характерна большая длина, а отсюда и площадь в направлении намагничивания.

3) магниты расположенные «кольцом» (рисунок 5) – кольцо из магнито-твердого материала образует собой намагничивание.

Постоянные магниты идентичны как в ДПТ на постоянных магнитах, так и на синхронных машинах с постоянными магнитами.

Двигатели постоянного тока с постоянными магнитами нашли широкое применение в маломощных приводах автомобилестроения, авиастроения, а так же в различных системах автоматики. Двигатели используются в кратковременных и повторно-кратковременных циклах роботы. Частоту вращения двигателей можно изменить регулированием напряжения якоря.

Проектировка двигателя постоянного тока на постоянных магнитах очень кропотлива, в ней приходится учитывать влияние МДС якоря.

Преимущества в сравнении с ДПТ от электромагнитного возбуждения:

Недостатки в сравнении с ДПТ от электромагнитного возбуждения:

Вся схема магнитного двигателя

ИМПУЛЬСНЫЙ М АГНИТНЫЙ ДВИГАТЕЛЬ — RU,

НОВЫЙ ВАРИАНТ


Фрагмент конструкции МД.

4. ВЫВОДЫ:
Очевидно, что магнитный двигатель, работающий за счет сил взаимодействия магнитных полей, с устройством управления (УУ) или синхронизации, для работы которого требуется внешний источник питания, потребляемая мощность от которого значительно меньше мощности на валу МД.

Двигатель — генератор на 100 кВт стоит 24 000 евро.
Дорого, поэтому некоторые умельцы изготавливают его своими руками в масшабе 1/4
( фото приведено выше ).

Рисунок действущего макета разработанного импульсного магнитного двигателя
МД-500-RU, дополненного асинхронным генераторм переменного тока.

Страная «качалка» сербского изобретателя В.Милковича , которая, как ни странно, — работает.
http://www.veljkomilkovic.com/OscilacijeEng.html

Краткий перевод:
Простой механизм с новыми механическими эффектами, представляющим собой источник энергии. Машина имеет только две основных части: огромный рычаг на оси и маятник. Взаимодействие двухступенчатого рычага умножает входную энергию удобную для полезной работы (механический молот, пресса, насос, электрический генератор. ). Для полного ознакомления с научными исследованиями смотрите видио.

1 — «Наковальня», 2 — Механический молот с маятником, 3 – Ось рычага молота, 4 — Физический маятник.
Наилучшие результаты были достигнуты, когда ось рычага и маятника находятся на
одной и той же высоте, но немного выше центра массы, как показано на рисунке.
В машине используется различие в потенциальной энергии между состоянием невесомости в положении ( вверху) и состоянием максимальной силы (усилия) (внизу) в течение процесса генерации энергии маятником. Это истина для центробежной силы, для которой сила равна нулю в верхней позиции и достигает наибольшего значения в нижней позиции, в которой скорость максимальна. Физический маятник использован как главное звено генератора с рычагом и маятником.
После многих лет испытаний, консультаций и общественных презентаций, много
было сказано об этой машине. Простота конструкции для самостоятельного изготовления в домашних условиях.
Эффективность модели может быть за счет повышения массы, как отношение веса (массы) рычага к поверхности молота, ударяющего по «наковальне».
Согласно теории генерации, колебательные перемещения «качалки» трудно поддаются анализу.
***
Испытания указали на важное значение процесса синхронизации частоты в каждой модели. Генерация физического маятника должна происходить с первого запуска и далее поддерживаться самостоятельно, но только при определенной скорости, в противном случае входная энергия будет затухать и исчезнет.
Молот более эффективно работает с коротким маятником (в насосе), но длительно (наиболее долго) работают с удлиненным маятником.
Дополнительное ускорение маятника является следствием силы тяжести. Если обратиться

к формуле: Ек = М(V1 +V 2)/2

и провести вычисления избытока энергии становится понятным, что он обусловлен потенциальной энергией гравитации. Кинетическая энергия может быть повышена путем увеличения тяжести (массы).

Демонстрация работы устройства.
***

РУССКАЯ КАЧАЛКА (резонансная к ачалка RU)

http://www.001-lab.com/001lab/index.php?topic=140.0
Cм.
RE Магнитогравитационные установки
Reply #14 : Март 02, 2010, 05:27:22
Видео: Работа в резонансе.rar (2955.44 Кб — загружено 185 раз.)
Работает.

ГЕНЕРАТОРЫ С ИЗБЫТОЧНОЙ ЭНЕРГИЕЙ (TORS TT)
НОВОЕ НАПРАВЛЕНИЕ В СОЗДАНИИ ГЕНЕРАТОРОВ СВОБОДНЙ ЭНЕРГИИ

1. Известная схема устройства на базе изобретения Эдвина Грея, которое заряжает аккумулятор Е1 от которого оно и питается или внешний акккумулятор Е2, переключением элемента S2а — S2б. Т1,Т2 — мультивибратор (можно выполнить на ИМС), запускающий гнератор высоковольтных колбений на Т3, Т4 и Т5.
L2, L3 — понижающий трансформатор, далее выпрямитель на D3, D4.
и трансформатр L2 — L3 можно вставит ферритовый сердечник (600 -1000 мп).
Элементы, заключенные в зеленый прямоугольник похожи на так называемую «конверсионную элементную трубку». В качестве искрового разрядника можно использовать обычную автомобильную свечу, а в качестве автотрансформатора (L1) – автомобильную катушку зажигания.
Другие схемные решения можно найти н а youtube.com в видеоматериалах по генераторам «свободной энергии», т.н. TROS, amplifier и др. со схемами этого вида генераторов энергии. Схемы генераторов избыточной энергии TORS TT, это когда потребляемая генератором мощность, предположительно, значительно меньше энергии выделяемой в нагрузке.

2. Очень интересный генератор Joule Thief избыточной энергии, работает от 1,5В, а питает лампы накаливания.

3. Наибольший интерес представляет генератор свободной энергии , работающий от источника постоянного тока 12 — 15В, который на выходе «тянет» несколько ламп накаливания на 220В.
http://www.youtube.com/watch?v=Y_kCVhG-jl0&feature=player_embedded
Однако, автор не раскрывает технические особенности изготовления этого вида генератора электрической энергии, с так называемой самозапиткой.
Кадр из этого видео ролика.

40мм). С ней придется разбираться, искать аналогичную конструкцию из множества подобных. Естественно, если будет желание.
Катушку, аналогичную используемой можно посмотреть на: http://jnaudin.free.fr/kapagen/replications.htm
http://www.001-lab.com/001lab/index.php?topic=24.0
УСПЕХОВ!

4. Достоверная схема генератора Капанадзе
Подробности на http://www.youtube.com/watch?v=tyy4ZpZKBmw&feature=related

С этим варианотом схемы могут быть затруднения с достижением положительного эффекта.
Элемент, обозначаемый буквами МОТ — это сетевой трансформатор 220/2000 . 2300В,
в большинстве сучаев от микроволновой печи, Р входа до 1400Вт, Р по выходу (СВЧ) 800Вт.

Читать еще:  Готовность к запуску двигателя

ВОДОРОД МОЖНО ПОЛУЧАТЬ ОБЛУЧЕНИЕМ ВОДЫ ВЧ КОЛЕБАНИЕМ.

http://peswiki.com/index.php/Directory:John_Kanzius_Produces_Hydrogen_from_Salt_Water_Using_Radio_Waves
John Kanzius
The authors have shown that NaCl-H2O solutions of concentrations ranging from 1 to 30%, when exposed to a polarised RF radiofrequency beam at at room temperature, generate an intimate mixture of hydrogen and oxygen which can be ignited and burned with a steady flamePatent of John Kanzius…

Преревод:
John_Kanzius показал, что раствор NaCl-H2O с концентрацией, колеблющейся от 1 до 30%, когда его облучают направленным поляризованным (polarised radiofrequency) ВЧ излучением с частотой, равной резонансной частоте раствора, порядка 13,56 МГц , при комнатной температуре начинает выделять водород, который в смеси с кислородом, начинает устойчиво гореть. При наличии искры водород воспламеняется и горит ровным пламенем, температура которого, как показывают эксперименты, может превышать 1600 градусов Цельсия.
Удельная теплота сгорания водорода: 120 Мдж/кг или 28000 ккал/кг.

Пример схемы ВЧ генератора:

***
Подробнее можно посмотреть на:
http://www.scribd.com/doc/36600371/Kanzius-Hydrogen-by-RF
Observations of polarised RF radiation catalysis of dissociation of H2O–NaCl solutions
R. Roy, M. L. Rao and J. Kanzius. The authors have shown that NaCl–H2O solutions of concentrations ranging from 1 to 30%, when exposed to a polarised radiofrequency beam at 13,56 MHz.

Ответ на вопрос читателя:
Я получал водород, заливая водным раствором едкого натра (Na 2 CO 3 ) пластину алюминия (100 х100 х 1мм). В воде кальцинированная сода реагирует с водой
2CO 3 − + H 2 O ↔ HCO 3 − + OH− и образует гидроксил ОН, который очищает алюминий от пленки. Далее начинается известная реакция:
2Аl + 3Н 2 О = A1 2 О 3 + 3H 2 с выделением тепла и интенсивным выделением водорода, схожая с кипением воды. Реакция проходит без электролиза!

Эксперимент следует проводить осторожно, чтобы не произошло возгорание и взрыв водорода. Или сразу предусмотреть отвод водорода из накрытого крышкой сосуда с рабочими компонентами. В процессе реакции выделения водорода, через некоторое время, алюминиевая пластина начинает покрывается отходами реакции хлоридом кальция CaCl 2 и окисью алюминия A1 2 О 3 . Интенсивность химической реакции через некоторое время начнет снижаться.
Для поддержания её интенсивности следует удалить отходы, заменить раствор едкого натра и алюминиевую пластину на другую. Использованную, после очистки можно, применять снова и т.д. до полного их разрушения. Если применять дюраль, реакция протекает с выделением тепла.
***
Аналогичная разработка:
Your house can be warmed up this way. (Ваш дом может быть обогрет этим способом)
Изобретатель Mr. Francois P. Cornish. Европейский патент №0055134А1 от 30.06.1982, применительно к бензиновому двигателю, он позволяет машине нормально двигаться, используя вместо бензина, воду и небольшое количество алюминия.
Mr. Francois P. в своем устройстве, использовал электролиз (при 5-10 кВ) в воде с алюминиевой проволокой, которую предварительно очищал от окиси до введения её в камеру, из которой по трубке отводил водород и подавал его в велосипедный двигатель.


Конструкция этой штуковины
Возник вопрос, что дороже на 100 км пути — бензин или алюминий с высоковольтным источником и аккумулятором?
Если «люмнь» со свалки или из отходов куханной посуды, то будет дешево.
***
Дополнительно, можете посмотреть подобное устройство здесь: http://macmep.h12.ru/main_gaz.htm
и здесь: «Простой народный способ получения водорода»
http://new-energy21.ru/content/view/710/179/,
а здесь http://www.vodorod.net/ — информация о генераторе водорода за 100 баксов. Я бы не покупал, т.к. на видео не видно явного возгорания водорода на выходе бидона с компонентами для электролиза.

Как подключить магнитный пускатель

Для подачи питания на двигатели или любые другие устройства используют контакторы или магнитные пускатели. Устройства, предназначенные для частого включения и выключения питания. Схема подключения магнитного пускателя для однофазной и трехфазной сети и будет рассмотрена дальше.

Контакторы и пускатели — в чем разница

И контакторы и пускатели предназначены для замыкания/размыкания контактов в электрических цепях, обычно — силовых. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до 440 В постоянного тока и до 600 В переменного. Имеют:

  • некоторое количество рабочих (силовых) контактов, через которые подается напряжение на подключаемую нагрузку;
  • некоторое количество вспомогательных контактов — для организации сигнальных цепей.

Так в чем разница? Чем отличаются контакторы и пускатели. В первую очередь они отличаются степенью защиты. Контакторы имеют мощные дугогасительные камеры. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами. На малые токи — до 10 А — выпускают исключительно пускатели. Они, кстати, на большие токи не выпускаются.

Внешний вид не всегда так сильно отличается, но бывает и так

Есть еще одна конструктивная особенность: пускатели выпускаются в пластиковом корпусе, у них наружу выведены только контактные площадки. Контакторы, в большинстве случаев, корпуса не имеют, потому должны устанавливаться в защитных корпусах или боксах, которые защитят от случайного прикосновения к токоведущим частям, а также от дождя и пыли.

Кроме того, есть некоторое отличие в назначении. Пускатели предназначены для запуска асинхронных трехфазных двигателей. Потому они имеют три пары силовых контактов — для подключения трех фаз, и одну вспомогательную, через которую продолжает поступать питание для работы двигателя после того, как кнопка «пуск» отпущена. Но так как подобный алгоритм работы подходит для многих устройств, то подключают через них самые разнообразные устройства — цепи освещения, различные устройства и приборы.

Видимо потому что «начинка» и функции обоих устройств почти не отличаются, во многих прайсах пускатели называются «малогабаритными контакторами».

Устройство и принцип работы

Чтобы лучше понимать схемы подключения магнитного пускателя, необходимо разобраться в его устройстве и принципе работы.

Основа пускателя — магнитопровод и катушка индуктивности. Магнитопровод состоит из двух частей — подвижной и неподвижной. Выполнены они в виде букв «Ш» установленные «ногами» друг к другу.

Нижняя часть закреплена на корпусе и является неподвижной, верхняя подпружинена и может свободно двигаться. В прорези нижней части магнитопровода устанавливается катушка. В зависимости от того, как намотана катушка, меняется номинал контактора. Есть катушки на 12 В, 24 В, 110 В, 220 В и 380 В. На верхней части магнитопровода есть две группы контактов — подвижные и неподвижные.

Устройство магнитного пускателя

При отсутствии питания пружины отжимают верхнюю часть магнитопровода, контакты находятся в исходном состоянии. При появлении напряжения (нажали кнопку пуск, например) катушка генерирует электромагнитное поле, которое притягивает верхнюю часть сердечника. При этом контакты меняют свое положение (на фото картинка справа).

Читать еще:  Бесконденсаторный запуск трехфазного двигателя от однофазной сети

При пропадании напряжения электромагнитное поле тоже исчезает, пружины отжимают подвижную часть магнитопровода вверх, контакты возвращаются в исходное состояние. В этом и состоит принцип работы эклектромагнитного пускателя: при подаче напряжения контакты замыкаются, при пропадании — размыкаются. Подавать на контакты и подключать к ним можно любое напряжение — хоть постоянное, хоть переменное. Важно чтобы его параметры не были больше заявленных производителем.

Так выглядит в разобранном виде

Есть еще один нюанс: контакты пускателя могут быть двух типов: нормально замкнутыми и нормально разомкнутыми. Из названий следует их принцип работы. Нормально замкнутые контакты при срабатывании отключаются, нормально разомкнутые — замыкаются. Для подачи питания используется второй тип, он и есть наиболее распространенным.

Схемы подключения магнитного пускателя с катушкой на 220 В

Перед тем, как перейдем к схемам, разберемся с чем и как можно подключать эти устройства. Чаще всего, требуются две кнопки — «пуск» и «стоп». Они могут быть выполнены в отдельных корпусах, а может быть единый корпус. Это так называемый кнопочный пост.

Кнопки могут быть в одном корпусе или в разных

С отдельными кнопками все понятно — у них есть по два контакта. На один подается питание, со второго оно уходит. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны. Также обычно имеется клемма для подключения заземления. Тоже ничего сложного.

Подключение пускателя с катушкой 220 В к сети

Собственно, вариантов подключения контакторов много, опишем несколько. Схема подключения магнитного пускателя к однофазной сети более простая, потому начнем с нее — будет проще разобраться дальше.

Питание, в данном случае 220 В, полается на выводы катушки, которые обозначены А1 и А2. Оба эти контакта находятся в верхней части корпуса (смотрите фото).

Сюда можно подать питание для катушки

Если к этим контактам подключить шнур с вилкой (как на фото), устройство будет находится в работе после того, как вилку вставите в розетку. К силовым контактам L1, L2, L3 можно при этом подавать любое напряжение, а снимать его можно будет при срабатывании пускателя с контактов T1, T2 и T3 соответственно. Например, на входы L1 и L2 можно подать постоянное напряжение от аккумулятора, которое будет питать какое-то устройство, которое подключить надо будет к выходам T1 и T2.

При подключении однофазного питания к катушке неважно на какой вывод подавать ноль, а на какой — фазу. Можно провода перекинуть. Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса. И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Но есть гораздо более интересные варианты. Например, подавать питание на катушку можно через реле времени или датчик освещенности, а к контактам подключить линию питания уличного освещения. В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки (на фото выше это A2).

Схема с кнопками «пуск» и «стоп»

Магнитные пускатели чаще всего ставят для включения электродвигателя. Работать в таком режиме удобнее при наличии кнопок «пуск» и «стоп». Их последовательно включают в цепь подачи фазы на выход магнитной катушки. В этом случае схема выглядит как на рисунке ниже. Обратите внимание, что

Схема включения магнитного пускателя с кнопками

Но при таком способе включения пускатель будет в работе только то время, пока будет удерживаться кнопка «пуск», а это не то, что требуется для длительной работы двигателя. Потому в схему добавляют так называемую цепь самоподхвата. Ее реализуют при помощи вспомогательных контактов на пускателе NO 13 и NO 14, которые подключаются параллельно с пусковой кнопкой.

Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата

В этом случае после возвращения кнопки ПУСК в исходное состояние, питание продолжает поступать через эти замкнутые контакты, так как магнит уже притянут. И питание поступает до тех пор, пока цепь не будет разорвана нажатием клавиши «стоп» или срабатыванием теплового реле, если такое есть в схеме.

Питание для двигателя или любой другой нагрузки (фаза от 220 В) подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T.

Подробно показано в какой последовательности лучше подключать провода в следующем видео. Вся разница в том, что использованы не две отдельные кнопки, а кнопочный пост или кнопочная станция. Вместо вольтметра можно будет подключить двигатель, насос, освещение, любой прибор, который работает от сети 220 В.

Подключение асинхронного двигателя на 380 В через пускатель с катушкой на 220 В

Эта схема отличается только тем, что в ней подключаются к контактам L1, L2, L3 три фазы и также три фазы идут на нагрузку. На катушку пускателя — контакты A1 или A2 — заводится одна из фаз. На рисунке это фаза B, но чаще всего это фаза С как менее нагруженная. Второй контакт подсоединяется к нулевому проводу. Также устанавливается перемычка для поддержания электропитания катушки после отпускания кнопки ПУСК.

Схема подключения трехфазного двигателя через пускатель на 220 В

Как видите, схема практически не изменилась. Только в ней добавилось тепловое реле, которое защитит двигатель от перегрева. Порядок сборки — в следующем видео. Отличается только сборка контактной группы — подключаются все три фазы.

Реверсивная схема подключения электродвигателя через пускатели

В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Например, для работы лебедки, в некоторых других случаях. Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами (например, фазы B и C). Схема состоит из двух одинаковых пускателей и кнопочного блока, который включает общую кнопку «Стоп» и две кнопки «Назад» и «Вперед».

Реверсивная схема подключения трехфазного двигателя через магнитные пускатели

Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно.

Пускатели могут быть с катушкой на 380 В или на 220 В (указано в характеристиках на крышке). В случае если это 220 В, на контакты катушки подается одна из фаз (любая), а на второй подается «ноль» со щитка. Если катушка на 380 В, на нее подаются две любые фазы.

Читать еще:  Dodge stratus coupe тюнинг двигателя

Также обратите внимание, что провод от кнопки включения (вправо или влево) подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Рядом с катушкой пускателей изображены контакты KM1 и KM2. Таким образом реализуется электрическая блокировка, которая не дает одновременно подать питание на два контактора.

Магнитный пускатель с установленной на нем контактной приставкой

Так как нормально замкнутые контакты есть не во всех пускателях, можно их взять, установив дополнительный блок с контактами, который называют еще контактной приставкой. Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса.

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен.

Вся схема магнитного двигателя

В последнее время в области автоматики все большее применение находят магнитные усилители. Принцип их действия основан на зависимости магнитной проницаемости ферромагнитных материалов дросселя при его питании переменным током от подмагничивающего действия постоянного поля. Схема простейшего магнитного усилителя показана на рис. V.2.

Магнитный усилитель состоит из двух дросселей I и II с подмагничиванием постоянным током. Обмотки 1 и 2 переменного тока обоих дросселей намотаны на сердечники, так что направления переменных магнитных потоков во внутренних сердечниках противоположны. Вследствие этого электродвижущие силы, индуктируемые переменными магнитными потоками Ф в обмотку 3 постоянного тока, будут взаимно компенсироваться. Входной величиной усилителя является напряжение Е обмотки 3 либо ток протекающий по этой обмотке. Эта обмотка называется управляющей или подмагничивающей. Выходной величиной магнитного усилителя является переменный ток в обмотках 1 и 2 и нагрузочном резисторе Величина этого тока

где — сумма активного сопротивления обмоток 1 и 2 и нагрузки и — напряжение в цепи переменного тока; сумма реактивных сопротивлений обмоток .

Индуктивности обмоток

где — число витков обмотки 1 или — длина средней линии сердечника; — площадь сечения сердечника; — коэффициент магнитной проницаемости сердечника.

Протекающий по обмотке управления постоянный ток меняет насыщение сердечника. При этом с увеличением силы тока уменьшается динамическая магнитная проницаемость; в результате реактивное сопротивление катушек 1 и 2 падает, а величина тока растет.

На рис. V.3 показана зависимость тока от величины постоянного тока подмагничивания Коэффициент усиления по току определяется как отношение

Усиление по мощности

Рис. V.2. Схема простейшего магнитного усилителя

Рис. V.3. Зависимость тока в нагрузке усилителя от величины тока подмагничивания

Рис. V.4. Схема магнитного усилителя со вспомогательной обмоткой постоянного подмагнтивания

Затрачивая небольшую мощность на подмагничивание, можно управлять значительной мощностью .

На рис. V.4, а показана схема магнитного усилителя с большим коэффициентом усиления. Для получения большого коэффициента усиления следует обеспечить работу магнитного усилителя на наиболее крутом участке характеристики (рис. V.4, б). Для этого вводится вспомогательная обмотка постоянного подмагничивания, обеспечивающая работу магнитного усилителя в точке М характеристики . В обмотке управления при этом ток изменяется только в пределах . В рассматриваемой схеме вспомогательной обмоткой постоянного подмагничивания является обмотка, получающая питание от селенового или купроксного выпрямителя.

В качестве материала для сердечников магнитных усилителей применяют трансформаторную сталь или пермаллой. Необходимо отметить, что коэффициент усиления по мощности зависит не только от качества материала сердечника, но и от частоты тока. С увеличением частоты коэффициент усиления увеличивается. Так, при частоте 50 Гц коэффициент усиления по мощности магнитных усилителей из трансформаторной стали составляет величину 50—200, а из пермаллоя — 100—1000. При частоте 500 Гц коэффициенты усиления соответственно увеличиваются: для трансформаторной стали можно получить усиление порядка 100—800, а для пермаллоя — 200—2000. Поэтому магнитные усилители обычно работают на повышенных частотах — от 400 до 3000 Гц.

Перейдем теперь к рассмотрению различных схем магнитных усилителей.

Для получения большего усиления применяют магнитные усилители с положительной обратной связью. Принципиальная схема однотактного магнитного усилителя с положительной обратной связью приведена в табл. V.2 (схема 4). Коэффициенты усиления по мощности у магнитных усилителей с обратной связью, выполненных на сердечнике из трансформаторной стали, при частоте 50 Гц достигают 1000, а на сердечнике из пермаллоя . При более высоких частотах можно получить значительно больший коэффициент усиления.

Для увеличения крутизны характеристики и придания ей симметричной формы относительно тока используют дифференциальные магнитные усилители. Схема такого усилителя изображена на рис. V.5, а. Усилитель состоит из двух идентичных магнитных усилителей, получающих питание от трансформатора Управляющие и вспомогательные обмотки усилителей включены последовательно, а дроссельные обмотки — параллельно. Благодаря этому через нагрузочный резистор протекает разность токов этих усилителей. Результирующая характеристика (рис. V.4, б) получается как сумма характеристик:

(кликните для просмотра скана)

Рис. V.5. Схема дифференциала ного магнитного усилителя

Так как кривая зависимости тока нагрузки от тока подмагничивания дифференциальных усилителей проходит через начало координат и симметрична относительно тока подмагничивания, то при нулевом токе подмагничивания ток нагрузки также равен нулю. При изменении направления подмагничивающего тока ток нагрузки изменяет свою фазу на обратную.

Дифференциальные магнитные усилители, так же как и магнитные усилители других типов, допускают соединение их в каскады, что приводит к возрастанию коэффициентов усиления. Свойства дифференциальных магнитных усилителей позволяют широко их использовать в системах автоматического регулирования. Существенным недостатком дифференциальных магнитных усилителей является их инерционность, обусловленная значительной постоянной времени управляющей обмотки. Постоянная времени определяется по формуле

где — число витков обмотки управления; — омическое сопротивление обмотки управления; — число последовательно включаемых обмоток управления; — площадь поперечного сечения одного сердечника; — магнитная проницаемость сердечника; — длина средней линии сердечника.

Если сердечник усилителя изготовлен из магнитного материала с прямоугольной петлей гистерезиса (пермаллой или мопермаллой), то постоянная времени

где — омическое сопротивление всей цепи нагрузки; — частота переменного тока; — число витков обмотки переменного тока.

Различные схемы магнитных усилителей приведены в табл. V.2. На схеме 1 показан магнитный усилитель тока, получивший наибольшее распространение в бесконтактных релейных устройствах. На схеме 2 изображен однотактный магнитный усилитель, также нашедший широкое применение благодаря своей простоте. На схеме 3 показан быстродействующий магнитный усилитель. На схемах 5—7 изображены двухтактные магнитные усилители мощности, где в качестве нагрузки применяют двигатели постоянного или переменного тока. На схеме 8 показан магнитный модулятор с низким порогом чувствительности.

Высокая надежность, вибростойкость и низкий порог чувствительности для сигналов постоянного тока обеспечили широкое распространение магнитных усилителей в системах автоматического регулирования.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector