2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Высокий ток двигателя причины

Работа трехфазных асинхронных электродвигателей на двух фазах

Работа электродвигателей на двух фазах является наиболее частой причиной выхода из строя трехфазных асинхронных электродвигателей низкого напряжения. Потеря одной фазы возможна из-за обрывов проводников, нарушений контактов, повреждений аппаратов (поломки, разрегулировки, выгорания контакта в магнитном пускателе), но чаще всего возникает из-за перегорания плавких вставок в предохранителях.

Как показывает опыт, в сетях, защищенных не предохранителями, а трехфазными автоматами, случаи потери одной фазы бывают значительно реже.

При включении остановленного двигателя на две фазы двигатель не может запуститься, так как магнитное поле статора в этом случае оказывается не вращающимся, а пульсирующим. Вращающий момент двигателя при этом равен нулю, но из сети потребляется ток, равный 0,866 I пуск . Этот ток хотя несколько меньше пускового, соответствующего включению двигателя на три фазы, нозначительно больше номинального тока двигателя данного типа. Поэтому, если держать двигатель некоторое время в таком режиме, то его обмотки будут повреждены.

Исчезновение одной фазы на вращающемся двигателе в зависимости от его конструкции и величины загрузки может иметь различные последствия. Полностью загруженный двигатель, имеющий кратность максимального момента больше 2, будет продолжать вращаться на двух фазах, а при кратности меньшем 2 произойдет «опрокидывание» и двигатель остановится.

Для двигателя с наиболее распространенной кратностью максимального момента равном 2 ток опрокидывания в трехфазном режиме равен примерно 3,5 I ном. В двухфазном режиме ток статора такого, полностью загруженного двигателя на границе опрокидывания составляет примерно 2,4—2,5 I ном .

Чем больше величина кратности максимального момента, тем меньше кратность перегрузки двигателя при работе на двух фазах. Она зависит и от нагрузки двигателя. Так, двигатель с кратностью 2, нагруженный только на 50%, при работе на двух фазах потребляет ток порядка номинального, т. е. может продолжать вращаться практически без перегрузки.

Любой асинхронный трехфазный двигатель при неизменной нагрузке на его валу после потери одной фазы начинает потреблять ток больший, чем в предшествовавшем трехфазном симметричном режиме. На холостом ходу ток при потере фазы возрастает в 1,73 раза, а по мере увеличения нагрузки двигателя возрастает и это соотношение.

Следовательно, самая большая перегрузка сопровождающаяся током, равным 0,866 I пуск, возникает при питании двумя фазами не вращающегося двигателя, а вращение двигателя на двух фазах в зависимости от загрузки может происходить как без перегрузки, так и с различной по величине перегрузкой, в том числе и с опасной для его обмоток. Наиболее распространенной защитой от перегрузки низковольтных двигателей является тепловая (тепловые реле).

От пусковых токов эта защита отстраивается выдержкой времени, создающейся за счет тепловой инерции нагрева. Поэтому ток ее срабатывания по сравнению с другими видами защиты может быть взят ближе к номинальному току двигателя. Однако необходимо иметь какой-то запас, иначе защита будет отключать двигатель в нормальных режимах, например при эксплуатационных колебаниях напряжения и окружающей температуры.

Обычно ток срабатывания тепловой защиты выбирается не меньше 110% номинального тока двигателя, а чаще составляет 120 и даже 130% (тепловые элементы не всегда удается точно подобрать по мощности двигателя).

Таким образом, тепловые элементы защищают двигатель от работы на двух фазах не во всех случаях. В зависимости от загрузки двигателя возможен и такой режим, когда ток окажется больше номинального, но меньше тока срабатывания защиты. Поэтому для защиты трехфазных асинхронных электродвигателей при работе на двух фазах разные конструкции специальных защитных реле.

Основные неисправности синхронного электродвигателя, и их устранение.

Повышенный нагрев активной стали статора.Нагрев активной стали статора может возникнуть из-за

перегрузки синхронной машины, а также от

замыкания в листах шихтовки сердечника при слабой прессовке на заводе-изготовителе.

При слабой прессовке сердечника происходят микроподвижка листов шихтовки с частотой перемагничивания 100 Гц/с, а также повышенная вибрация активной стали.

В процессе вибрации активной сталипроисходит истирание изоляции листов. Листы с поврежденной изоляцией контактируют между собой и в образовавшемся стальном неизолированном пакете вихревые токи нагревают сердечник. При этом может произойти расширенное замыкание по всей расточке статора или местное.

В зависимости от площади замыкания в листах может возникнуть так называемый «пожар в железе», сильно перегревающий изоляцию и приводящий к ее повреждению. Это явление опасно в крупных синхронных машинах, особенно в турбогенераторах.

Избавляются от такого опасного явления в активной стали следующим образом:

• крупные синхронные машины имеют измерительные средства по току и мощности (амперметры и ваттметры), поэтому уровень нагрузки легко контролируется, и меры по снижению нагрузки можно принять быстро. Нагрев обмотки и активной стали контролируется с помощью термопар, заложенных в статор для замера температуры обмотки и сердечника;

• в случае замыкания активной стали, особенно местного характера, это явление обнаруживается в работающей машине только на слух. Возникает зудящая вибрация, и ее слышно приблизительно в том месте статора, где замкнута активная сталь. Для устранения этого явления машину следует разобрать. Обычно крупные синхронные двигатели изготовляют с удлиненными валами, что дает возможность снять щиты и сдвинуть статор, в котором можно работать.

Затем для уплотнения стали в зубцы забивают клинья из текстолита, промазанные одним из клеящих лаков (№ 88, МЛ-92 и др.). Перед расклиновкой зубцов активную сталь тщательно продувают сухим компрессорным воздухом.

Если по какой-либо причине возникло замыкание и оплавление железа в зубцах, поврежденные участки тщательно вырубают, зачищают, между листами заливают лак воздушной сушки и листы расклинивают. Если после этого зудящая вибрация не исчезает, следует повторить расклиновку до полного исчезновения вибрации активной стали.

В высоковольтных крупных машинах проверку качества ремонта и шихтовки листов проводят индукционным способом.

Читать еще:  Датчик температуры для двигателя крайслер

Перегрев обмотки статора. Наиболее частой причиной местных перегревов обмоток статоров синхронных машин являются витковые замыкания. При возникновении виткового замыкания в обмотке статора, компаундированной битумом, машина отключится максимальной защитойв связи с повышением тока в поврежденной фазе. В месте виткового замыкания битум расплавится, затечет между витки и изолирует их. Примерно через 30— 40 мин после того, как застынет битум, следует запустить синхронную машину. Многолетний опыт подтверждает благоприятный исход изложенного порядка ликвидации повреждения обмотки.

Однако такое восстановление изоляции статора нельзя считать надежным, хотя и восстановленная изоляция может длительное время надежно работать до остановки двигателя на плановый ремонт.

В статорных обмотках синхронных машин возможны неисправности, аналогичные неисправностям в обмотках асинхронных двигателей, как например, перегрузка по току при снижении напряжения в сети.В этом случае требуется повысить напряжение сети до номинального.

Перегрев обмотки возбуждения. В отличие от статорной обмотки синхронных машин обмотки возбуждения питаются постоянным током. Изменяя ток возбуждения в синхронной машине, можно регулировать коэффициент мощности. Ток возбуждения регулируют в пределах номинальных значений для каждого типа синхронных машин.

С увеличением тока возбуждения повышается перегрузочная способность синхронных двигателей, улучшается коэффициент мощности благодаря высоким компенсирующим способностям таких машин, повышается уровень напряжения в зоне их действия. Однако с увеличением тока в обмотке возбуждения повышается нагрев этой обмотки, а также увеличивается ток в статорной обмотке.

Поэтому ток в обмотке возбуждения регулируют до такого уровня, при котором ток в обмотке статора становится минимальным, коэффициент мощности равным единице, а ток возбуждения находится в пределах номинального значения.

При замыкании в цепи обмотки возбуждения повышается температура обмотки, перегрев может оказаться недопустимым; возникает вибрация ротора, которая может оказаться тем сильнее, чем большая часть витков обмотки окажется замкнутой.

Возможность возникновения замыкания в обмотке возбуждения объясняется следующим. В результате усыхания и усадки изоляции катушек полюсов появляется подвижка катушек, в связи с этим корпусная и витковая изоляция истирается, что в свою очередь создает условия для возникновения замыкания между витками и на корпус полюса.

Повреждения обмотки возбуждения во время запуска синхронных двигателей. Иногда возникают повреждения изоляции обмотки возбуждения синхронных двигателей в начальный момент пуска. При замыкании обмотки возбуждения на корпус работа синхронного двигателя недопустима.

Для того чтобы понять причины появления неисправностей в процессе пуска синхронных двигателей, необходимо знать их устройство.

Статор и обмотки синхронного двигателя по конструкции аналогичны статору асинхронного двигателя. Синхронный двигатель отличается от асинхронного конструкцией ротора.

Ротор синхронного двигателя с частотой вращения до 1500 об/мин имеет явнополюсное исполнение, т. е. полюсы укрепляют на роторной звезде (ободе). Роторы быстроходных машин изготовляют неявнополюсными.

Дата добавления: 2018-08-06 ; просмотров: 2897 ; Мы поможем в написании вашей работы!

Ток электродвигателя, какую силу тока потребляет двигатель, мотор при пуске и работе.

Производители на самом корпусе электрических двигателей ставят металлическую табличку, на которой написаны основные характеристики данного электродвигателя.

На этой табличке указан и ток, который потребляет данная электрическая машина при своей номинальной работе (средне допустимой, с нормальной нагрузкой на валу двигателя). Данная надпись может иметь два значения, например 5,9/3,4А, что означает – при подключении двигателя в режиме «треугольник» номинальные ток будет равен 5,9 ампер, а при подключении в режиме «звезда» он будет 3,4 ампера. На этой же табличке можно увидеть и символы, указывающие данные режимы работы.

Если по каким-то причинам на корпусе электродвигателя нет надписи, какую номинальную силу тока он потребляет, то ток можно вычислить по следующей формуле (если конечно известны все остальные, имеющиеся в этой формуле, величины!):

При отсутствии металлической таблички с основными характеристиками на корпусе электрического двигателя можно пойти более простым путем, чтобы узнать приближенную силу тока, потребляемой движком. Если известна номинальная мощность двигателя, то применим следующее условие – «киловатт электрической мощности равен двум амперам тока» (это условие подходит для электродвигателей с мощностью от 3-х киловатт и более, то есть будет максимально приближенным). Например, у нас есть асинхронный электрический двигатель мощностью 5 кВт (5000 ватт). Следовательно, приближенное значение потребляемого тока будет около 10 ампер. Может возникнуть небольшая непонятка. Если воспользоваться простой формулой вычисления тока, зная мощность и напряжение: 5000 ватт / 380 вольт = 13,15 ампер. Но ведь у электродвигателей есть свой коэффициент полезного действия, который вовсе не равен 100% и косинус фи, который также меньше единицы. Вот мы и получаем, что реальная сила тока будет ближе к значению 10 ампер, а не 13,15 ампер.

Практическим вариантом узнать значение силы тока, который потребляется электродвигателем при его номинальной работе, будет использование обычного амперметра, или токоизмерительных клещей. При уверенности в том, что наш электродвигатель точно рассчитан на то напряжение, что мы собираемся на него подать, мы даем питание на него. Далее, все просто, берем токоизмерительные клещи и измеряем силу тока на проводах, что питают наш электродвигатель. Причем еще стоит обратить внимание на то, что у трехфазного электродвигателя рабочие токи должны быть одинаковыми на всех трех фазах. Если Вы вдруг обнаружили факт неодинаковости, то причиной может быть, как перекос фаз электрического питания, так и неисправности самого электродвигателя, который может в скором времени вовсе выйти из строя из-за ненормального режима своей работы. В любом случае желательно выяснить причину неодинаковости значений силы тока на проводах.

Помимо номинального тока, который потребляется электродвигателем при нормальной своей работе, существует еще так называемый пусковой ток. Его величина может быть превышать номинальный ток аж в 3-8 раз. То есть, когда мы подаем питание на электрический двигатель, который до этого находился в состоянии покоя, в начальный момент по его обмоткам начинает протекать увеличенный ток по причине нескомпенсированности сил электромагнитных полей внутри двигателя. Чем быстрее электродвигатель начинает вращаться, тем меньше тока он начинает потреблять. То есть, пусковым током считается то значение электрического тока, которое существует с момента включения электродвигателя и до выхода его на свои номинальные обороты (время разгона двигателя от нуля до нормального значения).

Читать еще:  Большой расход масла в двигателе форд мондео

Минимальный ток, что будет течь через обмотки электрического двигателя, будет тогда, когда движок работает на холостом ходу (то есть, к его валу не подсоединено ни одной механической нагрузки). Следовательно, чем сильнее мы нагрузим вал двигателя, тем большую силу тока начнет он потреблять. Номинальной нагрузкой считается та, на которую изначально данный электродвигатель был рассчитан при своем изготовлении, и при которой эта электрическая машина может работать продолжительное время без вреда для себя. Имеется также понятие о максимальной нагрузке, при которой сила тока, что потребляется двигателем, находится на предельно допустимом значении. При максимальных токах электродвигатели могут работать лишь незначительный промежуток времени, поскольку длительная работа может негативно влиять на сам движок (перегрев), сокращая его общий срок службы.

Пусковые токи у разных электродвигателей разные , их можно посмотреть в справочных таблицах, где прописаны характеристики каждого конкретного движка. Для чего нужно знать значение пусковых токов? Для того, чтобы правильно подобрать устройства защиты для электрических цепей, которые непосредственно относятся к схеме этого электрического двигателя. Например, зная конкретную величину пускового тока мы правильно можем подобрать тепловую защиту под него, автоматически выключатель, что отвечает за включение и выключение данного двигателя и т.д. Это избавит нас от таких проблем как постоянное срабатывание токовой защиты (если устройство рассчитано на меньший ток, чем нужно) или не срабатывание тогда, когда это нужно (если ток срабатывания устройства гораздо больше нужного).

Большие пусковые токи – это негативное явление, которое на короткий промежуток времени создает просадку питающей сети. В этой электросети возникает кратковременное падение напряжения. Как можно уменьшить пусковые токи электродвигателя? Первый вариант (классический), это запускать электродвигатель по схеме «звезда», а спустя некоторое время переключаться на схему «треугольник». В этом случае при включении начальный, пусковой ток будет относительно небольшой, а при переключении режима в «треугольник» движок выйдет на свои номинальные обороты.

Иными вариантами снижения пусковых токов электродвигателя являются использование различных устройств плавного пуска, которые за счет электронных схем контролируют начальный режим разгона электрической машины. Допустим при использовании преобразователей частоты можно легко задать нужные параметры для старта и последующий работы электрического двигателя.

Перекос фаз в трехфазной сети — чем опасен и когда возникает?

Самая распространенная проблема, порождающая массу деструктивных последствий – перекос фаз в трехфазной сети (до 1,0 кВ) с глухозаземленной нейтралью. При определенных условиях такое явление может вывести из строя электрические приборы и создать угрозу для жизни. Учитывая актуальность проблемы, будет полезным узнать, что представляет собой несимметрия токов и напряжений, а также причины ее возникновения. Это позволит выбрать наиболее оптимальную стратегию защиты.

Что такое перекос фаз?

Данный термин используется для описания состояния сети, при котором возникают неравномерные нагрузки между фазами, что приводит к возникновению перекоса. Если составить векторную диаграмму идеальной трехфазной сети, то она будет выглядеть так, как показано на рисунке ниже.

Диаграмма напряжений в идеальных трехфазных сетях

Как видно из рисунка, в данном случае равны как линейные напряжения (АВ=ВС=СА=380,0 В), так и фазные (АN=ВN=СN=220,0 В). К сожалению, на практике добиться такого идеального равенства нереально. То есть, линейные напряжения сети, как правило, совпадают, в то время как в фазных наблюдаются расхождения. В некоторых случаях они могут превысить допустимый предел, что приведет к возникновению аварийной ситуации.

Пример диаграммы напряжений при возникновении перекоса

Допустимые нормы значений перекоса

Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.

Нормы несимметрии напряжения ГОСТ 13109-97

Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.

Вырезка из СП 31-110 (п 9.5)

Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность. Первая считается основной, она определяет номинальное напряжение. Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.

Причины перекоса фаз в трехфазной сети

Как уже упоминалось выше, данное состояние электросети чаще всего вызвано неравномерным подключением нагрузки на фазы и обрывом нуля. Чаще всего это проявляется в сетях до 1, кВ, что связано с особенностями распределения электроэнергии, между однофазными электроприемниками.

Обмотки трехфазных силовых трансформаторов подключаются «звездой». Из места соединения обмоток отводится четвертый провод, называемый нулевым или нейтралью. Если происходит обрыв нулевого провода, то в сети возникает несимметрия напряжений, причем перекос напрямую будет зависеть от текущей нагрузки. Пример такой ситуации приведен ниже. В данном случае RН это сопротивления нагрузок, одинаковые по значению.

Читать еще:  Все характеристики двигатель 11193

Перекос фаз, вызванный обрывом нейтрали

В данном примере напряжение на нагрузке, подключенной к фазе А, превысит норму и будет стремиться к линейному, а на фазе С упадет ниже допустимого предела. К подобной ситуации может привести перекос нагрузки, выше установленной нормы. В таком случае напряжение на недогруженных фазах повысится, а на перегруженных упадет.

К перекосу напряжений также приводит работа сети в неполнофазном режиме, когда происходит замыкание фазного провода на землю. В аварийных ситуациях допускается эксплуатация сети в таком режиме, чтобы обеспечить электроснабжение потребителям.

Исходя из вышесказанного, можно констатировать три основные причины перекоса фаз:

  1. Неравномерная нагрузка на линии трехфазной сети.
  2. При обрыве нейтрали.
  3. При КЗ одного из фазных проводов на землю.

Несимметрия в высоковольтных сетях

Вызвать подобное состояние в сети 6,0-10,0 кВ иногда может подключенное к ней оборудование, в качестве характерного примера можно привести дугоплавильную печь. Несмотря на то, что она не относится к однофазному оборудованию, управление тока дуги в ней производится пофазно. В процессе плавки также могут возникнуть несимметричные КЗ. Учитывая, что существуют дугоплавильные установки запитывающиеся от напряжения 330,0 кВ, то можно констатировать, что и в данных сетях возможен перекос фаз.

В высоковольтных сетях перекос фаз может быть вызван конструктивными особенностями ЛЭП, а именно, разным сопротивлением в фазах. Чтобы исправить ситуацию выполняется транспозиция фазных линий, для этого устанавливаются специальные опоры. Эти дорогостоящие сооружения не отличаются особой прочностью. Такие опоры не особо стремятся устанавливать, предпочитая пожертвовать качеством электроэнергии, чем надежностью ЛЭП.

Опасность и последствия

Считается, что наиболее значимые последствия несимметрии связаны с низким качеством электроэнергии. Это, безусловно, так, но нельзя забывать и о других негативных воздействиях. К таковым относится образование уравнительных токов, вызывающих увеличение расхода электрической энергии. В случае с трехфазным автономным электрическим генератором это также приводит к повышенному расходу дизеля или бензина.

При равномерном подключении нагрузки, геометрическая сумма проходящих через нее токов была бы близкой к нулю. Когда возникает перекос, растет уравнительный ток и напряжение смещения. Увеличение первого приводит к росту потерь, второго – к нестабильному функционированию бытовых приборов или другого оборудования, срабатыванию защитных устройств, быстрому износу электроизоляции и т.д.

Перечислим, какие последствия можно ожидать, когда появляется перекос:

  1. Отклонение фазного напряжения. В зависимости от распределения нагрузок возможно два варианта:
  • Напряжение выше номинального. В этом случае большинство электрических устройств, оставленных включенными в бытовые розетки, с большой вероятностью выйдут из строя. При срабатывании защиты результат будет менее трагическим.
  • Напряжение падает ниже нормы. Увеличивается нагрузка на электродвигатели, происходит падение мощности электромашин, растут пусковые токи. Наблюдаются сбои в работе электроники, устройства могут отключиться и не включаться пока перекос не будет устранен.
  1. Увеличивается потребление электричества оборудованием.
  2. Нештатная работа электрооборудования приводит к уменьшению эксплуатационного срока.
  3. Снижается ресурс техники.

Не следует забывать, что перекос может создать угрозу для жизни. При превышении номинального напряжения вероятность КЗ в проводке не велика, при условии, что она не ветхая, а кабель подобран правильно. Более опасны в этом случае электроприборы, подключенные к сети. Когда появляется перекос, может произойти КЗ на корпус или возгорания электроприбора.

Защита от перекоса фаз в трехфазной сети

Наиболее простой, но, тем не менее, эффективный способ минимизировать негативные последствия описанного выше отклонения — установить реле контроля фаз. С внешним видом такого устройства и примером его подключения (в данном случае после трехфазного счетчика), можно ознакомиться ниже.

Реле контроля фаз (А) и пример схемы его подключения (В)

Данный трехфазный автомат может обладать следующими функциями:

  1. Производить контроль амплитуды электротока. Если параметр выходит за установленные границы, нагрузка отключается от питания. Как правило, диапазон срабатывания прибора можно настраивать в соответствии с особенностями сети. Данная опция имеется у всех приборов данного типа.
  2. Проверка очередности подключения фаз. Если чередование неправильное питание отключается. Данный вид контроля может быть важен для определенного оборудования. Например, при подключении трехфазных асинхронных электромашин от этого зависит, в какую сторону будет происходить вращение вала.
  3. Проверка обрыва на отдельных фазах, при обнаружении такового нагрузка отключается от сети.
  4. Функция отслеживает состояние сети, как только появляется перекос, происходит срабатывание.

Совместно с реле контроля фаз можно использовать трехфазные стабилизаторы напряжения, с их помощью можно несколько улучшить качество электроэнергии. Но данный вариант не отличается эффективностью, поскольку такие приборы сами могут взывать нарушение симметрии, помимо этого на стабилизаторах возникают потери.

Лучший способ симметрировать фазы – использовать для этой цели специальный трансформатор. Этот вариант выравнивания фаз может дать результаты, как при неправильном распределении однофазных нагрузок на автономный 3-х фазный генератор электроэнергии, так и в более серьезных масштабах.

Защита в однофазной сети

В данном случае повлиять на внешние проявления системы электроснабжения не представляется возможным, например, если фазы перегружены, потребители электроэнергии не могут исправить ситуацию. Все, что можно сделать, это обезопасить электрооборудование путем установки реле напряжения и однофазного стабилизатора.

Имеет смысл установить общее стабилизирующее устройство на всю квартиру или дом. В этом случае необходимо высчитать максимальную нагрузку, после этого добавить запас 15-20%.. Это запас на будущее, поскольку со временем количество электрооборудования может увеличиться.

Совсем не обязательно подключать к стабилизатору сети все оборудование, некоторые виды приборов (например, электропечи или бойлеры), могут быть подключены к реле напряжения (через АВ) напрямую. Это позволит сэкономить, поскольку устройства меньшей мощности стоят дешевле.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector